导航:首页 > 污水知识 > 厌氧废水工程

厌氧废水工程

发布时间:2020-12-27 13:59:59

1. 请问,在污水处理中,采用厌氧UASB工艺,毎去除一公斤COD,生成多少甲烷

去除COD 1公斤可以产生甲烷0.1-0.3公斤

2. 利用微生物厌氧成套设备,日处理200m³生活污水的工程报价大概在多少左右

总包的话 应该在2600-3000万之间

3. 厌氧处理COD生成什么

一、厌氧反应四个阶段
一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解:
(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。
(2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。
(3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。
(4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。
再上述四个阶段中,有人认为第二个阶段和第三个阶段可以分为一个阶段,在这两个阶段的反应是在同一类细菌体类完成的。前三个阶段的反应速度很快,如果用莫诺方程来模拟前三个阶段的反应速率的话,Ks(半速率常数)可以在50mg/l以下,μ可以达到5KgCOD/KgMLSS.d。而第四个反应阶段通常很慢,同时也是最为重要的反应过程,在前面几个阶段中,废水的中污染物质只是形态上发生变化,COD几乎没有什么去除,只是在第四个阶段中污染物质变成甲烷等气体,使废水中COD大幅度下降。同时在第四个阶段产生大量的碱度这与前三个阶段产生的有机酸相平衡,维持废水中的PH稳定,保证反应的连续进行。
三 水解反应
水解可定义为复杂的非溶解性的聚合物被转化成简单的溶解性单体和二聚体的过程。水解反应针对不同的废水类型差别很大,这要取决于胞外酶能否有效的接触到底物。因此,大的颗粒比小颗粒底物要难降解很多,比如造纸废水、印染废水和制药废水的木质素、大分子纤维素就很难水解。
水解速度的可由以下动力学方程加以描述:
ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物浓度(g/l);
ρo———非溶解性底物的初始浓度(g/l);
Kh——水解常数(d-1);
T——停留时间(d)。
一般来说,影响Kh的因素很多,很难确定一个特定的方程来求解Kh,但我们可以根据一些特定条件的Kh,反推导出水解反应器的容积和最佳反应条件。在实际工程实施中,有条件的话,最好针对要处理的废水作一些Kh的测试工作。通过对国内外一些报道的研究,提出在低温下水解对脂肪和蛋白质的降解速率非常慢,这个时候,可以不考虑厌氧处理方式。对于生活污水来说,在温度15的情况下,Kh=0.2左右。但在水解阶段我们不需要过多的COD去除效果,而且在一个反应器中你很难严格的把厌氧反应的几个阶段区分开来,一旦停留时间过长,对工程的经济性就不太实用。如果就单独的水解反应针对生活污水来说,COD可以控制到0.1的去除效果就可以了。
把这些参数和给定的条件代入到水解动力学方程中,可以得到停留水解停留时间:
T=13.44h
这对于水解和后续阶段处于一个反应器中厌氧处理单元来说是一个很短的时间,在实际工程中也完全可以实现。如果有条件的地方我们可以适当提高废水的反应温度,这样反应时间还会大大缩短。而且一般对于城市污水来说,长的排水管网和废水中本生的生物多样性,所以当废水流到废水处理场时,这个过程也在很大程度上完成,到目前为止还没有看到关于水解作为生活污水厌氧反应的限速报道。
四 发酵酸化反应
发酵可以被定义为有机化合物既作为电子受体也作为电子供体的生物降解过程,在此过程中有机物被转化成以挥发性脂肪酸为主的末端产物。
酸化过程是由大量的、多种多样的发酵细菌来完成的,在这些细菌中大部分是专性厌氧菌,只有1%是兼性厌氧菌,但正是这1%的兼性菌在反应器受到氧气的冲击时,能迅速消耗掉这些氧气,保持废水低的氧化还原电位,同时也保护了产甲烷菌的运行条件。
酸化过程的底物取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。对于一个稳态的反应器来说,乙酸、二氧化碳、氢气则是酸化反应的最主要产物。这些都是产甲烷阶段所需要的底物。
在这个阶段产生两种重要的厌氧反应是否正常的底物就是挥发性脂肪酸(VFA)和氨氮。VFA过高会使废水的PH下降,逐渐影响到产甲烷菌的正常进行,使产气量减小,同时整个反应的自然碱度也会较少,系统平衡PH的能力减弱,整个反应会形成恶性循环,使得整个反应器最终失败。氨氮它起到一个平衡的作用,一方面,它能够中和一部分VFA,使废水PH具有更大的缓冲能力,同时又给生物体合成自生生长需要的营养物质,但过高的氨氮会给微生物带来毒性,废水中的氨氮主要是由于蛋白质的分解带来的,典型的生活污水中含有20-50mg/l左右的氨氮,这个范围是厌氧微生物非常理想的范围。
另外一个重要指标就是废水中氢气的浓度,以含碳17的脂肪酸降解为例:
CH3(CH2)15COO-+14H2O—> 7CH3COO-+CH3CH2COO-+7H++14H2
脂肪酸的降解都会产生大量的氢气,如果要使上述反应得以正常进行,必须在下一反应中消耗掉足够的氢气,来维持这一反应的平衡。如果废水的氢气指标过高,表明废水的产甲烷反应已经受到严重抑制,需要进行修复,一般来说氢气浓度升高是伴随PH指标降低的,所以不难监测到废水中氢气的变化情况,但废水本身有一定的缓冲能力,所以完全通过PH下降来判断氢气浓度的变化有一定的滞后性,所以通过监测废水中氢气浓度的变化是对整个反应器反应状态一个最快捷的表现形式。
五 产乙酸反应
发酵阶段的产物挥发性脂肪酸VFA在产乙酸阶段进一步降解成乙酸,其常用反应式如以下几种:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG’0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG’0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG’0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG’0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG’0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG’0=-70.3KJ/MOL
从上面的反应方程式可以看出,乙醇、丁酸和丙酸不会被降解,但由于后续反应中氢的消耗,使得反应能够向右进行,在一阶段,氢的平衡显得更加重要,同时后续的产甲烷过程为这一阶段的转化提供能量。实际上这一阶段和前面的发酵阶段都是由同一类细菌完成,都在细菌体内进行,并且产物排放到水体中,界限并没有十分清楚,在设计反应器时,没有足够的理由把他们分开。
六 产甲烷反应
在厌氧反应中,大约有70%左右的甲烷由乙酸歧化菌产生,这也是这几个阶段中遵循莫诺方程反应的阶段。
另一类产生甲烷的微生物是由氢气和二氧化碳形成的。在正常条件下,他们大约占30%左右。其中约有一般的嗜氢细菌也能利用甲酸产生甲烷。最主要的产甲烷过程反应有:
CH3COO-+H2O->CH4+HCO3- ΔG’0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG’0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG’0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG’0=-32.9KJ/MOL
在甲烷的形成过程中,主要的中间产物是甲基辅酶M(CH3-S-CH2-SO3-)。

4. 污水处理厂厌氧池怎么设计

污水处理厂厌氧池怎么设计
普通消化池又称传统或常规消化池,己有百余年的历史。消化池常用密闭的圆柱形池,如图1所示。废水定期或连续进入池中,经消化的污泥和废水分别由消化他底和土部排出,所产的沼气从顶部排出。
池径从几米至三、四十米。柱体部分的高度约为直径的1/2,池底呈圆锥形,以利排泥。一般都有盖子,以保证良好的厌氧条件。收集沼气和保持池内温度,并减少池面的燕发。为了使进料和厌氧污泥充分接触、便所产的沼气气泡及时逸出而设有搅拌装置,此外,进行中温和高温消化时,常需对消化液进行加热。常用搅拌方式有三种:
(1)池内机械搅拌;
(2)沼气搅拌,即用压缩机将沼气从池顶抽出,再从池底充人,循环沼气进行搅拌;
(3)循环消化液搅拌。即池内设有射流器,由池外水泵压送的循环消化液经射流器喷射,在喉管处造成真空,吸进一部分池中的消化滚。形成较强烈的搅拌,如图2所示。一般情况下每隔2一4h搅拌1次。在排放消化液时,通常停止搅拌,经沉淀分离后排出上清液。
由于厌氧菌活跃需要保持一定的温度,因此,厌氧池也需要加热。常用加热方式有三种:
1·废水在消化池外先经热交换器预热到定温再进人消化池;
2·热蒸汽直接在消化器内加热;
3·在消化池内部安装热交换管。
第一第三两种方式可利用热水、蒸汽或热烟气等废热源。
查看图纸:http://www.nmgjlscl.com/Item/Show.asp?m=1&d=2850

5. 厌氧污泥怎么培养

AAO污泥一起培养的方法,厌氧污泥怎么培养好好看看就知道了。

1、联系、引进足够的焦化废水处理工程产生的剩余污泥作为接种污泥。
2、在厌氧、缺氧和好氧池中通入约1/2池深的稀释水(或将前期充水调试稀释水排水至1/2池深处),通入接种污泥,并投加药剂:厌氧池混合进水时投加P盐、酸或碱调节pH值(6.5-7.2);缺氧池混合进水时投加P盐、酸或碱调节pH值(7.0-7.2)以及硝酸盐(人工促进挂膜);好氧池混合进水时投加P盐、酸或碱调节pH值(7.0-7.2),适当投加补充碳源(葡萄糖、甲醇等)。
3、引入废水和稀释水,直到充满整个厌氧、缺氧和好氧池(但不得进入二沉池),充水后COD介于800-1000mg/l。根据废水水质,计算确定废水与稀释水比例,同时测定混合液上清液COD进行校核。再次调节厌氧池pH值至(6.5-7.2),缺氧池、好氧池pH值至(7.0-7.2)。
4、好氧池进行闷曝,当好氧池COD≤400 mg/l且稳定2小时后,停止曝气排上清液,排水量约为池容的1/5-1/4。
5、再补充废水、稀释水至池满,使好氧池充水后COD再次介于800-1000mg/l。根据废水水质,计算确定废水与稀释水比例,同时测定混合液上清液COD进行校核。好氧池再次闷曝,当好氧池COD≤400 mg/l且稳定2小时、污泥沉降比(%)SV30≥5时,此阶段结束。否则停止曝气排上清液,再次配水,再闷曝,直到同时达到两个指标(COD≤400 mg/l且稳定2小时、污泥沉降比(%)SV30≥5 )为止。每次换水时均需投加P盐、调节pH值至(7.0-7.2)。为加快污泥培养,可在每次配水后通入接种污泥。P盐添加量按照生物适宜浓度添加,可参照C/P比例。
6、从预处理段引入10%的设计废水总量到厌氧池,并依次进入缺氧池、好氧池、二沉池,加稀释水调节好氧池进水COD介于800-1000mg/l,同时将二沉池污泥回流入好氧池,上清液回流入缺氧池,建立循环。此时,密切注意二沉池出水,如果COD≥500 mg/l或污泥沉降比(%)SV30≤5时,可暂停引入废水和稀释水,直到好氧池COD≤400 mg/l、污泥沉降比(%)SV30≥5时,再开始连续进水。连续进水时,保持投加足够的P盐、硝酸盐(缺氧池),并调节各池pH值(同上),在以下的步骤中同样如此。同时,为加快污泥培养,可间断通入接种污泥。
7、按以上状态运行,确保好氧池进水COD介于800-1000mg/l。当好氧池COD≤400 mg/l、污泥沉降比(%)SV30≥5时,引入废水。二沉池出水COD≥500 mg/l或污泥沉降比(%)SV30≤5时,可暂停引入废水和稀释水。循环操作,并逐渐加大废水引入量,从10%到25%、40%、60%、80%直到100%。当废水引入量达到60%时,进入好氧池的COD可放宽至最大1200mg/l。
注意:加大废水引入量时,要加大P盐、硝酸盐(缺氧池)的投加量。缺氧池投加硝酸盐是加快调试进度的重要措施,因为在调试初期,好氧池出水COD偏高,氨氮硝化作用不足,回流到缺氧池的硝酸盐浓度很低,造成缺氧池反硝化作用相应较弱,降解有机物能力弱,给好氧池压力大,且不利于缺氧池挂膜。为此,在系统没有产生足够的硝酸盐时(即氨氮还没有得到一定降解时),人工投加硝酸盐氮可促进缺氧池挂膜,减少调试周期。随着调试的进展,二沉池出水COD将逐步降低,同时氨氮的去除率逐渐增加,此时需要减小硝酸盐投加量。当氨氮去除率达到80%或者出水氨氮低于15 mg/l时,可停止投加硝酸盐。

厌氧池挂膜
厌氧池的挂膜是调试的难点之一,主要原因在于厌氧菌生长缓慢,且易于流失。在调试过程中,对厌氧池的挂膜,可采取如下方案:通过设置回流水泵(或临时污水泵),从厌氧池出水与缺氧池回流水的混合池(回流吸水井)取水,重新回流到厌氧池进水端,同时利用污泥回流水泵将适量污泥打入厌氧池进行强化挂膜。该方案优点:一是通过人工回流,污泥充分搅拌,方便厌氧池内填料截留处于悬浮状态的污泥,加快挂膜速度;二是通过回流,加快了废水流动速度,提高了传质效果,增强生物膜的活性。缺点:若回流量控制不当,流速过快,有可能对已挂生物膜形成冲刷,造成流失。此外,回流可增加动力费用。

6. 厌氧反应器的作用及工作原理

作用:抄采用生物法处理废水袭。

工作原理:ECAR充分利用了厌氧颗粒污泥技术,通过外循环为反应器提供充分的上升流速,保持颗粒污泥床的膨胀和反应器内部的混合,提高了反应器的处理效率。

高浓度废水由布水系统从ECAR底部泵入,与反应器内的厌氧颗粒污泥充分混合,绝大部分有机物质被转化为沼气,气液分离模块将沼气、水和污泥实现良好分离,沼气由顶部进入沼气输送系统,废水由出水管流入后续处理系统,厌氧污泥回流至污泥床。



(6)厌氧废水工程扩展阅读

厌氧反应发生在废水和污泥颗粒接触的过程。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。

上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没有附着的气体被收集到反应器顶部的三相分离器的集气室。

7. 厌氧罐废水产生的沼气的计算公式

工业废水厌氧发酵产气量-甲烷产量的计回算公答式:
http://wiki.zhulong.com/ke/detail.asp?id=150419

8. 处理生活污水,厌氧池停留时间多少比较好

说到厌氧停留时间,这个得看整个工艺中,设置厌氧段的目的更多详内情点击生活污水处理设备容采用国际先进的生物处理工艺,在总结国内外生活污水处理装置的运行经验的基础上,结合我公司自己的科研成果和工程实践,设计出一种一体化的有机废水处理装置,集去除BOD5、COD、NH3-N于一身,具有技术性能稳定可靠,处理效果好,投资省,自动化运行,维护操作方便,不占地表面积,不需盖房,不需采暖保温等优点。本设备可设置成地埋式,地面之上可种花种草,不影响周围环境。

该设备适合用于住宅小区、村庄、村镇、办公楼、商场、宾馆、饭店、疗养院、机关、学校、高速公路、铁路、工厂、矿山、旅游景区等生活污水和与之类似的屠宰、水产品加工、食品等中小型规模工业有机废水的处理和回用。经该设备处理的污水,水质达到国家排放标准。

9. 污水处理中,厌氧系统应怎样运行管理

生化来池利用活性污泥微生物的作用自,进行缺氧、厌氧、好养反应,去除废水中有机物和氮磷,达到净化污水的目的。污水厂正常运行的控制参数根据处理工艺的不同而不同,主要控制参数有do、mlss、hrt、srt、内外回流比等,建议看些污水处理工程的基本资料。

10. 厌氧法处理污水的优缺点

录求污水处理工程节能措施的技术途径颇多,而有机污水的厌氧生物处理技术则是重要途径之一。
厌氧生物处理是利用厌氧性微生物的代谢特性,在毋需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物处理法不仅适用于高浓度有机废水,进水BOD浓度可达15000mg/l,也可适用于低浓度有机废水,包括城市废;厌氧生物处理法能耗低;有机容积负荷高,一般为5-10kgCOD/m3.d高的可达50kgCOD/m3.d;剩余污泥量少;产生的沼气可利用;营养需要量少;被降解的有机物种类多;能承受较大的负荷变化和水质变化。

显而易见,开发厌氧生物处理新工艺用来治理有机污水的污染,无疑是一种具有良好经济效益的方法。近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物池、厌氧膨胀床和流化床、厌氧生物转盘等,目前升流式厌氧污泥床这种新工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,运转及构筑物造价均有所下降,对于不同含固量污水的适应性也强,因而已越来越受到重视,国内外目前已设计和施工的这种工艺较多。

二、升流式厌氧污泥床工作原理

升流式厌氧污泥床有反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

这种工艺的基本出发占在于:(1)为污泥絮凝提供有利的物理--化学条件,使厌氧污泥获得并保持良好的沉淀性能;(2)良好的污泥床常可形成一种相当稳定的生物相,能抵抗较强的扰动力。较大的絮体具有良好的沉淀性能,从而提高设备内的污泥浓度;(3)通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。

三、厌氧污泥床内的流态和污泥分布

厌氧污泥床内的流态相当复杂,反应区内的流态与产气量和反应区高度相关,一般来说,反应区下部污泥层内,由于产气的结果,部分断面通过的气量较多,形成一股上升的气流,带动部分混合液(指污泥与水)作向上运动。与此同时,这股气、水流周围的介质则向下运动,造成逆向混合,这种流态造成水的短流。在远离这股上升气、水流的地方容易形成死角。在这些死角处也具有一定的产气量,形成污泥和水的缓慢而微弱的混合,所以说在污泥层内形成不同程度的混合区,这些混合区的大小与短流程度有关。悬浮层内混合液,由于气体币的运动带动液体以较高速度上升和下降,形成较强的混合。在产气量较少的情况下,有时污泥层与悬浮层有明显的界线,而在产气量较多的情况下,这个界面不明显。有关试验表明,在沉淀区内水流呈推流式,但沉淀区仍然还有死区和混合区。

厌氧污泥床内污泥浓度与设备的有机负荷率有关。是处理制糖废水试验时,升流式厌氧污泥床内污泥分布与负荷的关系。从图中可看出污泥层污泥浓度比悬浮层污泥浓度高,悬浮层的上下部分污泥浓度差较小,说明接近完全混合型流态,反应区内污泥的颁,当有机负荷很高时污泥层和悬浮层分界不明显。试验表明,污水通过底部0.4-0.6m的高度,已有90%的有机物被转化。由此可见厌氧污泥具有极高的活性,改变了长期以来认为厌氧处理过程进行缓慢的概念。在厌氧污泥中,积累有大量高活性的厌氧污泥是这种设备具有巨大处理能力的主要原因,而这又归于污泥具有良好的沉淀性能。

升流式厌氧污泥床具有高的容积有机负荷率,其主要原因是设备内,特别是污泥层内保有大量的厌氧污泥。工艺的稳定性和高效性很大程度上取决于生成具有优良沉降性能和很高甲烷活性的污泥,尤其是颗粒状污泥。与此相反,如果反应区内的污泥以松散的絮凝状体存在,往往出现污泥上浮流失,使厌氧污泥床不能在较高的负荷下稳定运行。

根据厌氧污泥床内污泥形成的形态和达到的COD容积负荷,可以将污泥颗粒化过程大致分为三个运行期:
(1)投产运行期:从接种污泥开始到污泥床内的COD容积负荷达到5kgCOD/m3.d左右,此运行期污泥沉降性能一般;

(2)颗粒污泥出现期:这一运行期的特点是有小颗粒污泥开始出现。当污泥床内的总SS量和总VSS量降至最低时本运行期即告结束,这一运行期污泥沉降性能不太好;

(3)颗粒污泥形成期:这一运行期的特点是颗粒污泥大量形成,由下至上逐步充满整个厌氧污泥床。当污泥床容积负荷达到16kgCOD/m3.d以上时,可以认为颗粒污泥已培养成熟。该运行期污泥沉降性很好。

五、污泥的流失与外部沉淀池的设置

在升流式厌氧泥床内虽有气液固三相分离器,混合液进入沉淀区前已把气体分离,但由于沉淀区内的污泥仍具有较高的产甲烷活性,继续在沉淀区内产气;或者由于冲击负荷及水质突然变化,可能使反应区内污泥膨胀,结果沉淀区固液分离不佳,发生污泥流失而影响了水质和污泥床中污泥浓度。为了减少出水所带的悬浮物进入水体,外部另设一沉淀池,沉淀下来的污泥回流到污泥床内。设外部沉淀池的好处是:(1)污泥回流可加速污泥的积累,缩短投产期;(2)去除悬浮物,改善出水水质;(3)当偶尔发生污泥大量上漂时,回收污泥保持工艺的稳定性;(4)回流污泥可作进一步分解,可减少剩余污泥量。

设外部沉淀池的升流式厌氧污床工艺流程。

六、升流式厌氧污泥床的设计

升流式厌氧污泥床的工艺设计主要是计算厌氧污泥床的容积、产气量、剩余污泥量、营养需要量.

升流式厌氧污泥床的池形状有圆形、方形、矩形。污泥床高度一般为3-8m,多用钢筋混凝土建造。当污水有机物浓度比较高时,需要的沉淀区面积小,反应区的面积可采用与沉淀区相同的面积和池形。当污水有机物浓度低时,需要的沉淀面积大,为了保证反应区的一定高度,反应区的面积不能太大时,则可采用反应区的面积小于沉淀区,即污泥床上部面积大于下部的池形。

气液固三相分离器是升流式厌氧污泥床的重要组成部分,它对污泥床的正常运行和获良好的出水水质起十分重要的作用,因此设计时应给予特别的重视。根据经验,三相分离器应满足以下几点要求:
1、混和液进入沉淀区之关,必须将其中的气泡予以脱出,防止气泡进入沉淀区影响沉淀;

2、沉淀器斜壁角度约为50o;

3、沉淀区的表面水力负荷应在0.7m3.h以下,进入沉淀区前,通过沉淀槽低缝的流速不大于2m/h;

4、处于集气器的液一气界面上的污泥要很好地使之浸没于水中;

5、应防止集气器内产生大量泡沫。

第2、3两个条件可以通过适当选择沉淀器的深度-面积比来加以满足。对于低浓度污水,主要用限制表面水力负荷来控制;对于中等浓度和高浓度污水,在极高负荷下,单位横截面上释放的气体体积可能成为一个临界指标。但是直到现在国内外所取得的成果表明,只要负荷率不超过20kgCOD/m3.d,厌氧污泥床高度不大于10m,可以预料没有任何问题。

污泥与液体的分离基于污泥絮凝、沉淀和过滤作用。所以创造条件使污泥具有良好的絮凝、沉淀性能对于分离器的工作是具有重要意义。

特别注意是防止气泡进入沉淀区,要使固一液进入沉淀区之前就与气泡很好分离。在气-液表面上形成浮渣能迫使一些气泡进入沉淀区,所以在一些情况下必须考虑设置排放这些浮渣或破坏这些浮渣的设施。

如上所述,升流式厌氧污泥床的混合是靠上流的水流和发酵过程中产生的气泡来完成的。因此,一般采用多点进水,使进水均匀地分布在床断面上。

升流式厌氧污泥床容积的计算一般按有机物容积负荷或水力停留时间进行。设计时可通过试验决定参数或参考同类废水用的设计和运行参数。

七、升流式厌氧污泥床的启动

1、污泥的驯化

升流式套氧污泥床设备启动的最大困难是获得大量沉降性能良好的厌氧污泥。最好的办法加以驯化,一般需要3-6个月,如果靠设备自身积累,投产期可长达1-2年,初中表明,投加少量的载体,有利于厌氧菌的附着,促进初期颗粒污泥的形成;比重大的絮状污泥比轻的易于颗粒化;比甲烷活性高的厌氧污泥可缩短启动期。

2、启动操作要点

(1)最好一次投加足够量的接种污泥;

(2)从污泥床流出的污泥一般不需回流,以使特别轼的污泥连续地从污泥床流出,使较重的污泥在床内积累,并促进其增殖进行颗粒化;

(3)启动开始废水COD浓度较低时,未必泥颗粒化快;

(4)最初污泥负荷率应低于0.1-0.2kgCOD/kgTSS.d;

(5)污水中原来存在的和产生出来的多种挥发酸未能有效分解之前,不应提高有机容积负荷率;

(6)可降解的COD去除率达到80%左右时,才能增加有机容积负荷率;

(7)为促进污泥颗粒化,反应区内的最小空塔速度为1m/d,采用较高的表面水力负荷有利于小颗粒污泥与污泥絮凝分开,使小颗粒污泥发展为大颗粒。

八、升流式厌氧污泥床工艺的优缺点

升流式厌氧污泥床的主要优点是:

1、升流式厌氧污泥床内污泥浓度高。平均污泥浓度为20-40gVSS/1;

2、有机负荷高。水力停留时间短。中温发酵,容积负荷一般为10kgCOD/m3.d左右;

3、无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;

4、污泥床不填载体,节省造价及避免因填料发生堵赛问题;

5、升流式厌氧污泥床内设三相分离器,一般不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内,一般无污泥回流设备。

主要缺点是:

1、进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下;

2、污泥床内有短流现象,影响处理能力;

3、对水质和负荷突然变化较敏感,耐冲击力稍差。

升流式厌氧污泥床工艺近年来在国外发展很快,在国内也已有生产性规模装置,该工艺既节约了能源,基至可回收能量,又解决了环境污染问题,取得了较好的经济效益和社会效益。这种新工艺的研究和发展具有广阔的应用前景。

阅读全文

与厌氧废水工程相关的资料

热点内容
为什么水厂要帮你装净水器 浏览:172
污水厂甲烷的排放量 浏览:510
摩托车分别有什么滤芯 浏览:210
污水处理硫酸用量 浏览:885
水蒸气蒸馏橙油实验报告 浏览:640
沁园净水器电源接哪里 浏览:53
正规中空纤维超滤膜厂家电话 浏览:999
吕梁提升器加工 浏览:290
昂克赛拉换机油滤芯什么价格 浏览:992
生活污水病毒标准 浏览:541
下面放饮水机桶的饮水机怎么用 浏览:521
血透超滤怎么计算 浏览:871
污水调试的书籍 浏览:335
净水机ro膜使用时间 浏览:128
饮水机出现e2是什么原因 浏览:909
1吨再生纸排多少污水 浏览:36
阳离子交换量单位 浏览:445
货车安全滤芯怎么两头是密封的 浏览:364
合成树脂乳液涂料属于什么型涂料 浏览:867
蒸馏酒柴火 浏览:436