导航:首页 > 污水知识 > 综合废水

综合废水

发布时间:2023-06-05 22:23:15

A. 氯碱化工综合废水处理及回用

氯碱化工综合废水处理及回用具体内容是什么,下面中达咨询为大家解答。
采用NaC1溶液和电解饱和的方法支取氢气、氯气、氢氧化钠,应以此为原料对化工产品进行生产的工业为氯碱化工。在石油化学、冶金工业、纺织工业、轻工业等行业领域广泛应用到氯碱化工产品。氯碱化工最主要的产品是烧碱,现阶段,常用的使用烧碱的方法是离子交换膜法,该方法具有无污染、低能耗的特点。在生产氯碱化工时,需要使用大量的水。而PVC、氯碱生产过程中产生的各种废水是氯碱化工生产废水的主要来源。干燥工序废水、氯乙烯合成废水、电石渣废水等均为在PVC生产过程中产生。碱蒸发工艺冷凝液、各工序酸碱废水、螯合树脂再生废水、化盐工序盐水等均在氯碱生产过程中产生。
1 氯碱化工废水特征及危害
氯碱工业废水特点如下:第一,酸碱、盐、金属催化剂等有毒有害污染物多;第二,难生物降解物质多,污染物浓度高,可生化性能低;第三,副产物多、水质成分较为复杂,生产化工产品对压强、温度等诸多条件要求严格,生产过程较为复杂,各种溶剂和辅料等物质存在于排出的废水中;第四,生产中诸多工序需要大量的水,同时具有很大的水资源可循环利用潜力。氯碱化工废水中还有高有机物废水及高浓度的盐,若未采取相关措施进行有效处理直接排放的话危害极大,如农业生产用水、生活饮用水、水体生物等。除了外海农作物、土壤外,含盐量高的废水增高了地下水硬度,从而对人体产生危害。对工业设备而言,高盐度水具有很强的腐蚀性,从很大程度上缩短了工业设备使用寿命。
2 氯碱化工废水处理
2.1 好氧生物处理
在生产氯碱化工的过程中会排出酸性废水,酸性废水会对构筑物和排水管产生腐蚀,因此需要对其进行及时处理,采用生物接触氧化法深度处理二沉池出水,该处理工艺具有生物膜法和活性污泥法的优点,处理效果较为稳定、耐冲击负荷、管理简单,在生物滤池的基础上添加曝气发展、演变而来。
2.2 焚烧法
采用焚烧技术来处理高浓度的有机废水,在预处理废水后,可将有机废水热值提升,从而使焚烧处理的成本降低。采用蒸发工艺能够转化有机物的含盐有机废水,使其成为不含盐的有机废水蒸汽。含有高沸点有机物含盐废水中的碱金属盐类和有机物不能完全被单独蒸发预处理分离。利用萃取技术预处理蒸发残液后,再焚烧处理脱盐后的有机物,从焚烧对象中将盐质完全脱离,从而分离了无机盐和有机物。
2.3 反渗透
苦咸水淡化中成熟运用反渗透淡化技术,该技术也能够在脱盐处理高浓度废水。在某化工厂的废水处理中应用了优化后的反渗透过程,经过工艺脱盐,工厂废水中还有的大量Cl-和Ca2+,脱盐后,大幅降低了Cl-的浓度质量。
2.4 电化学法
高盐度导电性高,对紫胶合成树脂排放的高盐度有机废水采用电解絮凝法进行处理,可提升废水透明度,将废水中有机污染物去除。在生产染料中间体的过程中,高盐度有机废水会产生,对于除去废水中有机物而言,电化学法效果很好。
3 生产废水回用
3.1 处理、回用思路
氯碱生产废水很大一部分为碱性高、盐度大、有机物浓度大的废水,回收处理后可以用于锅炉烟气脱硫除尘,或者可作为水合肼生产及PVC生产用水,部分废水可用于强氯精、三氯氢硅尾气的吸收。废水经过收集后,一般废水进入废水处理系统调节池、沉淀池进行预处理,处理废水工艺原则如下:技术成熟可靠、设备操作管理方便,污泥含水率应控制在一定范围内,使其易于处理,生化处理前应进行除盐处理。为负荷厂区环保标准、应与厂区整体规划相符;在提升管理水平、自动控制处理过程的基础上,灵活采用有效的废水处理方式将设备和装置的处理能力最大限度地发挥出来,并根据进水水质调整处理设施运行方式和参数,以此节约成本,扩大效益,降低运行费用。处理工艺应保持可靠、稳定,并且长期运行中,确保排水和废水回用率。
3.2 回用方法
在PVC生产中,经过预处理澄清工艺处理的废水,与乙炔发生工序所产生的电石渣废水可以实现工序用水的循环,从而实现减少新鲜用水量,降低用水成本。另外,碱性废水能够吸收一部分呈酸性的锅炉烟气,有机污染物浓度的高低对此工序无影响,因此在混合了PVC工序产生的电石渣废水后,完全可用于锅炉烟气脱硫除尘以降低环保运行成本。此外,碱性水能够吸收呈酸性的三氯氢硅尾气,且具有很大的用水量,因此三氯氢硅尾气可用于PVC废水中强碱废水处理和外排废水处理;当碱性缺乏时,三氯氢硅尾气吸收用水的碱性也可通过投加固废电石渣的方式实施,通过这样的方式,可以对一部分外排废水量进行控制、减少了部分废水排放量,还将三氯氢硅尾气吸收的水量减少了,实现废废利用。检修空冷器用水以及三氯氢硅合成炉的用水量大、且需要新鲜水。该部分对盐度没有特别要求,盐度高、不含其他污染物是浓水站的特点,所以新鲜水可由浓水取代,从而实现了对空冷器、三氯氢硅合成炉的检修。该方法既能够控制、降低空冷器、三氯氢硅合成炉的新鲜水量,还回收了直接排放的浓水。废水处理及回收减少了废水的排放量以及新鲜水的使用量,同时有助于污水处理系统对负荷的控制、节约了水资源。
4 结束语
为了达到废水回收利用的目的,文章提出处理、回收废水的几种方式。在生产氯碱化工时,需要使用大量的水,而氯碱生产过程中产生的各种废水经过处理后部分可以作为氯碱化工生产用水的来源,从而降低新鲜用水使用量,节约用水成本。采用生物接触氧化法深度处理二沉池出水,该处理工艺具有生物膜法和活性污泥法的优点,利用萃取技术预处理蒸发残液后,再焚烧处理脱盐后的有机物,从焚烧对象中将盐质完全脱离,从而分离了无机盐和有机物。废水处理及回收减少了废水的排放量以及新鲜水的使用量,同时有助于污水处理系统对负荷的控制。三氯氢硅尾气可用于PVC废水中强碱废水处理和外排废水处理,当废水碱性不够时,三氯氢硅尾气吸收用水的碱性可通过投加电石渣的方式实施。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

B. 综合废水提升泵为什么抽不上水

1,有些用户在综合废水提升泵启动前未灌满足够的水,有时看上去灌的水已从放气孔溢出,但未转动泵轴交空气完全排出,致使少许空气残留在进水管或泵体中。

2,与综合废水提升泵接触的进水管的水平段逆水流方向应用0.5%以上的下降坡度,连接水泵进口的一端为最高,不要完全水平。如果向上翘起,进水管内会存留空气,降低了水管和自吸泵中的真空度,影响吸水。

3,综合废水提升泵的填料因长期使用已经磨损或填料压得过松,造成大量的水从填料与泵轴轴套的间隙中喷出,其结果是外部的空气就从这些间隙进入水泵的内部,影响了提水。

4,进水管因长期潜在水下,管壁腐蚀出现孔洞,水泵工作后水面不断下降,当这些孔洞露出水面后,空气就从孔洞进入民进水管。

5,综合废水提升泵进水管弯管处出现裂痕,进水管与水泵连接处出现微小的间隙,都有可能使空气进入进水管。水泵转速过低

6,人为的因素。有相当一部分用户因原配电机损坏,就随意配上另一台电动机带动,结果造成了流量小、扬程低甚至不上水的后果。

7,传动带磨损。有许多大型自吸泵采用带传,因长期使用,传动带磨损而松驰,出打滑现象,从而降低了水泵的转速。

8,综合废水提升泵安装不当。两带轮中心距太小或两轴不太平行,传动带紧过安装到上面,致使包角太小,两带轮直径计算差错以及联轴传动的水泵两轴偏心距较大等,均会造成水泵转速的变化。

9,综合废水提升泵本身的机械故障。叶轮与泵轴紧固螺母松脱或泵轴变形弯曲,造成叶轮多移,直接与泵体磨擦,或轴承损坏,都有可能降低水泵的转速。

10,动力机维修不灵。电动机因绕组烧毁,而失磁,维修中绕组匝数、线径、接线方法的改变,或维修中故障未彻底排除因素也会使自吸泵转速改变。

11,体内未加储液或储液不足

12,吸入管路漏气::消除管路漏气现象

13,电压过低:调整电压

14,吸程过高或吸入管路太长:降低吸程或缩短管路

15,机械密封泄漏过大:修理或更换

16,泵体里面或者进口管道滤网遭杂物石头堵塞:检查清理掉堵塞物

17,叶轮损坏或者磨损:更换新叶轮

18,出口管路安装不正确弯头太多:管道成N字型的管道太多建议在最高点安装自动排气阀。

19,三相电机接线接反:互换其中两相。

20,综合废水提升泵回流孔遭堵塞导致汽水无法分离:检查清理掉。

C. 如何提升综合废水提升泵的自吸时间和能力

许多人都知道综合废水提升泵自吸能力强,但是却不知道的是自吸能力为什么这么强。小编就为大家揭开美宝综合废水提升泵为什么自吸能力强吸引许多客户前来咨询,掌握正确操作方法,就可以提升综合废水提升泵的自吸时间和能力哦!

第一:综合废水提升泵的腔李明吸水管末端安装吸水底阀

底阀实际上是一种止回阀,它保证水流只能由水池 人吸水管而不会倒流。可使吸水管 内一直都充满水,保证水泵能自动、迅速启动。

第二:综合废水提升泵设置泵前吸水罐。

在水泵吸水管上设置一个吸水罐,水泵在 次运行前,罐内应人工灌满水, 次运行停止后,因为吸水罐的 水管 度 于管内水面 度,尽管水池内水面 度低于罐内水面的 度,罐内的水也不会倒流 入水池。所以,吸水罐内能储存一定的水。又因为吸水罐的出水管(即水泵的吸水管) 度低于管内水面 度,故能保证水泵的吸水管内充满水,以后水泵再运行时,水罐内的水被水扰裤泵抽走,罐内出现负压,水池中的水在大气伍告压力的作用下补充到吸水罐内,通过吸水罐水池内的。

第三:综合废水提升泵减少 水管道弯道、落差 度和水平距离。

第四:综合废水提升泵在水泵吸水管路上设置真空泵。

美宝综合废水提升泵启动前,真空泵先启动,使水泵吸水管内先充满水,保证水泵自动、迅速启动。这种吸水方式需要有完善的自动控制系统以保证正常工作。

D. 污水有哪些种类

根据来污水来源的观点,污水可源以定义为从住宅、机关、商业或者工业区排放的与地下水、地表水、暴风雪等混合的携带有废物的液体或者水。污水由许多类别,相应地减少污水对环境的影响也有许多技术和工艺。按照污水来源,污水可以分为这四类。

第一类:工业废水 来自制造采矿和工业生产活动的污水,包括来自与工业或者商业储藏、加工的径流活渗沥液,以及其它不是生活污水的废水。

第二类:生活污水 来自住宅、写字楼、机关或相类似的污水;卫生污水;下水道污水,包括下水道系统中生活污水中混合的工业废水。

第三类:商业污水 来自商业设施而且某些成分超过生活污水的无毒、无害的污水[2]。如餐饮污水。洗衣房污水、动物饲养污水,发廊产生的污水等。

第四类:表面径流 来自雨水、雪水、高速公路下水,来自城市和工业地区的水等等,表面径流没有渗进土壤,沿街道和陆地进入地下水。

污水含量有:氨氮、磷、COD、BOD、重金属等。

E. 什么是综合污水杂排水和优质杂排水

综合污水来定额: 是指居自民生活污水和公共设施排出污水两部分的总和 两部分的总和 就是综合生活污水排放的额定数。
在确定居民生活污水量定额时,应调查收集当地居住区实际排水量的资料,然后根据该地区给水设计所采用的用水量定额,确定居民生活污水量定额。在没有实测的居住区排水量资料时,可按相似地区的排水量资料确定。若这些资料都不易取得,则根据《室外排水设计规范》(GBJL4-87)的规定,按居民生活用水定额确定污水定额。对给水排水系统完善的地区可按用水定额的90%计,一般地区可按用水定额的80%计。
杂排水

民用建筑中除粪便污水外的各种排水,如冷却排水、泳池排水、沐浴排水、盥洗排水、洗衣排水、厨房排水等。
优质杂排水
其污染程度较低的排水,如冷却排水、泳池排水、沐浴排水、盥洗排水、洗衣排水等。
综合污水就是以上的各污水以及工业废水混合在一起的污水

F. 化学实验后的废液如何处理

分类处理,酸性倒进酸性废液缸,碱性倒进碱性废液缸,总之不能直接倒进下水道,学化学要严谨。

G. 电镀废水中重金属、含氰、含铬、含镍、化学镍、前处理、络合废水,各电镀槽中的废水的分类

电镀废水的来分类如下:
自1、处理废水:主要为镀前准备的脱脂、除油工序产生的废水、其主要污染物为:有机物、悬浮物、石油类、磷酸盐及一些表面活性剂。
2、含氰废水:含氰废水的主要来源为:氰化镀铜、铜锡合金、氰化物镀银、碱性氰化物镀金等含氰电镀工序、其主要污染物为:氰化物及重金属离子。
3、六价铬废水:含铬废水主要来源于:镀铬及钝化工序、废水中主要污染物为六价铬及总铬。
4、学镀铜废水:化学镀铜通常以甲醛为还原剂、主要污染物为铜离子及有机物。
6、学镀镍废水:化学镀铜通常以次磷酸盐为还原剂、主要污染物为镍离子、磷酸盐、亚磷酸盐及有机物。
7、铜废水:废水主要来源于焦磷酸盐镀铜、镀铜锡合金电镀工序、其主要污染物为:铜离子、磷酸盐、氨氮及有机物。
8、合废水:综合废水主要污染物为:酸、碱、重金属离子及有机物。
9、镀废液:电镀废液含有较高浓度的酸碱及重金属、电镀废液应委托有资质的危险物处置单位进行处理货综合利用。

H. 曝气生物滤池处理工业综合废水提标改造技术研究

针对曝气生物滤池工艺不具备脱氮除磷功能,特别是在处理工业综合废水时出水不能稳定达标排放的问题,提出了“化学除磷+气浮除油+水孙局解酸化+前置反硝化曝气生物滤池”的全流程处理工艺,并通过中试研究对处理流程以及各个处理单元运行参数进行了优化,在水解酸化2.0h,投加混凝剂硫化铁量为40.0mg/L,气浮溶气压力3.5kg/cm2,AO池125%回流比,水力停留时间为20.0min的条件下,其出水达到国家一级A排放标准的要求。并对升级改造的建设和运行费用进行了核算,为同类污水处理厂的升级改造工程提供理论依据和数据支持。
1前言
辽河流域的浑河中部城市群是辽宁乃至东北老工业区振兴的核心区域,随着工业化并模进程的高速发展,流域内工业园区正在蓬勃兴起,随之产生了大量工业综合废水。该类废水经园区内处理后,仍含有大量极难降解的有机污染物,水质可生化性极差,给所汇入的城镇污水处理厂带来较大的处理难度并造成干扰,直接导致出水不达标的问题[1~3]。与此同时,流域水环境质量改善的需求对污水处理厂出水提出了更加严格的要求,根据辽宁省环保局与辽宁省质量技术监督局联合颁布的《辽宁省污水综合排放标准》的要求,市级以上污水处理厂出水COD(chemicaloxygendemand)、NH3-N(氨氮)和TN(总氮)的浓度要达到国家一级A排放标准,故污水厂目前亟需结合现有处理工艺进行升级改造研究,实现工业综合废水的达标排放[4~8]。
曝气生物滤池工艺由于其占地面积小、处理效果好等特点,在辽河流域内的污水处理厂尚占有一定的比例,出水基本达到二级排放标准,但随着难降解工业综合废水的汇入,导致滤池板结堵塞、生物膜脱落等现象的产生。针对工业综合废水存在的问题和曝气生物滤池的特点,进行了水解酸化和气浮除油的预处理研究,以及化学除磷和前置反硝化深度脱氮研究,使其出水达到一级A排放标准,为该类污水厂的升级改造提供理论依据和数据支持[9~13]。
2试验装置与试验方法
2.1试验水质
该研究选取沈阳市铁西区某污水处理厂,该污水厂日处理水量40万t,其中60%以上的进水为工业综合废水。如表1所示,从污水处理厂的进水水质指标来看,其有机污染物和固体悬浮物(SS)浓度都比较高,经过水厂现有的两级曝气生物滤池工艺处理,出水基本上能够达到国家二级排放标准,但对比一级A标准,一方面需要进一步去除水中的COD、SS和NH3-N;另一方面还需要增加脱氮除磷的功能。
2.2试验装置
针对工业综合废水的特性以及污水处理厂现有工艺特点,设计了深度处理的全流程工艺,中试装置主要包括混凝池、气浮池、水解沉淀池和前置反硝化曝气生物滤池4个处理单元。
如图1所示,其中絮凝池柱高1.6m,直径0.6m,原水和混凝剂溶液均从距底部1.2m处注入,内设JJ-1大功率电动搅拌器,使原水和混凝剂充分混合,以去除原水中的SS和TP;溶药池采用相同设计参数,同样使用搅拌器使固体混凝剂充分溶解为液状,并由蠕动泵注入絮凝池;气浮池接触室高2.2m,直径0.12m,分离室高2.4m,直径0.32m,加入混凝剂的原水使用DP-130高压隔膜泵、与空气充分混合的回流液使用尼克尼20FPD04Z气液混合泵从接触室底部共同注入,经分离室将其中的泡沫残渣去除,并从顶部平台排出;水解沉淀池柱高4.5m,直径0.5m,盛装厌氧污泥,污水从底部注入,经污泥层去除部分SS和COD;前置反硝化曝气生物滤池使用柱高4.3m,直径0.5m的有机玻璃滤柱填装火山岩滤料,滤柱中的火山岩滤料粒径分别为6~8mm、4~6mm和3~5mm,其中承托层高0.3m,滤料高4.0m,水面超高1.0m,设计三级生物滤柱分别为反硝化DN池、氧化硝化CN池和硝化N池,即分别进行反硝化、氧化和硝化反应,对污水中的TN、COD和NH3-N进行生化去除,CN池和N池使用空压机进行曝气,三级滤柱均采用向上流方式,使用高压隔膜泵从底部注水。中试装置日处理水量2t。
2.3水质分析方法
TN的测试采用过硫酸钾氧化法,NH3-N的测试采用纳氏试剂比色法,硝酸盐氮的测试采用麝香草酚分光光度法,亚硝酸盐氮的测试采用N(-1-奈基)-乙二胺分光光度法,COD的测试采用重铬酸钾法,DO(溶解氧)的测试使用溶解氧快速测定仪[14]。
3试验结则蔽让果与分析
3.1运行参数优化
3.1.1水解酸化预处理
水解酸化单元的作用是在进一步去除水中COD和SS浓度的同时,提高水质的可生化性[15~17],其主要控制参数为HRT(水力停留时间)。现通过对进出水COD、SS浓度以及BOD/COD的检测与分析优化HRT。
如图2所示,当HRT在2.0h以下时,COD的去除率不足30.0%,由于时间较短,这部分去除的主要是水中悬浮状COD。而随着HRT的逐渐提高,水中难降解有机污染物在水解和发酵细菌的作用下,转化为单糖、氨基酸、脂肪酸等小分子、易降解的有机物[18~20],COD的去除率也不断升高,达到50%以上。随着出水COD浓度的不断下降,出水BOD的浓度也随之下降,但由于工业废水中的难降解有机物浓度所在比例较高,出水COD浓度下降的速率要高于出水BOD浓度下降的速率,出水BOD/COD的比值也随之升高。如图3所示,进水BOD/COD的值基本在0.3~0.4,当HRT大于2.0h时,出水BOD/COD的值升至0.4以上。而当HRT大于4.0h时,水中的难降解有机物已完成水解,出水COD的去除率变化不大,BOD/COD的值也开始回落。所以,当HRT介于2.0~4.0h时,出水BOD/COD的值保持在0.4以上,属于较易进行生化处理的范围,有助于后续生物滤池的进一步处理。考虑到在流量不变的条件下,构筑物的体积会随着HRT的升高而增大,故确定水解酸化的HRT为2.0h。
此外,水解池对原水中的SS也有较强的去除能力。由于工业综合废水中含有较多的粘渣和悬浮物,虽然通过混凝气浮工艺可以去除50.0%,但出水的SS浓度仍在60.0mg/L,如果这些SS直接进入滤池,将会增加滤池的反冲洗次数。经过水解池厌氧污泥层对水中颗粒物质和胶体物质的截留和吸附作用,出水的SS得到进一步的去除,其浓度基本保持在40.0mg/L以下,去除率在44.0%以上。由于水解池对SS的去除主要是通过截留和吸附作用,故过长的HRT对SS的去除并无明显的效果,所以对于占地面积有限的污水处理厂,水解池在升级改造过程中完全可以取代初沉池,起到初级去除原水中的SS和COD的作用。
3.1.2强化化学除磷
试验选用Al(2SO4)3、聚合氯化铝(PAC)、FeCl3和聚合硫酸铁(PFS)四种常用的混凝剂,通过对原水以及出水中TP浓度的考察,确定使用PFS为强化化学除磷试验的混凝剂,并对其投药量和搅拌时间两个参数进行优化[21~24]。
如图4所示,随着混凝剂PFS投加量的增加,水中TP的浓度不断减少。当投药量达到30.0mg/L时,水中TP的浓度已低于0.5mg/L,去除率达到75.0%以上。根据铁盐除磷的化学方程式可知,每去除1mg的P,需要1.8mg的Fe。原水中TP的浓度在1mg/L至4mg/L,若使出水TP浓度小于0.5mg/L,最多需要12.0mg/L的硫酸铁,以至少40.0%有效成分计算,需要30.0mg/L。考虑水解等因素,最终选定投药量为40.0mg/L,此时的出水TP浓度为0.3mg/L。可以保证出水水质符合一级A排放标准的要求。
确定PFS的投药量后,对搅拌时间进行了优化。在投药量40.0mg/L条件下,改变搅拌时间,测定出水TP浓度。搅拌时间及进出水TP浓度和去除率如图5所示,随着搅拌时间的增长,水中TP的浓度不断减少。时间从5.0min增加到15.0min,水中TP的去除率提高了5.1%,而从15.0min增加到30.0min,去除率仅提高了2.0%,故过长的搅拌时间对TP的去除并无显著的效果,反而会增加额外的能源消耗和构筑物的建筑体积。由于出水TP浓度均小于国家一级A标准要求的0.5mg/L,故从运行成本上考虑,确定最佳搅拌时间为15min。
3.1.3高效气浮除油
原水与混凝剂PFS混合后进入气浮池,目的是将水中造成滤池堵塞的油污以及混凝产生的泡沫残渣去除。气浮池采用加压溶气气浮方式,主要有溶气压力和回流比两个控制参数,通过对进出水含油量的检测分析,优化气浮单元的运行参数[25,26]。溶气压力对油类去除的影响如图6所示,出水含油量随溶气压力的变化趋势可分为三个阶段。
当压力小于2kg/cm2时,气浮形成的气泡粒径还较大,对水中絮状颗粒的去除能力有限。在压力增加到3.5kg/cm2的过程中,随着气泡粒径的减小,气浮的去除能力也有了显著的提高。但此后即便形成气泡的粒径不断减小,出水含油量却不再降低,这说明并非气泡粒径越小气浮效果越好,而是当气泡粒径和水中杂质粒径越接近时效果越好。一般的,气浮工艺的微气泡平均粒径在40.0μm左右,从试验中可以看出,当溶气压力为3.5kg/cm2时就可以取得较好的去除效果,此时出水含油量为2.73mg/L,去除率为84.6%,而过高的溶气压力只会增加动力的输出和电能的消耗。
回流比对含油量的去除影响如图7所示,气浮的去除效果受回流比的影响较大。当回流比低于30%时,由于形成的气泡较少,对水中油类的去除能力较差。当回流比增大到30.0%~50.0%时,气浮的去除效果达到最佳。而当回流比增大到50.0%以上时,去除率却出现下降,经分析认为这是由于水中空气比例过高,微气泡聚合成粒径较大的气泡,导致气浮效果变差。故确定气浮除油的回流比为50.0%,此时出水含油量为3.12mg/L,去除率为82.9%。
3.1.4A/O深度脱氮
脱氮单元采用前置反硝化曝气生物滤池。其控制参数主要有回流比、HRT和曝气量,通过对出水COD、TN、NH3-N和DO的检测,对各个参数进行优化。
回流比是前置反硝化脱氮工艺中最为重要的控制参数,它直接影响水中TN的去除效果。根据中试设计中的BOD负荷和硝化负荷计算以及COD负荷校核,在单池HRT为45.0min,气水比为5∶1的条件下,出水可稳定实现一级A达标排放,首先在50%~250%的范围内对参数回流比进行考察。如图8所示,当回流比从50%增加到150%时,出水TN的浓度在不断下降,TN的去除率也不断提高。这是由于在回流比较低时,水中作为电子受体的硝酸盐不足,影响了反硝化的速率,而随着回流比的升高,有足够的硝酸盐作为电子受体,并利用水中的有机物作为电子供体,在无需外加碳源的条件下,完成反硝化和深度脱氮的目的。但回流比从150%继续升高时,出水TN的浓度却不再继续降低,增加到200%时TN的去除率已呈下降趋势。一方面,随着硝酸盐浓度的不断升高,造成水中的碳源不足进而影响反硝化的进行;另一方面,随着回流比的增加,进入DN池的溶解氧也在增加,而溶解氧可作为电子受体,竞争性的阻碍硝酸盐的还原,同时还将抑制硝酸盐还原酶的形成。由于回流比和HRT越高所需反应池构筑物容积越大,从水厂实际升级改造工程考虑,对100%、125%、150%和175%四个回流比以及各个回流比下出水TN随HRT的变化进行进一步研究。
增加,出水TN的浓度也随之降低,微生物对基质的去除率也越高。但一般的,当HRT增加到20.0min以上时,出水TN浓度的下降趋势以及去除率的增加都变得平缓,而且所需的构筑物体积也在不断增加。为了确保出水TN浓度达到一级A排放标准要求15.0mg/L以下时,选择回流比为125%,HRT为20.0min的参数条件,此时出水TN浓度为12.74mg/L,去除率为67.0%。
溶解氧是维持好氧微生物生长代谢的重要因素,对于曝气生物滤池来说,水中溶解氧的供给,即空压机的曝气量也是主要的能源消耗所在,过低的曝气量将降低微生物的新陈代谢能力;而过高的曝气量一方面会造成经济的浪费,一方面又会导致微生物的活性过度增强,在营养供给不足的情况下,导致生物膜发生自身的氧化分解。试验通过对CN池进水COD浓度以及去除率的监测,对曝气量进行参数优化。如图10所示,随着曝气量的增加,出水COD的浓度随之不断下降,去除率也在不断提高。但在曝气量增加到0.8m3/h时,两项指标的变化都不大,这说明过多的曝气量和溶解氧对于COD的去除已无太大作用,只会增加动力费用。故确定CN池的曝气量为0.8m3/h,此时出水DO浓度在2.5mg/L左右,气水比为4∶1。CN池的出水已有较高的DO浓度,如图11所示,在进入N池后,在较低曝气量的条件下,对水中的NH3-N便有较高的去除率。同出水COD浓度的变化率相似,出水NH3-N浓度也随着曝气量提高而不断降低,为了达到一级A排放标准,确定N池的曝气量为0.6m3/h,此时出水DO浓度在3.0mg/L左右,气水比为3∶1。
3.2技术经济分析
该污水处理厂目前拥有日处理水量4×105t的两级曝气生物滤池一套,单池HRT为45.0min,两级滤池气水比分别为3∶1和4∶1。根据中试研究结果,如采用前置反硝化曝气生物滤池工艺,需要增加125%的回流液,但由于HRT减少至20.0min,根据计算同样可以利用现有两级滤池分别作为CN池和N池,并有少量的富余,只需增加一套前置DN池,以及回流管道,同时还需对水泵和曝气风机设备进行更换,如图12所示。如采用后置反硝化曝气生物滤池工艺,可将现有两级滤池分别作为CN池和N池,另外还需修建一套DN池,以及甲醇投加和储备间,同时要对曝气风机设备进行更换,如图13所示,虚线部分为新建构筑物。
根据中华人民共和国住房和城乡建设部颁布的《全国市政工程投资估算指标》以及辽宁省建筑、安装、市政工程预算定额、费用定额和近年来的同类工程预、决算资料分别对两种工艺流程升级改造的建设成本和运行费用进行估算,如表2所示。
经过经济费用估算,前置反硝化工艺较后置反硝化工艺,在投资总费用方面,由于构筑物建设和设备购置原因要高出1330.12万元;而在年运行费用方面,由于无需外加碳源则要低1915.01万元。即在升级改造完成后第2年,两工艺的建设和运行总费用将会基本持平,此后前置反硝化工艺较之后置反硝化工艺每年将节省大量的运行成本,故从长远考虑,推荐采用前置反硝化作为水厂的深度脱氮工艺。
通过工业综合废水深度处理全流程工艺的中试研究,结合该污水处理厂现有工艺情况,制定了升级改造的工艺路线,如图14所示。
4结语
1)由于工业综合废水具有高油高粘渣、可生化性差又极难降解的问题,在对其进行处理时需要增加必要的预处理工艺。通过中试研究表明,高效气浮除油工艺可以有效去除废水中的油污、粘渣等杂质;水解酸化工艺一方面能够有效提高水质的可生化性,同时还能有效去除水中的SS,具有良好的预处理效果。在气浮溶气压力3.5kg/cm2、回流比50%、水解酸化HRT2.0h条件下,能够去除原水中40%的有机污染物,并将原水的BOD/COD提高至0.4以上。
2)通过对比试验研究和技术经济分析,前置反硝化深度脱氮工艺对于以曝气生物滤池为主体的污水厂升级改造具有更广泛的应用前景,在节省大量运行成本的前提下,充分利用原水中的碳源,实现污水的深度脱氮。在回流比为125%,HRT为20.0min的条件下,出水TN和NH3-N浓度均稳定达到一级A排放标准。
3)通过中试研究,研发了针对工业综合废水的“化学除磷+气浮除油+水解酸化+前置反硝化曝气生物滤池”的深度处理全流程工艺。长期运行数据表明,该工艺对于难降解、波动幅度大的工业废水,具有较好的抗冲击能力和处理效果,出水能够稳定达到国家一级A排放标准。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

阅读全文

与综合废水相关的资料

热点内容
通俗的讲蒸馏 浏览:296
c4世嘉空调滤芯用什么 浏览:301
屠宰污水处理厂设备价格 浏览:89
净化器电压过高应该怎么调 浏览:796
餐饮废水质检测要多少钱 浏览:116
成都污水泵多少钱一台 浏览:542
河南家庭中央净水器多少钱 浏览:997
勺子上有水垢 浏览:660
汉兰达20t机油滤芯怎么更换 浏览:445
新生牌净水器是哪个公司生产的 浏览:665
纸杯子可以做什么饮水机 浏览:383
玻璃钢废水箱是干什么的 浏览:115
太阳能光伏污水处理站竣工验收报告 浏览:315
法百利负离子空气净化器怎么装 浏览:487
顺平肠衣城污水处理 浏览:231
为什么水厂要帮你装净水器 浏览:172
污水厂甲烷的排放量 浏览:510
摩托车分别有什么滤芯 浏览:210
污水处理硫酸用量 浏览:885
水蒸气蒸馏橙油实验报告 浏览:640