A. 含铬污水处理的含铬污水产生的原因
二氧化硫还原法的原理
二氧化硫还原法设备简单、效果较好,处理后六价铬含量可达到0.l mg/L 。但二氧化硫是有害气体,对操作人员有影响,处理池需用通风没备,另外对设备腐蚀性较大,不能直接回收铬酸。烟道气中的二氧化硫处理含铬(VI)废水,充分利用资源,以废治废,节约了处理成本,但也同样存在以上的问题。其反应原理为:
3SO2 + Cr2O72- + 2H+ = Cr3+ + 3SO42- + H2O
Cr3+ + 30H- = Cr(OH)3
二氧化硫法处理含铬废水的步骤
1) 将硫磺燃烧产生的二氧化硫通入废水中,与水作用生成亚硫酸,废水中六价铬被亚硫酸还原为三价铬,生成硫酸铬。
2)用碱中和废水,使其pH值为8,使三价铬以氢氧化铬的形式沉淀下来;过量的亚硫酸被中和生成亚硫酸钠,并逐渐被氧化成硫酸钠。
3) 将废水送入平流式沉淀池中进行分离,上部澄清水排放,下部沉淀经干化场脱水,泥饼的主要成分为氢氧化铬,此外还含有少量其他金属氢氧化物。用二氧化硫作还原剂,处理含铬废水,除铬效果好,进水中六价铬含量为81~430. 08 mg/L时,出水中六价铬含量均能达到排放标准。该工艺基本上实现了二氧化硫的闭路循环,排放尾气中二氧化硫的含量小于15mg/L。该工艺设备简单、操作方便、性能稳定、一次投资省、占地面积小、容易上马,处理费用低、技术经济等条件约束小。所以一般小型的企业(如乡镇企业)可以采用二氧化硫法处理含铬废水。 铁氧体法实际上是硫酸亚铁法的发展,向含铬废水中投加废铁粉或硫酸亚铁时,Cr6+ 可被还原成Cr3+。再加热、加碱、通过空气搅拌,便成为铁氧体的组成部分,Cr3+转化成类似尖晶石结构的铁氧体晶体而沉淀。铁氧体是指具有铁离子、氧离子及其他金属离子所组成的氧化物。其具体反应为:
Cr2O72- + 6Fe2+ + 14H+ = 2Cr3+ + 6Fe3+ + 7H2O
Fe2+ + Fe3+ + Cr3+ + O2 = Fe3+[Fe2+ Crx3+ Fe2+1-x]O4
铁氧体法不仅具有还原法的一般优点,还有其特点,即铬污泥可制作磁体和半导体,这样不但使铬得以回收利用,又减少了二次污染的发生,出水水质好,能达到排放标准。但是,铁氧体法也有试剂投量大,能耗较高,不能单独回收有用金属,处理成本较高的缺点。 利用溶解积原理,向含铬废水中投加溶度积比铬酸钡大的钡盐或钡的易溶化合物,使铬酸根与钡离子形成溶度积很小的铬酸钡沉淀而将铬酸根除去。废水中残余Ba2+再通过石膏过滤,形成硫酸钡沉淀,再利用微孔过滤器分离沉淀物[9]。反应式是:
BaCO3 + H2CrO4→ BaCrO4+ CO2 + H2O
Ba2+ +CaSO4 → BaSO4 + Ca2+
钡盐法优点是工艺简单,效果好,处理后的水可用于电镀车间水洗工序,还可回收铬酸,复生BaCO3;其缺点是过滤用的微孔塑料管加工比较复杂,容易阻塞,清洗不便,处理工艺流程较为复杂。 电解还原法是铁阳极在直流电作用下,不断溶解产生亚铁离子,在酸性条件下,将Cr6+还原为Cr3+。
用电解法处理含铬废水,优点是效果稳定可靠,操作管理简单,设备占地面积小,废水中的重金属离子也能通过电解有所降低。缺点是耗电量较大,消耗钢板,运行费用较高,沉渣综合利用等问题有待进一步解决。 离子交换法是借助于离子交换剂上的离子和水中的离子进行交换反应除去水中有害离子。目前在水处理中广泛使用的是离子交换树脂。对含铬废水先调pH值,沉淀一部分Cr3+后再行处理。将废水通过H型阳离子交换树脂层,使废水中的阳离子交换成H+而变成相应的酸,然后再通过OH型阴离子交换成OH-,与留下的H+结合生成水。吸附饱和后的离子交换树脂,用NaOH进行再生。
离子交换法的优点是处理效果好,废水可回用,并可回收铬酸。尤其适用于处理污染物浓度低、水量小、出水要求高的废水。缺点是工艺较为复杂,且使用的树脂不同,工艺也不同;一次投资较大,占地面积大,运行费用高,材料成本高,因此对于水量很大的工业废水,该法在经济上不适用。
B. 铁氧体处理含铬废水为什么要加过氧化氢
其实是起到氧化金属离子的作用。
加入少量的H2O2使部分Fe2+氧化为版Fe3+,当二权者的氢氧化物的比例为1:2左右时,可生
成组成类似于Fe3O4·xH2O的磁性氧化物(铁氧体),其组成可写成Fe2+·Fe3+「Fe3O4」·xH2O,其中部分Fe3+可以被Cr3+取代,使Cr3+成为铁氧体的组分而沉淀出来,反应原理可表示为: Fe3++ Fe2+ +Cr3+ +OH- →Fe2+· Fe3+「Fe(1-y)3+Cry3+O4」·xH2O(s)
C. 含铬废水主要含Cr2O72-,目前处理方法有沉淀法、铁氧体法、电解法等.一种改进的铁氧体法(GT-铁氧体法)
(1)2+具有还原性,可与Cr2O72-+发生氧化还原反应生成Fe3+和Cr3+,
反应的离子方程式为6Fe2++Cr2O72-+14H+=6Fe3++2Cr3++7H2O,
故答案为:6Fe2++Cr2O72-+14H+=6Fe3++2Cr3++7H2O;
(2)设废水中含Cr2O72-为cmol,进入还原塔(铁屑)的废水约为总废水量为x,则进入反应塔的Cr2O72-为xc,未进入的Cr2O72-为c-xc,铁与铬的物质的量之比为20:1,所以氯化铁的物质的量为40c,进入反应塔的氯化铁为40xc,未进入的为40(c-xc),
在反应塔中发生反应:Fe+2Fe3+=3Fe2+
40xc 60xc
6Fe2+~Cr2O72-~6Fe3+
6c c 6c
保证反应池中加碱前Fe3+与Fe2+的比值为2:1,得出
40(c?xc)+6c |
60xc?6c |
2 |
1 |
D. 工业含铬废水的处理方法 工业含铬废水如何处理
1、硫酸亚铁还原法
我们可以使用硫酸亚铁还原法来处理含铬废水,药剂配制方便,成巧脊卜本较低,硫酸亚铁中主要是亚铁离子还原六价铬,还原后废水中含有Cr3+和Fe3,沉淀后所得污泥是铬与铁氢氧化物的混合污泥,但是此方法产生的污泥量大,没有回收价值。
2、电解法
电解法可以使废水中孝穗的铬通过电解过程在阴阳极发生氧化还原反应,使有野告害物质转化为无害物质。电解法除铬是用铁来做阴阳极,在酸性条件下,亚铁离子将六价铬离子还原成三价铬离子,阴极产生氢气,达到废水净化的目的。电解法占地面积小,方便控制管理,唯一不足就是铁板消耗量较多,污泥利用价值低。
3、离子交换法
离子交换法来处理含铬废水主要是利用离子交换树脂来对废水中的六价铬进行选择性吸附,六价铬和水分离,再使用试剂将六价铬洗脱袭来,进行净化。此方法投资费用大,操作管理负责,一般我们都不使用此方法。
E. 含铬废液的处理
含铬废液的处理方法如下:
1、电解法。电解还原处理含铬废水是利用铁板作阳极,在电解过程中铁溶解生成亚铁离子,在酸性条件下,亚铁离子将六价铬离子还原成三价铬离子。同时由于阴极上析出氢气,使废水pH逐渐上升,最后呈中性,此时Cr3+、Fe3+都以氢氧化物沉淀析出,达到废水净化的目的。
2、硫酸亚铁还原法。硫酸亚铁还原法处理含铬废水是一种成熟的较老的处理方法。由于药剂来源容易,若使用钢铁酸洗废液的硫酸亚铁时,成本较低,除铬效果也很好。硫酸亚铁中主要是亚铁离子起还原作用,在酸性条件下(pH=2~3),用硫酸亚铁还原六价铬,最终废水中同时含有Cr3+和Fe3+,所以中和沉淀时Cr3+和Fe3+一起沉淀,所得到的污泥是铬与铁氢氧化物的混合污泥,产生的污泥量大,且没有回收价值,这是本法的最大缺点。
F. 怎样用铁电极电解法除去酸性废水中的六价铬
以铁电极作为阳极,惰性电极作阴极,进行电解
铁作阳极被氧化为Fe2+,Fe2+能被酸性废水中的六价铬氧化为Fe3+,消耗了六价铬
G. 铁氧体法处理含重金属废水的原理是什么
铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣[5]。Nakazawa
Hiroshi
等研究指出[6],在热的含砷废水中加铁盐(FeSO4或Fe2(SO4)3),在一定pH下,恒温加热1
h。用这种沉淀法比普通沉淀法效果更好。特别是利用磁铁矿中Fe3+盐处理废水中As(III)、As(V),在温度90℃,不仅效果很好,而且所需要的Fe3+浓度也降到小于0.05mg/L。赵宗升曾[7]从化学热力学和铁砷沉淀物的红外光谱两个方面探讨了氧化铁砷体系沉淀除砷的机理,发现在低pH值条件下,废水中的砷酸根离子与铁离子形成溶解积很小的FeAsO4,并与过量的铁离子形成的FeOOH羟基氧化铁生成吸附沉淀物,使砷得到去除。
马伟等报道[8],采用硫化法与磁场协同处理含砷废水,提高了硫化渣的絮凝沉降速度和过滤速度,并提高了硫化剂的利用率。研究发现经磁场处理后,溶液的电导率增加,电势降低,磁化处理使水的结构发生了变化,改变了水的渗透效果。国外曾[9]有人提出在高度厌氧的条件下,在硫化物沉淀剂的作用下生成难溶、稳定的硫化砷,从而除去砷。
请采纳答案,支持我一下。
H. 铁氧体(Fe3O4)法是处理含铬废水的常用方法,其原理是用FeSO4把废水中的Cr2O27还原为Cr3+,并通过调节
由题目信息可知,Cr2O72-中Cr元素由+6价还原为+3价,FeS04中Fe元素被内氧化为+3价,且Fe元素部分化合价为变化容,根据电子转移守恒计算有3x=2-x,解得x=0.5;
处理1molCr2O72-,根据电子转移守恒可知,被氧化为+3价的Fe元素物质的量为
1mol×2×(6?3) |
3?2 |
6mol |
1.5 |