A. 欲降低废水中重金属元素铬的毒性,可将Cr2O72-转化为Cr(OH)3沉淀除去.已知: 氢氧化物开始沉
(1)①K2SO4﹒Al2(SO4)3﹒24H2O为强电解质,在溶液中完全电离,生成Al3+和SO42-、K+,Al3+能水解生成氢氧化铝胶体:Al3++3H2O=Al(OH)3(胶体)+3H+或Al3++3H2O?Al(OH)3+3H+,氢氧化铝胶体具有吸附性,能吸附水中的悬浮物,所以能作净水剂,
故答案为:Al3++3H2O=Al(OH)3(胶体)+3H+或Al3++3H2O?Al(OH)3+3H+;
②根据“沉淀法”和“中和法”的原理,向沉淀池中加入NaOH溶液,NaOH会和H+发生反应H++OH-═H2O,Cr3+与NaOH发生反应Cr3++3OH-═Cr(OH)3↓,Cr(OH)3沉淀完全时的pH为8,所以,测定溶液的pH,若pH≥8,则证明Cr3+沉淀完全,
故答案为:Cr3++3OH-═Cr(OH)3↓、H++OH-═H2O;测定溶液的pH,若pH≥8,则证明Cr3+沉淀完全;
(2)亚铁离子与Cr2O72-发生氧化还原反应,被还原为Cr3+然后生成Cr(OH)3沉淀,重铬酸根具有强氧化性,能将生成的亚铁离子氧化为三价,即6Fe2++Cr2O72-+14H+=6Fe3++2Cr3++7H2O;随着电解进行,溶液中c(H+)逐渐减少,打破了水的电离平衡,促进了水的电离,使溶液中OH-浓度增大,溶液的碱性增强,生成Fe(OH)3和Cr(OH)3沉淀,金属阳离子在阴极区可沉淀完全;根据Cr2O72-+6Fe2++14H+═2Cr3++6Fe3++7H2O,Cr3++3OH-═Cr(OH)3↓、Fe3++3OH-═Fe(OH)3↓知0.01molCr2O72-,可生成0.02molCr(OH)3,0.06molFe(OH)3,至少得到沉淀的质量是0.02mol×103g/mol+0.06mol×107g/mol=8.48g,
故答案为:Cr2O72-+6Fe2++14H+═2Cr3++6Fe3++7H2O;阴极反应消耗了水中的H+,打破了水的电离平衡,促进了水的电离,使溶液中OH-浓度增大,溶液的碱性增强;8.48;
B. 化学混凝沉淀法怎么处理含铬废水
化学来混凝沉淀工艺是一种去除自废水中悬浮物质和胶体的分离技术.常用于预处理和一级处理.在废水中投加混凝剂来破坏胶体的稳定性,使废水中的胶体和细小悬浮物聚集成具有可分离性的絮凝体. 沉淀是对絮凝体进行液固分离
C. 电镀生产废水中的铬.镍.铜.锌.氰处理方法
铬
先投加H2SO4及 Na2S2O5进行还原(实际运行中,H2SO4极少加),当PH值为2.5~3.0时,还原反应时间为20min~30min其还原反应为:
2H2Cr2O7+3NaS2O5+3H2SO4-→2Cr2(SO4)3+2Na2SO4+5H2O
还原后的废水再投加片碱溶液进行中和,因氢氧化铬曾两性,PH值过高时,氢氧化铬会再度溶解,而PH值过低时,又不能生成沉淀,一般实际运行时,废水经酸化、还原反应后,加碱调整PH值,使氢氧化铬沉淀。一般控制PH值7~8,反应时间为15~20min。并投加有机高分子絮凝剂进行絮凝。形成氢氧化铬反应为:
Cr2(SO4)3+6NaOH-→2Cr(OH)3↓+3Na2SO4
由于Cr3+的最佳沉淀PH值为7~8,而Cu2+、Ni2+的最佳沉淀PH值为10.5左右,两者存在冲突,故还原后的含铬废水单独加碱中和,并进行固液分离。
镍
镍为贵重金属具有回收利用价值,在含镍废水中加入混凝剂(石灰、铁盐、铝盐),在pH=10.5~11的碱性条件下,形成氢氧化物絮凝体,对镍离子有絮凝作用,而共沉淀析出。当然现在膜法在线回收镍工艺也非常成熟。
铜
同镍处理方法
锌
锌是一种两性元素,它的氢氧化物不溶于水,并具有弱碱性和弱酸性,故其化学式可写作:碱式:Zn(OH)2,酸式:H2ZnO2。由于它呈两性、故在强酸或强碱中能溶解。在锌酸盐溶液中加适量的碱可折出Zn(0H)2 白色沉淀,再加过量的碱,沉淀又复溶解;但反之,在锌酸盐溶液中,加适量酸也可析出Zn(0H)2 白色沉淀,再加过量的酸、沉淀又复溶解。锌的氢氧化合物为两性化合物,pH 值过高或过低,均能使沉淀返溶而使出水超标。所以在用化学沉淀法处理含锌废水的过程中,要注意pH 值的控制。
混凝沉淀法其原理是在含锌废水中加入混凝剂(石灰、铁盐、铝盐),在pH=8~9的弱碱性条件下,形成氢氧化物絮凝体,对锌离子有絮凝作用,而共沉淀析出。
氰
废水在碱性条件下,次氯酸盐将氰根氧化分解为无毒的物质,反应式如下:
2NaOCl+2H2O=NaCl+NaOH+HOCl+2OH-
NaCN+2HOCl+NaOH=NaCNO+NaCl+H2O
2NaCNO+2HOCl=2NaCl+N2↑+2CO2↑+H2↑
氧化反应分两步进行:
①通过PH控制系统自动控制碱的加入量,调节废水的PH值至10~11,同时通过ORP自动控制系统控制氧化剂的加入量,使废水的ORP值在300~350mV之间;
②通过PH控制系统自动控制酸的加入量,调节废水的PH值为7~8,同时通过ORP自动控制系统控制氧化剂的加入量,使废水的ORP值为600~700mV。破氰后的废水汇入综合废水调节池以进行后续处理。
D. 关于污水处理的方法有哪些
按作用来分类:
1、物理性方法
主要用物理原理对污水中的物质进行分离处理的一种方法,主要将污水中非溶解性的物质给分离出来,在处理的过程中是不会改变其化学的性质的。经常用的具体方法包括使用重力进行分离,使用离心力进行分离,反渗透的方法以及气浮法等。使用无理的方法一般构筑比较的简单且成本低,适合那些容量大且要求处理程度不高的污水。
2、生物性方法
这个方法主要是在污水中加入一些微生物,利用其代谢的功能将污水中那些胶状或溶解有机物给氧化为比较稳定的无机的物质,这样就使得污水被净化,这种方法的污水处理具体包括有活性的污泥法以及生物膜法,其处理的程度比起物理法来要更高。
3、化学性方法
这种方法就是利用化学的反应将污水中胶状及溶解物来进行处理,大多会用于对工业性污水的处理,其具体的方法包括混凝法,中和法,离子交换以及氧化还原等,这种方法来处理污水会有着很好的效果,但是费用也比较高。
按程度来分类的处理方法
1、一级
一级程度的处理主要需要将污水中那些悬浮的固体物给去除掉,因此一级程度的处理多数使用物理性的方法就能够达到要求,经过一级程度的处理后,污水BOD只有百分之三十左右,是达不到规定排放的标准的,因此一般还需要经过二级程度的处理,通常会将一级处理作为一种预处理的方式。
2、二级
二级程度的处理主要就是需要去除掉污水中胶状的溶解的有机物,通常做二级程度的处理时大多会使用生物性的方法,其去除率一般可以达到百分之九十左右,经过了二级程度处理后,一般就能达到规定排放的标准了,并且出水的效果都比较好。
3、三级
在某些污水中可能会含有氮磷等难以降解的特殊物质,这是就需要对污水进行三级程度的处理,三级处理主要使用化学性的方法,比如用生物来脱氮及除磷,用活性炭进行吸附,用混凝法沉淀等,三级处理是更加深度的一种处理方式,能够进一步去除氮磷等物质。
E. 电镀废水处理工艺
电镀工艺是将金属通过电解方法镀到制品表面的过程,常用的镀种有镀镍、镀铜、镀铬、镀锌、镀镉、镀铅、镀银、镀锡、镀金。
物理法
一般使用下述方法处理电镀废水,可高效去除COD、色度的同时,脱除重金属、六价铬、氰化物等特有物质,物理法包括:
催化微电解处理技术
微电解技术是处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低cod和色度,还可大大提高废水的可生化性。
该技术是在不通电的情况下,利用微电解设备中填充的微电解填料产生“原电池”效应对废水进行处理。当通水后,在设备内会形成无数的电位差达1.2V 的“原电池”。“原电池”以废水做电解质,通过放电形成电流对废水进行电解氧化和还原处理,以达到降解有机污染物的目的。在处理过程中产生的新生态[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3 +,它们的水合物具有较强的吸附-絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的絮凝能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量絮凝水体中分散的微小颗粒、金属粒子及有机大分子.其工作原理基于电化学、氧化- 还原、物理以及絮凝沉淀的共同作用。该工艺具有适用范围广、处理效果好、成本低廉、处理时间短、操作维护方便、电力消耗低等优点,可广泛应用于工业废水的预处理和深度处理中。
阳极: Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V阴极: 2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
当有氧存在时,阴极反应如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V
新型微电解填料是针对当前有机废水难降解难生化的特点而研发的一种多元催化氧化填料。它由多元金属合金融合催化剂并采用高温微孔活化技术生产而成,属新型投加式无板结微电解填料。作用于废水,可高效去除COD、降低色度、提高可生化性,处理效果稳定持久,同时可避免运行过程中的填料钝化、板结等现象。本填料是微电解反应持续作用的重要保证,为当前化工废水的处理带来了新的生机。
吸附法
活性炭具有非常多的微孔结构和巨大的同比表面积,通常1g活性炭的表面积达700~1700m2,因而具有极强的物理吸附力,能有效地吸附废水中的六价铬离子(Cr6+)等重金属离子。当活性炭达到吸附平衡后,还可以采用加热、酸浸泡、碱浸泡等方式除去吸附物,使活性炭再生。
生物法
生物法是处理电镀废水的高新生物技术。利用人工培养的脱硫孤菌、生枝动胶菌、铬酸盐还原菌、硫酸盐还原菌等功能菌,对电镀废水产生静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。有害金属沉淀于污泥中回收利用,排放水用于培菌及其他使用。生物法处理电镀废水成本低、效益高、容易管理、不给环境造成二次污染、有利于生态环境的改善,是未来电镀废水处理的主流方向。
化学法
一般用下述方法处理电镀废水:向废水中投加药剂,使其中的有毒物质转化成为无毒物质或毒性大为降低的沉淀物。化学法包括:
中和沉淀法
如酸性废水用碱性废水或投加碱性物质进行中和,形成沉淀物。
中和混凝沉淀法
例如在离子交换法除铬工艺中,阳离子交换柱再生废液是含有重金属离子 (Zn2+、Cr3+、Fe3+等)的强酸性废液,可用去除酸根后阴离子交换柱的再生废碱液或加碱中和,使之以氢氧化物形式沉淀。如投加高分子絮凝剂可改变这种沉淀物的沉降性能和分离性能。
氧化法
如处理含氰废水时,常用次氯酸盐在碱性条件下氧化其中的氰离子,使之分解成低毒的氰酸盐,然后再进一步降解为无毒的二氧化碳和氮。
还原法
如含铬废水用亚硫酸氢钠或硫酸亚铁加石灰处理,使Cr6+还原成毒性低的Cr3+,并形成氢氧化铬沉淀。
钡盐法
如含铬废水用钡盐处理,使铬酸根成为铬酸钡沉淀。
铁氧体法
电镀废水经过处理产生氢氧化铁或其他重金属氢氧化物沉淀,通过氧化反应使重金属转入强磁性的铁氧体结晶中。此法可用于含铬废水的处理。 化学法设备简单,投资较少,应用较广。但常留下污泥需要进一步处理,而且电镀废水分散,污泥不易集中处理和利用。
物理法
主要包括电解法、离子交换法和膜分离法,提银机处理法。
提银机处理法
guowei型本设备特点:
1、使用纯物理方法的双电解方式,只使用少量电力,无二次污染之忧。
2、提银深度在99%以上,提取银纯度高达 98%以上。
3、可以处理离子交换法、气浮法处理不了的药品浓度很高的废定影液。
4、可以处理目前国内外电解法都无法处理的含有很高漂白液成分的彩扩漂定液。
5、残留废液银含量可达到0.02克/升,经过后续环保处理后,可以将废液银含量降
至0.2ppm以下,满足最为严格的欧洲排放标准。
6、运行实现微机全自动化控制,无需专人看管,耗能低。
7、设备体积小巧紧凑,占地面积少,处理量大,可达1500-1800升/月。
8、本设备不需任何耗材和电解促进剂,运营及维护成本低。
技术参数:
1.提银后残留废液含银量低于0.01克\升
2.提银纯度:99.5%
3.尺寸360*280*800mm
4.工作电压:交流电220V
5.功率20w
6.处理量(月)30升—30,000升
-
电解法
以处理含铬废水为例,利用可溶性铁阳极,在直流电场作用下,产生亚铁离子,在酸性条件下使废水中以CrO厈和Cr2O崼存在的Cr6+离子还原成为Cr3+离子,随着电解过程中废水pH值升高,形成Cr(OH)3沉淀。采用不同材料的阳极可处理含有其他各种金属离子的废水。电解法操作管理简单,除能够处理镀铬漂洗水外,还可以处理钝化、阳极化、磷化等漂洗水,并有成套设备;但消耗钢材、电能较多,对产生的污泥还没有妥善的处理方法。
离子交换法
利用离子交换树脂活性基团上的可交换离子(H+、Na+、OH-等),去除废水中的阳、阴离子。此法处理电镀废水不仅可回用水,还可回收金属离子溶液。这种方法已用于处理含有金、镍、铜、镉、铬等废水。人工合成的专门用于处理电镀废水的弱酸、弱碱大孔树脂,可分别用于去除铬、镍和铜,以及一些金属的氰化络合阴离子(见废水离子交换处理法)。一般说来,离子交换法初次投资较大,操作管理水平要求较高,但处理效果稳定,由于能回用金属和水,是当前电镀废水实现闭路循环的主要治理方法之一。存在的主要问题是再生废液会有钠、铁、氯根等杂质离子不能直接回用于镀槽中,排入环境会造成污染。
膜分离法
利用半透膜或离子交换膜等膜材料,在外加推动力下,使废水中的溶解物和水分离浓缩,以净化废水。在膜分离法中,反渗透法用于含镍、含镉废水的浓缩处理已应用于生产。隔膜电解法用于再生镀铬废液。扩散渗析法可用于酸液回收。膜分离方法成本较高。
蒸发浓缩法 利用热源和蒸发器在常压或负压下直接浓缩废水。用这种方法处理高浓度废水比较经济,常同三级逆流漂洗、气-水喷淋,或同离子交换法联合使用。生产中广泛采用钛管薄膜蒸发器和蒸发釜来浓缩含铬废水、含氰废水等,也是闭路循环的主要处理流程之一。
展望电镀废水处理技术的发展前景,首先是压缩水量,普遍推广逆流漂洗和喷淋技术;其次,对化学法产生的污泥和离子交换再生废液进行综合利用,以及研制适用于处理电镀废水的各种优质树脂和膜,以及进一步研究和完善闭路循环系统,以实现资源的充分利用。
F. 含铬废水处理时出现问题应该怎么调试
加石灰试试看。看描述可能是PAM过量,氯化铁过量被还原。加石灰能破坏胶体,还能让铁离子沉淀。
G. 工业废水处理方法
1.电解法:利用电解池中的电化学反应处理废水中的各种污染物。工业废水中溶解的污染物在电解中通过氧化还原反应形成沉淀或气体溢出。电解法包括电解氧化还原法、电解气浮法和电解混凝法,主要用于处理含铬和氰化物的废水。
2.化学沉淀法:在废水中加入可溶性化学药剂(即沉淀剂),与水中离子态的无机污染物发生化学反应,生成不溶或不溶于水的化合物,沉淀净化废水。化学沉淀法大多用于去除废水中的重金属离子,如汞、铬、铅、锌等。化学沉淀法包括氢氧化物沉淀法、硫化物沉淀法、钡盐沉淀法和铁氧体沉淀法。
3.消毒灭菌:消毒灭菌技术主要用于水的深度处理。消毒主要采用氯、次氯酸盐、二氧化氯、臭氧、臭氧-紫外线等。用于给水消毒的二氧化氯,近年来受到广泛关注,主要是因为它不会与水中的腐殖质反应生成卤代烃。臭氧消毒被认为是水处理过程中替代氯气的有效消毒方法,因为臭氧首先具有很强的杀菌力,其次是氧化分解有机物的速度,使消毒后的水的致突变性降到最低。
H. 在污水处理中,工艺选择,什么时候用混凝沉淀法,什么时候选混凝+气浮法
这个要看种类,无机颗粒较多,例如矿井废水之类的用混凝沉淀,有机颗粒较多,例如含油废水,就选混凝+气浮
I. 废水含铬量的活性成分
铬元素被美国环保署(USEPA)列为最具毒性的污染物之一,含铬废水中的铬主要来源于电镀、制革、化工、颜料、冶金、耐火材料等行业,它以三价和六价化合物的形式存在。由于六价铬的高溶解性,它比三价铬更具有生物毒性。研究表明,六价铬化合物能够干扰重要的酶体系,经口、呼吸道或皮肤接触吸收后能引起“三致”作用。因此,含铬废水必须严格控制六价铬的质量浓度,达标后才能允许排放。
处理含铬废水的关键在于降低六价铬的含量,一般可以通过两种途径实现:(1)通过化学反应使六价铬转变为低毒易沉淀的三价铬,再进一步去除三价铬;(2)将六价铬化合物与水分离。现有的处理技术都是通过这两种途径达到去除铬的目的,具体处理方法如下。
1理化处理技术1.1反渗透法反渗透法通过给水体加压使水分子通过半透膜,实现铬化合物的浓缩,达到水与铬分离的目的。
由于其不涉及化学反应和酸碱的生成,因此,反渗透技术在控制二次污染方面具有一定的优越性。由于要给处理水体加压,电能的消耗是需要考虑的问题,所以它适合处理铬质量浓度高的废水。铬质量浓度低的废水采用反渗透技术电能消耗较大,经济上不合算。
范帅等先采用离子交换法、芬顿氧化、混凝沉淀、电凝聚等技术对含镍、含铬、含铜、含氰、前处理、混排等的废水进行预处理,再用超滤及反渗透膜处理含重金属、含氰及前处理废水后回用。王维平分析了反渗透技术在电镀废水回用中遇到的问题及对应解决思路。
1.2离子交换法离子交换法利用离子交换剂中的离子和水中的离子进行交换,进而达到去除水中特定离子的目的。
六价铬在废水中以铬酸根形式存在,因此,经常用阴离子交换树脂进行铬酸根的吸附交换(式(1)和式(2))去除水中的六价铬,树脂可用再生剂进行再生。
2ROH+CrO2-4=R2CrO4+2OH-(1)
2ROH+Cr2O2-7=R2Cr2O7+2OH-(2)
唐树和等用201×7强碱性阴离子交换树脂处理含Cr(Ⅵ)废水,在实际废水Cr(Ⅵ)初始质量浓度为1540mg/L时,出水Cr(Ⅵ)质量浓度小于0.5mg/L,达到国家排放标准,且经再生处理后树脂再生率大于95%。徐灵等分别用pH值静态试验和流量动态试验对201×7强碱性苯乙烯阴树脂吸附Cr(Ⅵ)的能力做了研究,在高Cr(Ⅵ)质量浓度的条件下,设定pH值为3、树脂管流量为3BV/h,在树脂穿透点之前,铬的去除率在99.5%以上,加之模拟废水Cr(Ⅵ)质量浓度远远高于工业废水Cr(Ⅵ)质量浓度,说明离子交换法完全可以使废水达标排放。考虑到Cr(Ⅲ)的回收再利用,CavacoSA等研究了DiaionCR11和AmberliteIRC86两种离子交换树脂对Cr(Ⅲ)的吸附交换特性,研究结果表明,两种树脂在去除Cr(Ⅲ)能力上均很有效,DiaionCR11显示了相对的去除优势。
1.3电渗析法电渗析法指在直流电的作用下,使阴、阳离子选择性地透过阴、阳离子膜,形成一个个的浓、稀空间,既达到了铬水分离的目的,又实现了铬的浓缩,为铬的回收再利用提供便利。但值得注意的是高质量浓度的含铬废水则不适宜采用电渗析法处理,因为质量浓度越高,消耗电能越大。邓永光等研究了电渗析法对铬钝化清洗废水的处理效果,结果表明:在其建立的电渗析小试装置的条件下,进水浓度对淡水水质影响不大;采用浓水循环工艺,淡水产率可提高至约80%,浓室总铬、锰离子质量浓度超过4000mg/L,为浓水的后续处理处置创造了条件。
1.4吸附法吸附法利用吸附剂与被吸附物质之间的吸附力,使被吸附物质吸附在吸附剂上,达到水体净化的目的。吸附力可以是分子间引力,也可以是通过相互反应生成化学键引起的吸附。前者为物理吸附,后者为化学吸附。在污水处理中,多数情况下,往往是多种吸附的综合结果。
理化吸附法处理含铬废水常用的吸附剂有活性炭、磺化煤、活化煤、沸石和硅藻土等。这些吸附剂在含铬废水处理中显示了较好的吸附性能,铬去除率均在70%以上,最高可达99%。
唯一的不足之处在于经济投入问题,有一定花费,寻找低投入高回报的吸附剂成为考虑的主要问题,而以废治废成为较佳的方案。作为电厂废物的粉煤灰和作为煤矿废物的煤矸石由于颗粒本身的特殊结构和性能,表现出良好的吸附性能和化学稳定性。
秦巧燕等进行了活化煤矸石处理模拟含铬废水的试验,在最优条件下,铬的去除率在90%以上。白汀汀等通过试验对比了粉煤灰吸附法和铁氧体法对Cr6+的去除率,结果表明:在最佳条件下,用粉煤灰处理废水的最佳除铬率比铁氧体法除铬率高,除铬效果更好。陈小萍等研究了活性炭纤维对六价铬的吸附作用,研究结果表明:利用活性炭纤维去除水中的Cr(Ⅵ),其适宜条件为pH值为1~3,吸附时间为1.5h;通过电化学改性可以提高吸附率,并可实现活性炭纤维的现场再生。具体联系污水宝或参见http://www.dowater.com更多相关技术文档。
2化学处理技术2.1化学还原沉淀法该方法是通过化学反应使Cr(Ⅵ)变为Cr(Ⅲ),Cr(Ⅲ)在碱性条件下生成Cr(OH)3,排出上清液,以实现铬的去除。因此选择还原性化学物质将Cr(Ⅵ)还原成容易沉淀的Cr(Ⅲ)是整个技术的关键,选择高效价廉的还原剂是最佳选择。目前常用的还原剂主要有气态的SO2、液态的水合肼以及固态的亚硫酸钠、硫代硫酸钠、硫酸亚铁等。此方法常常产生大量污泥,可从污水源头分流、污泥分类回收等途径解决污泥带来的后续处理问题。
蒋小友等研究了用水合肼回收电沉积铬废液中铬的工艺条件,试验结果表明,在30℃下于25mL含铬废液中加入1.6mLH2SO4和0.8mL水合肼,8min可使Cr(Ⅵ)还原为Cr(Ⅲ)。颜家保等用硫酸亚铁作为还原剂处理Cr(Ⅵ)废水,处理后出水六价铬和总铬的质量浓度分别在0.55及1.5mg/L以下,达到了国家排放标准;而且通过研究pH值对整个工艺的影响,得出Cr(Ⅵ)还原阶段pH值应控制为2~3,Cr(Ⅲ)沉淀阶段应控制为8~9。用亚硫酸钠作还原剂与用硫酸亚铁工艺条件相似,处理出水同样能达到排放标准。石俊仙等用矿山铁的硫化物矿物处理皮革厂含铬废水,在试验得到的最佳条件下,直接用矿山铁的硫化物矿物处理高质量浓度含铬废水,去除率达到73%。李秋菊等研究利用晶钟诱导沉积不锈钢酸洗废液中铁、铬及镍的有价金属,以达到废酸液进行资源化利用的目的,结果显示温度越低,废酸HF越高,越有利于金属沉积,且晶钟添加量对金属沉积影响不大。
2.2铁氧体法铁氧体法同样是用硫酸亚铁作为还原剂,与还原沉淀法的区别在于铁氧体法不是通过生成Cr(OH)3沉淀去除Cr(Ⅲ),而是通过形成有磁性的铁氧体达到同时去除铁和铬的目的。具体操作为:硫酸亚铁在一定酸度下还原Cr(Ⅵ)为Cr(Ⅲ);然后调节溶液pH值,使Fe3+、Cr3+以及Fe2+共沉淀;加热,通入压缩空气,使剩余Fe2+被氧化为三价,当Fe2+与Fe3+质量浓度比达到2︰1时,便形成铁氧体。反应见式(3)~式(9)。
Cr6++3Fe2+→Cr3++3Fe3+(3)
Cr3++3OH-→Cr(OH)3↓(4)
Fe3++3OH-→Fe(OH)3↓(5)
Fe2++2OH-→Fe(OH)2↓(6)
Fe(OH)3→FeOOH+H2O(7)
FeOOH+Fe(OH)2→FeOOH·Fe(OH)2(8)
FeOOH·Fe(OH)2+FeOOH→FeO·Fe2O3↓+2H2O(9)
由于Cr3+与Fe3+具有相同的离子电荷和相近的离子半径,在铁氧体形成的过程中,Cr3+取代Fe3+成为铁氧体的组成部分,从而达到去除Cr(Ⅵ)
的目的。反应见式(10)和式(11)。
2Cr3++Fe2++8OH-→FeO·Cr2O3↓+4H2O(10)
6Fe3++3Fe2++24OH-→3FeO·Fe2O3↓+12H2O(11)
魏振枢分别从FeSO4·7H2O的投加量、反应的酸碱度控制和加热与曝气几个方面对铁氧体法处理含铬废水的工艺条件进行了探讨。来风习等为了克服铁氧体法的缺陷,用一种复合方法超声波-铁氧体法处理含铬废水,结果Cr6+去除率达到99.9%以上,这就从节能和经济的角度让传统铁氧体法得以优化。
2.3电解法电解法使废水中的有害物质通过电解过程在阳、阴两极发生氧化和还原反应,或利用电极氧化和还原的产物与废水中的有害物质发生化学反应,使有害物质转化为无害物质或生成不溶于水的物质,从水中除去。电解法除铬用铁作阴极和阳极,阳极溶解产生的Fe2+将Cr(Ⅵ)还原为Cr(Ⅲ),阴极附近由于H+不断还原为H2,溶液逐渐显碱性,Fe3+和Cr(Ⅲ)生成Cr(OH)3沉淀,从而除去废水中的Cr(Ⅵ)。发生的化学反应见式(12)~式(17)。
阳极反应:Fe-2e-→Fe2+(12)
Cr6++3Fe2+→Cr3++3Fe3+(13)
阴极反应:2H2O+2e-→H2+2OH-(14)
沉淀反应:Cr3++3OH-→Cr(OH)3↓(15)
Fe3++3OH-→Fe(OH)3↓(16)
Fe2++2OH-→Fe(OH)2↓(17)
赵丽等分别从废液浓度、pH值、反应时间和换极周期4个因素考虑,利用正交试验对电解法处理含铬废水进行了研究,认为在工业废水Cr(Ⅵ)初始质量浓度较高(不小于300mg/L)时,单纯依靠普通的铁板阳极溶解的Fe2+还不能够充分还原Cr(Ⅵ),需加一定的还原剂,当废水初始质量浓度不高于600mg/L、pH值为3、反应时间为40min和换极周期为10min时,且根据前期正交试验(Fe2+与Cr2O7质量浓度比为1∶1)确定加入的FeSO4量的反应条件下,去除率可达94%以上。电解法由于有沉淀和絮体的生成,需要过滤工艺,且阴极附近氢气的生成会影响它们的沉降,GaoP等为了解决这一问题,设计了电絮凝-电浮选联合工艺,省去了过滤步骤,利用电解-电浮选产生的气泡有效地使絮体浮出水面,从而达到去除的目的。
3生物处理技术生物法处理废水一直是水处理领域研究的热点,因为它具有资源丰富、效率高、投资低、选择性强以及不产生二次污染等优点。生物法处理含铬废水主要包括氧化还原、离子交换、形成配位化合物和静电吸引等机理,主要以投加生物吸附剂和生物絮凝剂的方式来完成。
3.1生物吸附法大量研究证实,具有生物活性的生物体及非活性的生物质均具有较强的生物吸附性能。应用死的微生物细胞吸附去除污染物具有一定的优越性,它不会受到废水中毒性物质的影响,不需要持续不断地提供养分,且可以再生再利用。近几年国内外对含铬废水的处理焦点多集中在生物吸附法上,通过寻找合适的废生物质材料吸附铬等重金属,这些生物质材料包括木屑、玉米芯、板栗壳、咖啡渣、橄榄渣、椰子皮、苔藓、核桃壳及其改性产品等。
ElNemrA等从反应体系的pH值水平、污染物含量、吸附剂用量及吸附时间几个方面研究了鸡毛菜(海洋红藻)及其生物质活性炭对废水中铬去除效果的影响,结果表明,在溶液pH值为1时吸附量最大,两者最大的吸附能力为12和66mg/g。
LiuC等利用咖啡渣作为生物吸附剂还原吸附电镀废水中的Cr(Ⅵ),在试验条件下Cr(Ⅵ)被完全还原和吸附,还原生成的少量Cr(Ⅲ)在后续混凝沉淀单元被完全去除,为咖啡渣的废物利用提供了思路。DehghaniMH等利用经处理后的旧书、旧报纸吸附去除Cr(Ⅵ),研究表明,随着Cr(Ⅵ)质量浓度和反应溶液pH值的降低以及吸附剂含量的提高,Cr(Ⅵ)去除率增大;在初始Cr(Ⅵ)质量浓度为5~70mg/L、pH值为3、接触时间为60min及吸附剂投加量为3.0g/L的条件下,Cr(Ⅵ)最大吸附能力可达到59.88mg/g[41]。VieiraMGA等研究用马尾藻做填料的填料柱对Cr(Ⅵ)的吸附作用,运用因子设计方法研究了运行条件对吸附能力的影响,如进水Cr(Ⅵ)质量浓度、填料柱进液流量和吸附剂量,结果显示进水Cr(Ⅵ)质量浓度对填料柱吸附能力的影响最大,填料柱进液流量次之;在最佳运行条件下得到的吸附能力为19.06mg/g。木屑作为建筑和家具等行业的固体废物,主要由质量分数为45%~50%的纤维素和质量分数为23%~30%的木质素组成,这些成分由于结构上含有羟基、羧基和酚基等基团,使它具有绑定金属的能力,因此,大量的试验和实际工程研究应用木屑、改性木屑吸附去除废水中的铬,且去除效果明显。
3.2生物絮凝剂法生物絮凝剂是利用生物技术通过生物发酵、抽提、精制而得到的一种具有生物分解性和安全性的新型、高效、无毒、廉价的水处理剂。与传统絮凝剂相比,生物絮凝剂具有高效、无毒、易降解且不产生二次污染的特点。
马军等通过试验分析得出了微生物絮凝法处理含铬工业废水的最佳工艺条件为:pH值为7.5~8.0,水温在10℃以上,最高进水Cr(Ⅵ)质量浓度为100mg/L,活性菌体积分数为0.8‰~1.2‰,反应时间为13~16min[48]。杨思敏等用微生物絮凝剂处理Cr(Ⅵ)溶液时,结果显示黑曲霉分泌微生物絮凝剂对低质量浓度Cr(Ⅵ)还原效果较好,在pH值为1~5时,还原能力均较高,对质量浓度为20mg/L的Cr(Ⅵ)的还原率均大于99%。
4技术展望由于相关工业的快速发展,含铬废水排放仍将保持浓度高、排放量大的特征,为了保护环境,强化含铬废水治理,今后治理技术进一步开发与应用应从以下几个方面加以考虑。
(1)废物减排和再利用是治理环境污染的一种重要方式,以循环经济思路为指导,加强以废治废的技术开发,充分利用废弃物资源如煤矸石、粉煤灰及农业废弃物等,这样既减少了废物排放,又治理了其他类型的污染,可以首先从当地可利用资源考虑。
(2)前文中含铬废水治理方法各有优缺点,并各有其应用前提条件和最佳条件,应在综合分析的基础上建立联合处理或复合处理技术体系,以使处理方案兼顾社会、经济和环境综合效应,达到最佳效果。
(3)文中所述大部分相关研究是在实验室进行的,条件易于掌控,而实际处理工程则十分复杂,影响因素更为复杂,且有时难于准确控制,应加强中试以使各种方法更符合实际工程需求。
(4)由于化学法将产生大量的污泥,污泥铬含量很高,应合理进行污泥的处置。
(5)生物处理法的出水含有大量的生物,出水不易进行回收利用,因此,生物处理工艺应考虑后接消毒处理。
J. 皮革废水中铬处理方法有哪些
一.还原沉淀法
化学还原法是利用硫酸亚铁、亚硫酸盐、二氧化硫等还原剂将废水中六价铬还原成三价铬离子,加碱调整pH值,使三价铬形成氢氧化铬沉淀除去。这种方法设备投资和运行费用低,主要用于间歇处理。
常用处理工艺为在第一反应池中先将废水用硫酸调pH值至2~3,再加入还原剂,在下一个反应池中用NaOH或Ca(OH)2调pH值至7~8,生成Cr(OH)3沉淀,再加混凝剂,使Cr(OH)3沉淀除去。改良的工艺为在第一反应池中直接投加硫酸亚铁,用NaOH或Ca(OH)2调pH值至7~8,生成Cr(OH)3沉淀,再加混凝剂,使Cr(OH)3沉淀除去。使用该技术后,含铬废水日处理量为1000M3,废水中铬含量为10mg/l。该技术适用于含铬工业废水处理。
在一些报道中也有提到利用聚合氯化铝铁处理电镀含铬废水。聚合氯化铝铁兼有传统絮凝剂PAC ,PFC的优点,形成的絮凝体大而重,沉降速度快。其出水色度比聚合氯化铁好,除浊效果和絮凝体沉降性能又优于聚合氯化铝。具体报道内容附于文后。
二.电解法沉淀过滤
1.工艺流程概况
电镀含铬废水首先经过格栅去除较大颗粒的悬浮物后自流至调节池, 均衡水量水质, 然后由泵提升至电解槽电解, 在电解过程中阳极铁板溶解成亚铁离子, 在酸性条件下亚铁离子将六价铬离子还原成三价铬离子, 同时由于阴极板上析出氢气, 使废水pH 值逐步上升, 最后呈中性。此时Cr3+ 、Fe3+ 都以氢氧化物沉淀析出, 电解后的出水首先经过初沉池,然后连续通过(废水自上而下) 两级沉淀过滤池。一级过滤池内有填料: 木炭、焦炭、炉渣; 二级过滤池内有填料: 无烟煤、石英砂。污水中沉淀物由过滤池填料过滤、吸附, 出水流入排水检查井。而后通过泵进入循环水池作为冷却用水。过滤用的木炭、焦炭、无烟煤、炉渣定期收集在锅炉房掺烧。
2.主要设备
调节池1 座; 初沉池1 座、沉淀过滤池2 座; 循环水池1 座; 电源控制柜、电解槽、电解电源、电解电压1 套; 水泵5 台。
3.结果与分析
某电镀厂电镀废水处理设备在正常工况条件下, 间隔不同的时间多次取样,。
电镀含铬废水采用电解法沉淀过滤工艺处理后全部回用, 过滤池内填料定期集中于锅炉房掺烧, 达到了综合治理电镀含铬废水的目的。
该处理技术虽然运行可靠, 操作简单, 但应注意几个方面: a) 需要定期更换极板; b) 在一定的酸性介质中, 氢氧化铬有被重新溶解的可能; c) 沉淀过滤池内的填料必须定期处理, 焚烧彻底, 否则会引起二次污染。由此可见, 对处理设施加强管理非常重要。
4.结论
1) 该处理工艺对电镀含铬废水治理彻底, 过滤池内填料定期统一处理, 不会引起二次污染; 处理后清水全部回用, 可节省水资源, 具有明显的经济效益。
2) 该工艺投资较小, 技术成熟, 运行稳定可靠,操作方便, 易于管理, 适应于不同规模的电镀生产企业。
三. 其他国内外含铬废水处理方法的研究进展
1.1 生物法
生物法治理含铬废水,国内外都是近年来开始的。生物法是治理电镀废水的高新生物技术,适用于大、中、小型电镀厂的废水处理,具有重大的实用价值,易于推广。国内外对SRB菌(硫酸盐还原菌)[1]、SR系列复合功能菌[2]、SR复合能菌[3]、脱硫孤菌[4]、脱色杆菌(Bac.Dechromaticans)、生枝动胶菌(Zoolocaramiger a)[5]、酵母菌[6]、含糊假单胞菌、荧光假单胞菌[7]、乳链球菌、阴沟肠杆菌、铬酸盐还原菌[8]等进行研究,从过去的单一菌种到现在多菌种的联合使用,使废水的处理从此走向清洁、无污染的处理道路。将电镀废水与其它工业废弃物及人类粪便一起混合,用石灰作为凝结剂,然后进行化学—凝结—沉积处理。研究表明,与活性的淤泥混合的生物处理方法,能除去Cr6+和Cr3+,NO3氧化成NO3-。已用于埃及轻型车辆公司的含铬废水的处理[9]。
生物法处理电镀废水技术,是依靠人工培养的功能菌,它具有静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。该法操作简单,设备安全可靠,排放水用于培菌及其它使用;并且污泥量少,污泥中金属回收利用;实现了清洁生产、无污水和废渣排放。投资少,能耗低,运行费用少。
1.2 膜分离法
膜分离法以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性透过膜,以达到分离、除去有害组分的目的。目前,工业上应用的较为成熟的工艺为电渗析、反渗透、超滤、液膜。别的方法如膜生物反应器、微滤等尚处于基础理论研究阶段,尚未进行工业应用。电渗析法是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,从而使废水得到净化。反渗透法是在一定的外加压力下,通过溶剂的扩散,从而实现分离。超滤法也是在静压差推动下进行溶质分离的膜过程。液膜包括无载体液膜、有载体液膜、含浸型液膜等。液膜分散于电镀废水时,流动载体在膜外相界面有选择地络合重金属离子,然后在液膜内扩散,在膜内界面上解络,重金属离子进入膜内相得到富集,流动载体返回膜外相界面,如此过程不断进行,废水得到净化。膜分离法的优点:能量转化率高,装置简单,操作容易,易控制、分离效率高。但投资大,运行费用高,薄膜的寿命短。主要用于回收附加值高的物质,如金等。
电镀工业漂洗水的回收是电渗析在废液处理方面的主要应用,水和金属离子可达到全部循环利用,整个过程可在高温和更广的pH值条件下运行,且回收液浓度可大大提高,缺点为仅能用于回收离子组分。液膜法处理含铬废水,离子载体为TBP(磷酸三丁酯),Span80为膜稳定剂,工艺操作方便,设备简单,原料价廉易得。也有选用非离子载体,如中性胺,常用Alanmine336(三辛胺),用2%Span80作表面活性剂,选用六氯代1,3-丁二烯(19%)和聚丁二烯(74%)的混合物作溶剂,分离过程分为:萃取、反萃等步骤[10,11]。近来,微滤也有用于处理含重金属废水,可去除金属电镀等工业废水中有毒的重金属如镉、铬等[12,13]。
1.3 黄原酸酯法
70年代,美国研制成新型不溶重金属离子去除剂ISX[14~16],使用方便,水处理费用低。ISX不仅能脱除多种重金属离子,而且在酸性条件下能将Cr6+还原为Cr3+,但稳定性差。不溶性淀粉黄原酸酯[17]脱除铬的效果好,脱除率>99%,残渣稳定,不会引起二次污染。钟长庚[18,19]等人用稻草代替淀粉制成稻草黄原酸酯,处理含铬废水,铬的脱除率高,很容易达到排放标准。研究者认为稻草黄原酸酯脱除铬是黄原酸铬盐、氢氧化铬通过沉淀、吸附几种过程共同起作用,但黄原酸铬盐起主要作用。此法成本低,反应迅速,操作简单,无二次污染。
1.4 光催化法[20,21]
光催化法是近年来在处理水中污染物方面迅速发展起来的新方法,特别是利用半导体作催化剂处理水中有机污染物方面已有许多报道。以半导体氧化物(ZnO/TiO2)为催化剂,利用太阳光光源对电镀含铬废水加以处理,经90min太阳光照(1182.5W/m2),使六价铬还原成三价铬,再以氢氧化铬形式除去三价铬,铬的去除率达99%以上。
1.5 槽边循环化学漂洗
这一技术由美国ERG/Lancy公司和英国的Ef fluentTreatmentLancy公司开发,故也叫Lancy法。它是在电镀生产线后设回收槽、化学循环漂洗槽及水循环漂洗槽各一个,处理槽设在车间外面。镀件在化学循环漂洗槽中经低浓度的还原剂(亚硫酸氢钠或水合肼)漂洗,使90%的带出液被还原,然后镀件进入水漂洗槽,而化学漂洗后的溶液则连续流回处理槽,不断循环。加碱沉淀系在处理槽中进行,它的排泥周期很长[22]。广州电器科学研究所开发了分别适用于各种电镀废水的三大类体系的槽边循环化学漂洗处理工艺,水回用率高达95%、具有投药少、污泥少且纯度高等优点。有时,用槽边循环和车间循环相结合[23]。
1.6 水泥基固化法处理中和废渣[24]
对于暂时无法处理的有毒废物,可以采用固化技术,将有害的危险物转变为非危险物的最终处置办法。这样,可避免废渣的有毒离子在自然条件下再次进入水体或土壤中,造成二次污染。当然,这样处理后的水泥固化块中的六价铬的浸出率是很低的。
2 电镀含铬废液及污泥的综合利用
由于电镀含铬老化废液有害物质含量高,成分复杂,在综合利用之前应对各种废液进行单独和分类处理。对于镀锌钝化液、铜钝化液及含磷酸的铝电解抛光液均用酸碱调节pH;对于阴离子交换树脂,只需将它变为Na2CrO4即可。
2.1 利用铬污泥生产红矾钠[25]
在高温碱性条件介质Na2CrO4中三价铬可被空气氧化为Na2Cr2O7,同时污泥中所含的铁、锌等转化为相应的可溶盐NaFeO2、Na2ZnO2。用水浸取碱熔体时,大部分铁分解为Fe(OH)3沉淀而除去。将滤液酸化至pH<4,Na2CrO4即转变为Na2Cr2O7,利用Na2SO4与Na2Cr2O7溶解度差异,分别结晶析出。采用高温碱性氧化铬污泥制红矾钠的条件是n(Na2CO3)∶n(Cr2O3)=3.0∶1.0,温度780℃,时间2.5h,铬的转化率在85%以上。
2.2 生产铬黄[26]
利用纯碱作沉淀剂去除电镀废液中的杂质金属离子,再利用净化后的电镀废液替代部分红矾钠生产铅铬黄。电镀液加入Na2CO3饱和液后,调整pH至8.5~9.5。进行过滤,滤液备用。在碱性条件下将滤渣中的Cr3+用H2O2氧化为Cr6+,再经过滤,滤液与上述滤液混合。将滤液与硝酸铅溶液和助剂,在50~60℃反应1h,然后经过滤、水洗,洗去氯根、硫酸根以及其它部分可溶性杂质,再经干燥粉碎即得成品铅铬黄。利用电镀废液生产铅铬黄,不仅解决了污染问题,而且使电镀废液中的铬得到了回收利用。据估算,按年处理电镀废液200t,年平均回收18t红矾钠,可实现年创收4万余元。效益可观。
2.3 生产液体铬鞣剂及皮革鞣剂碱式硫酸铬[27,28]
含铬废液先用氢氧化钠去除金属离子杂质,控制pH=5.5~6.0,然后过滤,滤液待用,污泥用铁氧体无害化处理。然后,在滤液中投加还原剂葡萄糖,使Na2Cr2O7还原为Cr(OH)SO4,在100℃条件下,进一步聚合,当碱度为40%时,分子式为4Cr(OH)3 3Cr2(SO4)3,即为铬鞣剂。河北省无极县某皮革厂就是利用电镀含铬废水生产液体铬鞣剂。按每天生产5t液体铬鞣剂,每天可得利润为6000余元。可见利用含铬废液生产铬鞣剂的经济效益是十分显著的。另外,可将含铬的污泥与碳粉混合,在高温下煅烧,从而可制得金属铬[29]。因为含铬污泥是电镀车间污泥的主要品种,根据电镀处理方法不同,污泥的回收利用也不同[30]。电解法污泥:(1)做中温变换催化剂的原料;(2)做铁铬红颜料的原料。化学法的污泥:(1)回收氢氧化铬;(2)回收三氧化二铬抛光膏。铁氧体污泥做磁性材料的原料等等。