㈠ 煤制气和传统城市煤气的区别
目前市面上的燃气分为:天然气 气田气 石油伴生气 凝析气田气 煤层气 页岩气 人工燃气 液化气 生物质气
煤制气与焦炉煤气同属于人工燃气
那什么是煤制气?
煤制气:以煤为原料经过加压气化后,脱硫提纯制得的含有可燃组分的气体。根据加工方法、煤气性质和用途分为:煤气化得到的是水煤气、半水煤气、空气煤气 (或称发生炉煤气) ,这些煤气的发热值较低,故又统称为低热值煤气;煤干馏法中焦化得到的气体称为焦炉煤气,属于中热值煤气,可供城市作民用燃料。
化学结构:
(1)主要成分:CO2、CO、H2、CH4、H2O、H2S、N2、焦油、油、石脑油、酚、腐植酸等
(2)含量:H2,38%:CO,17%:CO2,29%:O2,小于0.4:N2+Ar,0.5:CH4,13%:H2S,0.4%
那什么是焦炉煤气?
焦炉煤气:又称焦炉气,由于可燃成分多,属于高热值煤气,粗煤气或荒煤气。用几种烟煤配制成炼焦用煤,在炼焦炉中经过高温干馏后,在产出焦炭和焦油产品的同时所产生的一种可燃性气体,是炼焦工业的副产品。
化学结构:
(1)主要成分:H2、CH4、CO、CO2、N2、O2、cmhn
(2)含量:H2(55~60%),CH4(23~27%),CO(5~8%),CO2(1.5~3.0%)
N2(3~7%),O2(<0.5%),cmhn(2~4%)
那什么是天然气?
天然气:是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷。它主要存在于油田、气田、煤层和页岩层。天然气燃烧后无废渣、废水产生,相较煤炭、石油等能源有使用安全、热值高、洁净等优势。
化学结构:
(1)主要成分:烷烃、氮
(2)含量:烷烃(93%-97%)氮(3%-7%)
新投资的这些煤制气项目和传统城市煤气有什么区别
煤制气符合国家“高碳能源低碳化利用”的能源发展战略,对实现煤炭资源的清洁利用意义重大,因此,只要规避好原料煤炭的风险,达到节能减排的硬性要求。出现煤制气投资热的原因在于市场需求和有利可图。目前我国天然气需求旺盛,供应存在巨大缺口,这是煤制气项目发展的市场基础。估计我国天然气缺口在今年和
2020年会分别达到200亿和900亿立方米。为此,我国谋求从国外大量进口液化天然气和管道天然气,但问题是进口气的价格较高,如西气东输二线抵境价
格在每立方米2元以上。以目前的煤价,煤制气的生产成本比国产和进口天然气要低10%-20%,利润空间高于天然气,这是企业投资的直接驱动力。另外,与
其他煤基燃料技术路线相比,煤制天然气的能量转换效率较高,耗水量较低,二氧化碳排放量较少,技术也比煤制油成熟、易得,这是各地积极上马煤制气项目的重要原因。煤制气是将含碳量高的煤炭资源加工转化成清洁高效低碳的天然气,因此应归类于新能源产业,符合国家“高碳能源低碳化利用”的能源发展战略,对实现煤炭资源的清洁利用意义重大,特别是对于富煤缺水、运输不便的西部地区更加重要。因此,只要能实现科学发展就无可厚非。
总体来说国家谋求煤制气产业主要就是缩小天然气缺口降低用气成本,同时也可以去到开发建设西部地区的经济!煤制气取代焦炉气与天然气共存是符合目前的国情的!
㈡ 气化炉怎么制作
河南秸秆气化技术有了新突破
--------------------------------------------------------------------------------
东方网1月17日消息:由河南省秸秆能源开发公司研制的新型秸秆气化机组,日前通过了河南省科技厅组织的专家鉴定。专家指出,这套机组的优点在于干湿法相结合制气,既增加燃气热值,又减少了污染。
秸秆气化就是通过特定的转换装置,将农作物秸秆在缺氧状态下进行热解气化,从而转化成可燃气体。据专家介绍,秸秆气是今后国家重点推广的一项农村新能源,其制气技术分为以空气催化的干法制气和以水蒸气催化的湿法制气,但都面临热值低、二次污染等问题。而此次通过鉴定的JMQ干湿秸秆气化机组,根据加大反应物浓度减少生成物浓度可以提高反应速度的化学原理,改造反应炉体,用热空气和热蒸气催化,解决了上述难题。
浅谈秸秆气化技术中的几个问题
为解决农村农民的炊事用能,多年来各地因地制宜,采用玉米、高粱秸秆、麦秸、稻壳等生物质进行气化,虽取得一定效果,但因规模小,较为分散,又受到投资及运行成本的制约,不可能完全照搬城市或工业上以煤为原料进行气化的成熟技术;由于规模小,只能依靠手工操作,难以实现机械化、自动化,这使保证生物质燃气达到民用燃气质量,便于农民正常使用产生一定的难度。因此,必须面对现实,在有限的经济条件下,进一步提高生物质制气的技术含量,对现存技术问题逐步加以完善,才能在当前的市场竞争中立于不败之地。下面对几个问题谈谈粗浅看法。
一、从气化炉上降低燃气中的焦油
双火层反火炉燃料气化技术是将气化剂(空气及自产蒸汽)先经从气化炉出口的热燃气进行预热,在真空泵的抽吸下,从炉子的上部、下部分别进入,炉内生成的650℃左右的燃气,通过炉栅后,在内外炉壁之间向上流动,将部分热量传给炉内反应物,然后由炉中上部水平抽出后,依次进入空气预热器、换热器、冷却除尘器,最后进入真空泵及气柜,这种气化技术具有以下特点:
1�由于存在二个火层(上段反火,下段正火),可使灰渣中的碳含量由30%降至15%,煤的转换率提高20%。
2�与正火炉相比,焦油、硫化氢、悬浮物及挥发性酚均有降低。
3�避免了生物质反应物的“搭桥”现象,由于气化充分,使焦油含量可达30±10mg/m3,而热值可达4�9MJ/Nm3。
4�充分利用了燃气的余热,提高了炉内的反应温度。
二、燃气净化及二次污染
1�摸清生物质燃气中的有害成分种类及含量。到目前为止,我们知道秸秆燃气中除可燃组分外,还有灰分、焦油、硫化氢,那么是否还含有多环芳香族等物质?如果有,其具体含量又为多少?只有了解了这些组分的浓度,才能有针对性地选择或重新设计燃气的净化装置。
2�为了使秸秆燃气达到技术要求,目前,多数气化站采用湿法或干湿法结合对燃气进行净化,从而又带来污水的处理问题。
大的煤制气厂的废水脱酚方法常采用某些溶剂萃取,然后再进行活性污泥脱酚,最后采用活性炭吸附脱酚,形成含酚废水的三级治理。也有的煤气公司采用两段生化处理污水,并能使处理后的出水中COD、酚、硫、氰等均达到排放标准。而对于农村小型秸秆气化站的废水处理问题必须引起各界人士注意。秸秆气化的主要目的是为了解决大气污染,但后面的污水问题如不重视,势必引起农田或河道的二次污染。这是在进行秸秆气化中面临的又一个技术难题。
三、有关贮气柜的问题
设置燃气贮气柜的目的主要是为了解决燃气的均衡生产,即补充高峰时的用气不足。由于农村生活炊事用气比较集中,目前贮气柜的基建一次投资几乎占气化站总投资的1/3,而所储的可燃组分又只占总气量的40%左右。为了减少该部分投资,建议设置两套气化机组,即一主一辅,可在用气高峰时,利用气化炉在加料点火后几分钟内产气的特点向用户供气,适当降低储气柜的容积。要做到这点,必须结合农村居民用气规律,绘制出最大月份里一周内燃气消耗量的变化曲线。目前采用的除湿式气柜外,还有干式气柜。
1�湿式柜是60年代的成熟技术,由于钟罩采用钢板制作,而贮存的燃气中又存在硫化氢、二氧化碳等酸性气体,对钟罩内壁会产生缓慢腐蚀,特别是在气液接触部分、顶板焊缝热影响区及除锈、防腐不合格的部位最易受到腐蚀,通常经过2~3年需进行一次防腐处理,寿命一般为10~15年,最好的防腐可达30年。另外,湿式柜在寒冷地区过冬必须解决防冻问题。
2�干式柜分为稀油密封、垫圈密封及柔膜密封三种。干式柜地基处理较易,其防腐性能优于湿式柜,冬季没有防冻等问题。特别是柔膜干式柜更适合贮存含有粉尘及颗粒的燃气,一般15年需更换一次密封橡胶柔膜,使用条件好的可达30年。
干式柔膜密封帘是气柜的心脏,它应具备以下条件:
(1)耐腐蚀及抗老化应具有耐久性,为增强其抗焦油能力,应改进柔膜内层胶的配方;
(2)对储存的燃气应具有不透性;
(3)对动作中所引起的应力应具有充分的强度及耐压缩性;
(4)应具有很好的弹性,在伸长后有回复原状的性能,防止由于动作中变形所引起的损伤;
(5)应具有广泛的使用温度范围,特别应注意高温时柔膜的配方,否则易造成柔膜自身剥离的情况。
山东泰安1993年建成一座中压2000立方米的柔膜干式柜,1998年建设、设计、施工单位对该气柜进行联检,储气压力为6860Pa,五年来运行良好,活塞运行平稳,柔膜富有弹性、无脱皮、龟裂、老化现象,钢丝绳及配重装置无变化,仅做过一次柜顶及外表面防腐。
该干式柜的造价为83万元(不包括柔膜费用),与同容积的湿式柜造价75万元(包括配重为93万元)相比,总造价略高10%左右。
四、有关供气管路问题
检查秸秆气化集中供气是否正常,衡量的标准首先是能长期将质量合格的燃气安全、连续送到用户;其次是保证在高峰期对最远终端用户,灶前具有一定的压力和热流量。这就要求对气柜供出的燃气应根据管路中的流量、管路长度及管径、压力损失等进行合理计算。前不久笔者参观黑龙江肇东市昌五秸秆气化站,长远计划应供2000户,但近期只供40户,且远端用户燃气压力低、火力弱。经分析可能有以下几种原因:
(1)由于使用了湿亚麻屑,可能影响燃气热值;
(2)原有管路是否设计合理,管内是否积水;
(3)该用户采用的秸秆燃气灶额定设计压力为2000Pa,那么最远用户灶前能否达到这一压力?
在供气管路材质的选择上,因秸秆气中会有焦油、酚等有机物,不能用PVC管,只能用中、高密度PE管。施工要由有资质的专业队伍进行,应熟练掌握热熔机、电熔机等焊熔工具。检查管路设计、施工是否合理,应在管路竣工后,不但进行强度及气密性试验,最好用空气在400Pa的压力下,对全线用户进行动态测试,抽查最远用户灶前的燃气压力是否满足灶具的额定压力。
秸秆气化集中供气是一项系统工程,它包括了制气、净化、贮存、输配及用户的使用。只有保证每一环节的技术先进及经济合理,才能取得整体系统效益,这也是我们奋斗的目标。
㈢ 针对煤制气过程中产生的含酚生产废水,一般采用什么方法处理
浓度较高的废水一般采用萃取工艺降低含酚量,低浓度含酚废水一般采用物化工艺(微电解 催化氧化等)继续降低含酚量,增加可生化性。建议采用水解酸化+SBR的工艺进后续生化处理。
㈣ 煤化工废水预处理的工艺
煤化工废水预处理的工艺具体内容是什么,下面中达咨询为大家解答。
目前,节能环保已成为社会经济可持续发展的必然要求,零排放理念已成为整个社会公认的环保理念。随着国家对污染物排放的控制力度日益加强,加之我国大型煤化工基地普遍处于缺水地区,所以强化污水治理,实现废水的循环利用和零排放,节约水资源,现已成为煤化工企业技术发展的必然趋势和社会义务。某公司造气装置采用鲁奇加压气化工艺和设备,气化剂为纯氧和中压蒸汽。气化过程中,一些干馏附产物及未能气化分解的水蒸汽和煤炭的内在水分,构成了煤制气废水。煤制气产生的废水经过汽提和分离提取副产物(中油、焦油),含油量降低后的含酚废水经萃取剂脱酚后送到生化处理装置并经生化处理后,煤制气废水再被送到电厂进行冲渣处理,然后排入贮灰场,经过灰渣吸附达到国家一级排放标准后排放。由于城市煤气用量的不断增大以及工厂使用的原料煤煤质指标远劣于原设计用煤的煤质指标(原滚族设计造气用煤灰份为26%,现实际用煤平均灰份为38%,甚至有时灰份超过50%),造成造气废水水量、水质都已经超出了原设计指标范围。并且原设计的造气废水排放指标是按《废水综合排放标准》中二级标准设计的(COD为200mg/L,BOD为60mg/L)。而目前原设计的技术及规模已不能满足现在工厂造气废水的处理要求,从而导致排放的造气废水中主要污染物COD、NH3-N和挥发酚超出国家一级排放标准。虽然目前采用了新的污水预处理工艺,同时放大和改进原有污水处理装置,来实现生化处理装置入水指标的合格,但实际上此新工艺在运行中也存在诸多非常突出的问题。
1目前工艺条件情况简介
煤化工腔备掘废水是在煤的气化、干馏、净化及化工产品合成过程中产生的废水。煤化工废水的污染物浓度高,成分复杂。除含有氨、氰、硫氰根等无机污染物外,还含有酚类、萘、吡啶、喹啉、蒽等杂环及多环芳香族化合物(PAHs),是一种最难以治理的工业废水,处理难度大,处理成本高。我们知道,要想得到符合排放标准要求的工业废水,对废水的前期预处理以及副产物分离是至关重要的两个关键环节,其处理结果将直接影响后期的生化处理法和物理法装置系统的稳定运行,所以要求前期预处理装置必须运行稳定。(表1某煤化工厂污水水质分析)
2副产品分离工艺说明(除油、脱酸、脱氨)
煤化工气化洗涤等原料污水先进入1#、2#污水槽,自然沉淀分离除油及部分机械杂质后,经原料污水泵升压后分两路,进入塔进行脱酸、脱氨。一路经换热器与循环水换热冷却至35℃左右,作为脱酸脱氨塔填料上段冷进料,以控制塔顶温度;另一路经三次换热至150℃左右作为汽提塔的热进料,进入汽提塔的相应塔板上。塔顶出来的酸性气体CO2,H2S等经冷却器冷却,经分液罐分液,分液后的气体送入气柜或火炬,分凝液相返回酚水罐。当塔顶采出的气相中含水量和含氨量较低时,也可不经冷却直接进气柜或火炬。
侧线粗氨气经一级冷凝器与原料水换热至125-140℃左右后,进入一级分凝器进行气液分离,气氨从上部出去,经二级冷却器与循环水换热冷却至85-95℃后进入二级分凝器。自二级分凝器出来的粗氨气经三级冷却器与循环水换热冷却之后进入三级分凝器,富氨气进入氨精制系统进行精制,塔底净化水经换热器换热冷却后,进入后续装置。
3存在问题的分析
经过一段时间的运行发现装置运行不稳定,换热器严重结垢,达不到设计温度,蒸汽耗量也随之上升,同时脱酸脱氨塔内由于严重结垢致使浮阀塔件经常堵塞,直接影响了初期的水质处理。装置连续运行周期不足一月,后期的运行周期逐渐缩短。原因分析:主要是由于采用的煤质质量不可逆的普遍下降原因导致的。由于煤质灰分的逐渐上升,煤气夹带飞灰量增高,导致污水中含尘、有机悬浮杂质增高多,在升温过程中的析出沉积在换热设备表面形成坚硬的复合水垢导致换热器堵塞,塔伍核板塔件被密实,从而影响装置运行。
4解决问题
4.1 研究处理办法消除部分悬浮类物质,同时加大塔件内流通面积,改变加热方式。直接方法:脱酸脱氨塔的塔件更换;对换热器进行物理、化学清洗。间接方法:加强预处理,采用强制过滤装置(活性焦过滤器)降低结垢物质含量;部分直接加热改为间接加热根据季节和水质进行调节切换。
4.2 可实施的解决方法采用新型塔内件代替原有塔内件,对换热器经行集中清理,判别主要结垢温度条件。采用深度预处理强制过滤装置降低水中无机盐类及悬浮物类结垢物质,改变部分间接加热为直接加热。
5理论基础原因说明
5.1 塔内件对比图片
5.2 径向侧导喷射塔盘(CJST)工作原理及技术特点
5.2.1 径向侧导喷射塔盘(CJST)工作原理由下一层塔板上升的气体从板孔进入帽罩,由于气体通过板孔时被加速,能量转化,板孔附近的静压强降低,致使帽罩内外两侧产生压差,使板上液体由帽罩底部缝隙被压入帽罩内,并与上升的高速气流接触后,改变方向被提升拉成环状膜,向上运动。在此过程中, 极不稳定的液膜被高速气流拉动撞击分离板后被破碎成直径不等的液滴。气液两相在帽罩内进行充分的接触、混合,然后经罩体筛孔垂直喷射,气液开始分离,气体上升进入上一层塔板,液滴落回原塔板。
5.2.2 径向侧导喷射塔盘技术特点:①处理能力大。CJST塔板,由于帽罩的特殊结构,气体离开罩呈水平或向下方向喷出,这拉大了气液分离空间和时间,使气体雾沫夹带的可能性大为降低,这使塔板气体通道的板孔开孔率可大幅提高,一般可达20%~30%。而在开孔率相同时可允许操作气速比一般塔板高出1.5-2.0倍,仍能将气体雾沫夹带限定在允许范围以内。其次,气体携带液体并流进入帽罩,而不是像浮阀等塔板气体穿过板上液层,因而使塔板流动的液体基本上为不含气体的清液,故降液管液泛的可能性大为降低,即同样截面积的降液管,液体通过能力也可提高近一倍,所以对于扩产改造项目,保留原塔体,只需更换成新型塔板就可将塔的处理量提高100%以上。②传质效率高。CJST塔板,由于帽罩的存在,罩内液气比大,液相在气相中分散较好,特别是气液混合物撞击分离板后改变方向或折返,使液膜不断破碎、更新,气液接触混合非常激烈,对于喷射段由于液体经喷射分散度更高,颗粒更小,使气液接触面积增大。研究证明这一阶段不仅是液滴的沉降,传质作用仍在进行,罩内外基本上都是有效传质区域,塔板空间都得到充分利用。因此传质、传热过程比浮阀内进行的充分、完全,所以可达到总的塔板传质效率比浮阀高出15%以上的效果。③抗堵塞能力强。由于塔板板孔较大且无活动部件,一般不易被较脏或粘性物料堵塞。另外,气液是在喷射状态下离开帽罩的,气速较高,对罩孔本身有较强的自冲洗能力。物流中含有的颗粒、聚合物、污垢等杂质难以在罩孔聚集并堵塞罩孔。④阻力降低。CJST塔板气体并不穿过板上液层,只需克服被气体提升的那部分液体的重力,所以造成的压降要小,塔板压降在低负荷时与F1型浮阀相当,高负荷时比F1浮阀低20%~30%,负荷愈大,压降低的愈多。⑤操作弹性好。与普通塔板相比,这类塔板的板孔动能因子F0更大,不易出现降液管液泛和过量液沫夹带等不正常现象,即操作上限动能因子大,其操作弹性下限与浮阀相当上限要比浮阀稍高一些。⑥通过导向喷射,大大降低塔盘上的液面梯度,使得塔盘气体分布较为均匀,它非常适合大塔径单溢流塔板。⑦喷出的液体方向与塔盘液体流动方向一致,从而降低了液相返混程度。⑧导向喷射减小了液面梯度和液层厚度,使得塔板的总体压降降低。⑨操作条件适应性强,适用于高压强与较低真空以及高液气比与低液气比下操作。⑩操作简便可靠,这类塔板从开工启动到稳定运行时间很短,并能持续稳定生产,这与它具有很好的传质效率有关。
根据以上的特殊优越性能实现主装置自身的长周期运行。
5.3 深度预处理强制过滤装置(活性焦过滤器)采用此装置,科降低水中无机盐类及悬浮物类结垢物质,改变部分间接加热为直接加热。
5.3.1 活性焦过滤器优点说明目前,因国内难处理工业废水治理市场需求较小,活性焦多活跃在焦化废水、造纸废水、制药废水等领域,主要应用于其工艺废水中有机物脱除和脱色。随着环保形势日趋紧张的现实要求,加之其逐渐展现出来的处理能力,活性焦将会在煤化工综合废水处理中得到更广泛的应用。
5.3.2 与我们目前所使用的活性炭(煤质破碎炭为主的系列品种)的性能相比较活性焦因结构上中孔发达,其性能指标表现在――碘值有所降低,但亚甲蓝值、糖蜜值大为增高,从而在应用上表现出能吸附大分子、长链有机物的特性。由于资源优势的存在,生产成本及生产得率均比破碎炭有一定的优势,其售价还不到活性炭的50%,单纯从原料成本一个角度就大大降低了工艺的运行成本。
5.3.3 活性焦产品质量指标为:
①强度Hardness (w%) 91
②亚甲蓝Methylene blue(mg/g)60
③灰分Ash (w%)12.5
④装填密度Apparent Density(g/l)540
⑤碘值Lodine No.(mg/g)620
⑥比表面积(N2吸附)Specific surface area(m2/g) 490
⑦糖蜜值 Sugar Phickness(mg/g)>200
⑧粒度 Particle size distribution(w%)
0~3.15mm:其中>1.25 92%
5.3.4 吸附原理及主要性能参数(吸附容量和吸附速率)
5.3.5 吸附原理活性焦不断吸附水中溶质,直到吸附平衡即溶质浓度不再改变时为止。一定温度下,达到吸附平衡时,单位重量活性焦所吸附的溶质重量和水中溶质浓度的关系曲线,称为吸附等温线。其曲线常用弗罗因德利希公式表示:X/M=kC1/n
式中:X为活性炭吸附的溶质量;M为所加活性焦重量;C为达到吸附平衡时,水中溶质浓度;k和n为试验得出的常数。
5.3.6 主要性能参数(吸附容量和吸附速率)①吸附容量。吸附容量是单位重量活性焦达到吸附饱和时能吸附的溶质量,和原料、制造过程及再生方法有关。吸附容量越大,所用活性焦量越省。②吸附速率。吸附速率是指单位重量活性焦在单位时间内能吸附的溶质量。因吸附有选择性,性能参数应由实验测定。颗粒活性焦要有一定的机械强度和粒径规格。
5.4 活性焦在水处理中的应用
5.4.1 非煤化工废水应用概述活性焦最早用于去除生活用水的臭味。沼泽水常带土味,湖泊和水库水常带藻类形成的臭味,用活性焦处理最为有效,并且只需在出现臭味时使用。大多用粉状活性焦,直接投入混凝沉淀池或曝气池内,随污泥排除,不再回收利用。活性焦能去除水中产生臭味的物质和有机物,如酚、苯、氯、农药、洗涤剂、三卤甲烷等。此外,对银、镉、铬酸根、氰、锑、砷、铋、锡、汞、铅、镍等离子也有吸附能力。在给水处理厂中,活性焦吸附法又起完善水质的作用。
5.4.2 煤化工工艺活性焦应用说明本工艺采用的设备是以粒状活性焦为滤料的过滤器,运行过程中须定期反复冲洗,以除去焦层中的悬游物,防止水头损失过大(见过滤)。活性焦滤器也可采用流化床或移动床。与快滤池不同,水流均从下而上。流化床的流速会使炭层膨胀,不易阻塞。移动床内失效的炭会从池底连续排出,而新活性焦会从池顶连续补充。活性焦的再生。粒状活性焦吸附容量耗尽后再生,常用的方法是加热法,废焦烘干后在850°C左右的再生炉内焙烧。颗粒活性焦每次再生约损耗5~10%,且吸附容量逐次减少。再生效率对活性焦滤池的运行费用(也就是对水处理成本)影响极大。由于活性焦吸附水中有机物的能力特强,而微生物降解有机物的能力将起到再生活性焦的作用。同时活性焦的关键作用会大大降低进入换热器和脱氨脱酚的悬浮物、大颗粒飞灰和有机物含量,从而起到预处理保护作用,实现了污水处理主要装置的长周期的正常稳定运行。另外,转化为固态污染物的活性焦还是良好的循环流化床燃料,可充分消除对环境污染。
6工艺改造
①脱酸脱氨塔件的改造,由原来的浮阀塔板,改造更换为径向侧导喷射塔板。②入脱酸脱氨塔前增加深度预处理强制过滤装置(活性焦过滤器)。③适当的对塔底改变加热方式,对含悬浮较少的塔底液进行加热,改变来料预热方式。改造后工艺装置见图4。
7取得的效果
7.1 原料水的改变煤化工制气废水经活性焦过滤后出水水质(mg/L)分析见表2。
7.2 运行周期变化煤化工制气废水预处理装置改造前后运行后周期等对比见表3。
7.3 煤化工制气废水经萃取后出水水质分析见表4。
8小结
①通过以上改造后装置达到了稳定运行,成本投资不大。
②预处理运行稳定后,出水水质连续稳定,完全满足后续生化处理法的要求,为达标排放提供关键前提条件。
③对后续生化法、物理法处理装置的稳定运行起到了重要保障,特别是采用单塔蒸汽汽提脱酸脱氨后有机溶剂萃取法提取副产物,对北方冬季煤化工污水处理装置的连续达标稳定运行具有重要的指导意义。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
㈤ 破乳剂的废物类别是什么
破乳剂是一类促进油水分离的化学药剂,广泛用于油田原油开采、石油化工、含油废水处理等行业。
破乳剂总体分为两大类
一类是传统原油破乳剂,聚醚类破乳剂,也叫正相破乳剂,用于原油和水的分离,提取原油。
一类是用于污水处理除油的反相破乳剂,反相破乳剂是混凝剂的一种,主要目的是絮凝含油废水中的少量油,油是以絮凝物的状态被分离出来,让水质含油浓度降低达标,油的絮凝物一般作为危废处理。
聚合氯化铝PAC+破乳剂+聚丙烯酰胺PAM+气浮机+油泥叠螺机脱水
含油废水处理广泛分布于以下行业:
染料废水、铝加工废水、含焦油废水、含磷废水、选矿废水、纺织印染废水、光伏多晶硅废水、石化炼化废水、金属加工废水、垃圾渗滤液废水、含油废水、煤化工高盐废水、玻纤废水油漆涂料废水、半导体废水、食品废水、皮革废水、印刷油墨废水、屠宰场废水、化肥厂废水、焦油废水处理、高盐染料废水、电子厂废水、含铬废水、油田废水、机械加工废水、矿业废水、精细化工废水、陶瓷废水、煤矿矿井水废水、养殖废水、医药废水、化工废水、煤制气废水、冶金废水、含酚废水、酿酒废水、重金属废水、乳化液废水、选矿废水、氟化工废水、煤焦油废水、含汞废水、制药废水、玻璃加工废水、橡胶废水、钢铁厂废水、电镀废水、电厂废水、表面处理废水、化妆品废水、兰炭废水、稀土废水、制革废水、船舶燃料油废水、含盐废水、磷化工废水、造纸废水、淀粉废水、煤制油废水、矿山废水、化纤废水、印刷线路板废水、焦化废水、研磨废水、燃煤电厂脱硫废水。
㈥ 高级技工和技师!
1.高级技工是是职业资格证书 不是毕业证书 所以学校是不培养高级技工的
2.取得高级技工执业资格后 在经过评定才可以取得技师的执业资格
3 高职毕业不能取得高级技工的资格 但在现实生活中你可能发现有这种现象 那是学校违规操作的结果
4.高级技工学校都是中专 你初中毕业即可报考当然这些学校里可能有大专班 另外 技师学院是招高中生
5 你高中毕业可以报考技师学院 也可以报考高级技工学校的大专班
6 执业资格分为5级
高级技工为3级 技师为2级 这些你现在不必知道太多 离你还比较远
就这些 不懂再问我
㈦ 国内大型环保企业如何处理煤化工废水
我国近年来兴起的煤化工产业大多分布子在西北地区,水资源少,而煤化工又是水资源消耗量和废水产生量都相当大的产业,因此,废
以下为大家分享神华包头煤制烯烃、神华鄂尔多斯煤直接液化、陕煤化集团蒲城
项目名称:云天化集团呼伦贝尔金新化工有限公司煤化工水系统整体解决方案
关键词:煤化工领域水系统整体解决方案典范
项目简介
呼伦贝尔金新化工有限公司是云天化集团下属分公司。该项目位于呼伦贝尔大草原深处,当地政府要求此类化工项目的环保设施均需达到“零排放”的水准。同时此项目是亚洲首个采用BGL炉(BritishGas-Lurgi英国燃气-鲁奇炉)煤制气生产合成氨、尿素的项目,生产过程中产生的废水成分复杂、污染程度高、处理难度大。此项目也成为国内煤化工领域水系统整体解决方案的典范。
项目规模
煤气水:80m3/h污水:100m3/h
回用水:500m3/h除盐水:540m3/h
冷凝液:100m3/h
主要工艺
煤气水:除油+水解酸化+SBR+混凝沉淀+BAF+机械搅拌澄清池+砂滤
污水:气浮+A/O
除盐水:原水换热+UF+RO+混床
冷凝水:换热+除铁过滤器+混床
回用水:澄清器+多介质过滤+超滤+一级反渗透+浓水反渗透
博天环境集团
技术亮点
1、煤气化废水含大量油类,含量高达500mg/L,以重油、轻油、乳化油等形式存在,项目中设置隔油和气浮单元去除油类,其中气浮采用纳米气泡技术,纳米级微小气泡直径30-500nm,与传统溶气气浮相比,气泡数量更多,停留时间更长,气泡的利用率显著提升,因此大大提高了除油效果和处理效率。
2、煤气化废水特性为高COD、高酚、高盐类,B/C比值低,含大量难降解物质,采用水解酸化工艺,不产甲烷,利用水解酸化池中水解和产酸微生物,将污水在后续的生化处理单元比较少的能耗,在较短的停留时间内得到处理。
3、煤气废水高氨氮,设置SBR可同时实现脱氮除碳的目的。
4、双膜法在除盐水和回用水处理工艺上的成熟应用,可有效降低吨水酸碱消耗量,且操作方便。运行三年以后,目前的系统脱盐率仍可达到98%。
项目名称:陕煤化集团蒲城清洁能源化工有限责任公司水处理装置EPC项目
关键词:新型煤化工领域合同额最大水处理EPC项目
项目简介
该项目位于陕西省渭南市蒲城县,采用的是德士古气化炉和大连化物所的DMTO二代烯烃制甲醇技术。因此废水主要以气化废水及DMTO装置排水为主,具有高氨氮、高硬度的特点。博天环境承接了该公司年产180万吨甲醇、70万吨烯烃项目的污水装置、回用水装置和脱盐水装置,水处理EPC合同总额达到5亿零900万元。
项目规模
污水:1300m3/h回用水:2400m3/h
浓水处理系统:600m3/h
脱盐水:一级脱盐水1600m3/h
工艺凝液:600m3/h透平凝液:1200m3/h
主要工艺
污水:调节+混凝+沉淀+SBR
回用水:BAF+澄清+活性砂滤+双膜系统+浓水RO
脱盐水:UF+两级RO+混床
浓水处理系统:异相催化氧化
工艺凝液:过滤+阳床+混床
透平凝液:过滤+混床
技术亮点
1、污水系统将多级串联技术与SBR工艺相结合,将SBR反应工序以时间分隔为多次交替出现的缺氧、好氧转换阶段,这种环境下丝状菌导致的污泥膨胀会被限制,污泥沉降率就会提高;同时,分隔出的各个反应段时长与微生物活性相契合,充分利用快速反硝化阶段,创造良好的生物环境,促使硝化与反硝化反应彻底的进行,提高有机物去除效率,实现高氨氮污水污染物的达标处理。
2、浓水采用异相催化氧化处理技术,所用高活性异相催化填料与反应生成的Fe3+生成FeOOH异相结晶体,催化生成更多羟基自由基,具有极强的氧化能力,减少药剂投加量和污泥生成量。