⑴ 电镀废水处理工艺
电镀工艺是将金属通过电解方法镀到制品表面的过程,常用的镀种有镀镍、镀铜、镀铬、镀锌、镀镉、镀铅、镀银、镀锡、镀金。
物理法
一般使用下述方法处理电镀废水,可高效去除COD、色度的同时,脱除重金属、六价铬、氰化物等特有物质,物理法包括:
催化微电解处理技术
微电解技术是处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低cod和色度,还可大大提高废水的可生化性。
该技术是在不通电的情况下,利用微电解设备中填充的微电解填料产生“原电池”效应对废水进行处理。当通水后,在设备内会形成无数的电位差达1.2V 的“原电池”。“原电池”以废水做电解质,通过放电形成电流对废水进行电解氧化和还原处理,以达到降解有机污染物的目的。在处理过程中产生的新生态[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3 +,它们的水合物具有较强的吸附-絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的絮凝能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量絮凝水体中分散的微小颗粒、金属粒子及有机大分子.其工作原理基于电化学、氧化- 还原、物理以及絮凝沉淀的共同作用。该工艺具有适用范围广、处理效果好、成本低廉、处理时间短、操作维护方便、电力消耗低等优点,可广泛应用于工业废水的预处理和深度处理中。
阳极: Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V阴极: 2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
当有氧存在时,阴极反应如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V
新型微电解填料是针对当前有机废水难降解难生化的特点而研发的一种多元催化氧化填料。它由多元金属合金融合催化剂并采用高温微孔活化技术生产而成,属新型投加式无板结微电解填料。作用于废水,可高效去除COD、降低色度、提高可生化性,处理效果稳定持久,同时可避免运行过程中的填料钝化、板结等现象。本填料是微电解反应持续作用的重要保证,为当前化工废水的处理带来了新的生机。
吸附法
活性炭具有非常多的微孔结构和巨大的同比表面积,通常1g活性炭的表面积达700~1700m2,因而具有极强的物理吸附力,能有效地吸附废水中的六价铬离子(Cr6+)等重金属离子。当活性炭达到吸附平衡后,还可以采用加热、酸浸泡、碱浸泡等方式除去吸附物,使活性炭再生。
生物法
生物法是处理电镀废水的高新生物技术。利用人工培养的脱硫孤菌、生枝动胶菌、铬酸盐还原菌、硫酸盐还原菌等功能菌,对电镀废水产生静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。有害金属沉淀于污泥中回收利用,排放水用于培菌及其他使用。生物法处理电镀废水成本低、效益高、容易管理、不给环境造成二次污染、有利于生态环境的改善,是未来电镀废水处理的主流方向。
化学法
一般用下述方法处理电镀废水:向废水中投加药剂,使其中的有毒物质转化成为无毒物质或毒性大为降低的沉淀物。化学法包括:
中和沉淀法
如酸性废水用碱性废水或投加碱性物质进行中和,形成沉淀物。
中和混凝沉淀法
例如在离子交换法除铬工艺中,阳离子交换柱再生废液是含有重金属离子 (Zn2+、Cr3+、Fe3+等)的强酸性废液,可用去除酸根后阴离子交换柱的再生废碱液或加碱中和,使之以氢氧化物形式沉淀。如投加高分子絮凝剂可改变这种沉淀物的沉降性能和分离性能。
氧化法
如处理含氰废水时,常用次氯酸盐在碱性条件下氧化其中的氰离子,使之分解成低毒的氰酸盐,然后再进一步降解为无毒的二氧化碳和氮。
还原法
如含铬废水用亚硫酸氢钠或硫酸亚铁加石灰处理,使Cr6+还原成毒性低的Cr3+,并形成氢氧化铬沉淀。
钡盐法
如含铬废水用钡盐处理,使铬酸根成为铬酸钡沉淀。
铁氧体法
电镀废水经过处理产生氢氧化铁或其他重金属氢氧化物沉淀,通过氧化反应使重金属转入强磁性的铁氧体结晶中。此法可用于含铬废水的处理。 化学法设备简单,投资较少,应用较广。但常留下污泥需要进一步处理,而且电镀废水分散,污泥不易集中处理和利用。
物理法
主要包括电解法、离子交换法和膜分离法,提银机处理法。
提银机处理法
guowei型本设备特点:
1、使用纯物理方法的双电解方式,只使用少量电力,无二次污染之忧。
2、提银深度在99%以上,提取银纯度高达 98%以上。
3、可以处理离子交换法、气浮法处理不了的药品浓度很高的废定影液。
4、可以处理目前国内外电解法都无法处理的含有很高漂白液成分的彩扩漂定液。
5、残留废液银含量可达到0.02克/升,经过后续环保处理后,可以将废液银含量降
至0.2ppm以下,满足最为严格的欧洲排放标准。
6、运行实现微机全自动化控制,无需专人看管,耗能低。
7、设备体积小巧紧凑,占地面积少,处理量大,可达1500-1800升/月。
8、本设备不需任何耗材和电解促进剂,运营及维护成本低。
技术参数:
1.提银后残留废液含银量低于0.01克\升
2.提银纯度:99.5%
3.尺寸360*280*800mm
4.工作电压:交流电220V
5.功率20w
6.处理量(月)30升—30,000升
-
电解法
以处理含铬废水为例,利用可溶性铁阳极,在直流电场作用下,产生亚铁离子,在酸性条件下使废水中以CrO厈和Cr2O崼存在的Cr6+离子还原成为Cr3+离子,随着电解过程中废水pH值升高,形成Cr(OH)3沉淀。采用不同材料的阳极可处理含有其他各种金属离子的废水。电解法操作管理简单,除能够处理镀铬漂洗水外,还可以处理钝化、阳极化、磷化等漂洗水,并有成套设备;但消耗钢材、电能较多,对产生的污泥还没有妥善的处理方法。
离子交换法
利用离子交换树脂活性基团上的可交换离子(H+、Na+、OH-等),去除废水中的阳、阴离子。此法处理电镀废水不仅可回用水,还可回收金属离子溶液。这种方法已用于处理含有金、镍、铜、镉、铬等废水。人工合成的专门用于处理电镀废水的弱酸、弱碱大孔树脂,可分别用于去除铬、镍和铜,以及一些金属的氰化络合阴离子(见废水离子交换处理法)。一般说来,离子交换法初次投资较大,操作管理水平要求较高,但处理效果稳定,由于能回用金属和水,是当前电镀废水实现闭路循环的主要治理方法之一。存在的主要问题是再生废液会有钠、铁、氯根等杂质离子不能直接回用于镀槽中,排入环境会造成污染。
膜分离法
利用半透膜或离子交换膜等膜材料,在外加推动力下,使废水中的溶解物和水分离浓缩,以净化废水。在膜分离法中,反渗透法用于含镍、含镉废水的浓缩处理已应用于生产。隔膜电解法用于再生镀铬废液。扩散渗析法可用于酸液回收。膜分离方法成本较高。
蒸发浓缩法 利用热源和蒸发器在常压或负压下直接浓缩废水。用这种方法处理高浓度废水比较经济,常同三级逆流漂洗、气-水喷淋,或同离子交换法联合使用。生产中广泛采用钛管薄膜蒸发器和蒸发釜来浓缩含铬废水、含氰废水等,也是闭路循环的主要处理流程之一。
展望电镀废水处理技术的发展前景,首先是压缩水量,普遍推广逆流漂洗和喷淋技术;其次,对化学法产生的污泥和离子交换再生废液进行综合利用,以及研制适用于处理电镀废水的各种优质树脂和膜,以及进一步研究和完善闭路循环系统,以实现资源的充分利用。
⑵ 污染的水净化原理是什么
也许我的回答不能令你满意,但是我用心回答了希望能帮到你,起到作用,让你采纳满意……: 污水净化的原理。人们从自然界的水体自净过程中受到启发,认识到经过微生物、特别是细菌的作用,使水体中的污染物得到降解,然后通过水生生态系统中的食物链,有时细菌受到限制,进而使水达到净化。所以,废水中的生物处理实际上是水体的生物自净原理在水污染治理中的应用,也可以说是模拟天然水体自净作用的一种生物工程。
利用这一原理来净化污水,所要投加的人力、物力比其他方法要少得多。在废水生物处理的人工生态系统中,物质的迁移转化效率之高是任何天然的或农业生态系统所不能比拟的。例如,一个普通的活性污泥厂,每天每平米曝气池能转换1~2kg干有机物,他比一个高产的森林中所发生的矿化作用效率要高好几百倍,该森林要达到同样的数量,需要一年时间。所以废水生物处理工厂是一个效率极高的集中进行矿化作用的场所。
与天然水体自净过程类似,在废水生物处理系统中,同样主要是通过微生物代谢产生的酶,来降解、转化有机物,将有机物最终转化为无害的二氧化碳和水,从而使废水得到净化。目前最常用的生物处理方法是活性污泥法赫和生物膜法。因此,以这两种处理方法中微生物的作用为例,来说明废水生物处理的作用机理。
2.1.活性污泥的定义和特性
2.1.1.活性污泥的定义
生物处理中的活性污泥,就是由细菌、原生动物、等微生物与悬浮物质、胶体物质混杂在一起形成的具有吸附分解有机物能力的絮状体。也可以说,活性污泥就是具有很强的吸附分解有机物能力的、充满微生物的污泥。生物膜则是附着在填料上呈薄膜状的活性污泥。
2.1.2.活性污泥的定义
活性污泥的絮体颗粒大小约为0.02~0.2mm,表面积为20~100cm2/ml,密度约为1.002~1.006。活性污泥与生物膜之所以能在净化污水中起重要作用,是因为他们具有以下特性:
1)具有很强的吸附能力
当废水与活性污泥一接触,首先发生的就是活性污泥对废水中污染物质的吸附作用。据研究,生活铅、镍、锌等金属离子,大约30%~90%能被活性污泥通过吸附去除。
2)具有很强的分解、氧化有机物的能力
被活性污泥吸附的大分子有机物质,在微生物细胞分泌的胞外酶作用下,变成小分子有机物,然后透过细胞膜进入微生物细胞,这些被吸收的营养物质,再由胞内酶的作用,经过一系列生化途径而氧化为无机物并放出能量,这就是微生物的异化作用;与此同时,微生物又利用呼吸作用释放的能量,把氧化过程的一些中间产物转变为细胞物质,这就是微生物的同化作用。在此过程中,微生物不断繁殖,有机物不断地被氧化分解。
当活性污泥对有机物的吸附达到饱和后,通过微生物对有机物的氧化分解,除去了活性污泥所吸附和吸收的大量有机物,是污泥又重新呈现活性,恢复了它的吸附能力。
3)具有较长的食物链
在活性污泥和生物膜中,一般都能看到存在着“有机物→细菌→原生动物→微型后生动物”这样的食物链。因为有机物虽然能通过细菌等腐生营养性的微生物的作用而去除,但仅有他们的作用还难以达到处理的目标。也就是说,要达到处理目标,原生动物等动物性营养的生物对细菌的捕食作用是必不可少的。
⑶ 根据微生物生活时是否需要氧气,微生物可分为哪几类这样的分类在废水生物处理中有何重要意义
根据微生物生活时是否需要氧气,微生物可分为:
(1)好氧微生物
必须在有氧气的环境下生存,没有氧气就会死亡,
(2)厌氧微生物
必须在无氧气的环境下生存,
厌氧生物缺乏超氧化物歧化酶及过氧化氢酶兼性厌氧生物,当暴露于有氧气的环境之下,厌氧生物会死亡。
(3)兼性厌氧生物
可以在有氧的环境中,利用当中的氧气进行有氧呼吸。但当在没有氧气的环境下,它们会进行发酵,则进行无氧呼吸。
废水生物处理技术常采用的方法有厌氧生物处理法、活性污泥法、生物膜法、氧化塘法。
(1)厌氧生物处理法
此法主要用于处理污水中的沉淀污泥,又称污泥消化,也用于处理高浓度的有机废水。这种方法是在厌氧细菌或兼性细菌的作用下将污泥中的有机物分解,最后产生甲烷和二氧化碳等气体,这些气体是有经济价值的能源。
厌氧生物处理过程分为3个阶段:第一阶段水解酸化,在水解酶的催化下,将复杂的多糖类水解为单糖类,将蛋白质水解为氨基酸,并将脂肪水解为甘油和脂肪酸;第二阶段产酸,在产酸菌的作用下将第1阶段的产物进一步降解为比较简单的挥发性有机酸等,如 乙酸、丙酸、丁酸等挥发性有机酸,以及醇类、醛类等,同时生成二氧化碳和新的微生物细胞;第三阶段产甲烷,在甲烷菌的作用下将第2阶段产生的挥发酸转化成甲烷和二氧化碳。处理后的污泥所含致病菌大大减少,臭味显著减弱,肥分变成速效 的,体积缩小,易于处置。
(2)活性污泥法
活性污泥法是一种应用最广、工艺比较成熟的废水生物处理技术。它利用含有好氧微生物的活性污泥,在通气条件下,使污水净化的生物学方法。根据曝气方式的不同。分为普通曝气法、完 全混合曝气法、逐步曝气法、旋流式曝气法和纯氧曝气法。活性污泥法不仅用于处理生活污水、而且在印染、炼油、石油化工、农药、造纸和炸药等许多工业废水处理中,都取得很好的净化效果
活性污泥中的微生物以细菌为主,还包括真菌、藻 类、原生动物等。此法最大的弱点是产生大量的剩余污泥,剩余污泥已成为令人头疼的难以解决的疑难问题,研究开发从源头上不产生或少产生污泥的污水处理技术成为研究的热点。
(3)生物膜法
生物膜法和活性污泥法一样都是利用微生物来去除废水中有机物的方法。生物膜是微生物高度密集的物质,是由好氧菌、厌氧菌、兼性菌、真菌、原生动物等组成的生态系统,主要用于去除废水中呈溶解的和胶体状有机污染物
根据不同的理装置,又分为生物滤池法、生物转盘法、生物接触氧化池法、流化床生物膜法、悬浮颖粒生物膜法等。它广泛应用于石油、印染、造纸、农药、食品等工业废水的处理。它具有不存在污泥膨胀问题;对废水水质、水量的变化有较好的适应性;剩余污泥量少等优点。
(4)氧化塘法
又称生物塘法或稳定塘法,是利用一些适宜的自然池塘或人工池塘,由于污水在塘内停留的时间较长,通过水中的微生物代谢活动可以将有机物降解,从而使污水得到净化的一种方法。在氧化塘中,废水中的有机物主要是通过有机菌藻 共生作用去除的
氧化塘中同时可以进行好氧和厌氧性分解作用和光合作用,3种作用互相影响。氧化塘的效率较低,并需要较大的空间位置,氧化有机物所需的氧气来源常不足,引起氧化作用不完全,因而常常产生较大的臭味。由于它是一个开放系统,所以它的处理效率受季节温度波动的影响很大,这种处理系统只能在温暖的地方使用。
参见
http://..com/link?url=jnkv6O--LbLkHrfLx_3bR5MepWrp7tRJpK
http://ke..com/view/4112072.htm?fr=aladdin
⑷ 微生物技术处理城乡污水具有哪些优势
生物处理是利用自然环境中的微生物将废水中的有机物和一些无机毒物(如氰化物、硫化物)氧化分解,转化为稳定无害的无机物的废水处理方法。污水生物处理是一种基于环境自净的人工强化技术。其意义在于创造有利于微生物生长繁殖的良好环境,增强微生物的代谢功能,促进微生物的增殖,加速有机物的无机化,促进污水净化的进程。该方法具有投资少、效果好、运行费用低等优点。
固定化微生物技术是一种利用化学或物理手段将游离细胞或酶定位在有限区域内,使其保持活性并可重复使用的方法。起初主要用于发酵生产。20世纪70年代末,它被用于水处理领域。近年来,它已成为世界各国学者的研究热点。固定化微生物技术克服了生物细胞太小、难以从水溶液中分离、容易造成二次污染的缺点,保持了高效、稳定性强、能够纯化和保持高效菌株的优点,在废水处理领域具有广阔的应用前景。
⑸ 废水的好氧生物处理与厌氧生物处理分别包括哪些过程及其影响因素
好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法.优点有反应速度较快,废水停留时间较短,故处理构筑物容积较小;处理过程中散发的臭气较少;对能降解有机物分解完全等.缺点有对难降解有机物去除率低、污泥量较厌氧处理多、运行费用较高等.
厌氧生物处理是有机物在无氧的条件下,借助转性厌氧菌和兼性厌氧菌的作用下,将大部分的有机物转化为甲烷等简单小分子有机物与无机物,从而使污水得到净化.优点有有机物去除率高、污泥量少、运行费用少等.缺点有废水停留时间较长、有机物分解不完全、臭气产生多等.
影响因素:
营养物质。甲烷菌对硫化氢具有最佳需要量有时需补充某些必需的特殊营养元素,如除氮、磷、硫等,以及铁、镍、锌、钴、钼等可提高某些系统酶活性的微量元素。甲烷菌对硫化物和磷有专性需要,而铁、镍、锌、钴、钼等对甲烷菌有激活作用。
氧化还原电位。氧化还原电位可以表示水中的含氧浓度,在培养甲烷菌的初期,氧化还原电位要不过高。
碱度。废水的碳酸氢盐所形成的碱度对pH值的变化有缓冲作用,如果碱度不足,就需要投加碳酸氢钠和石灰等碱剂来保证反应器内的碱度适中。
有毒物质。重金属在很低的浓度条件下就会影响厌氧消化速率,硫化物、氨氮、氯代有机物及某些人工合成有机物的含量超过一定值后,也会对厌氧微生物产生不同程度的抑制,使厌氧消化过程受到影响甚至破坏。另外,厌氧发酵过程的产物和中间产物(如挥发性有机酸、氢离子浓度等)也会对厌氧发酵过程本身产生抑制作用。
水力停留时间。水力停留时间对于厌氧工艺的影响主要是通过上升流速来表现出来的。一方面,较高的水流速度可以提高污水系统内进水区的扰动性,从而增加生物污泥与进水有机物之间的接触,提高有机物的去除率。另一方面,为了维持系统中,能拥有足够多的污泥,上升流速又不能超过一定限值更多水处理药剂至至cl39/望采纳。
⑹ 跪求:在污水处理中,微生物的种类和作用.务必详细阿!
污水具备微生物生长繁殖的条件,因而微生物能从污水中获取养分,同时降解和利用有害物质,从而使污水得到净化。因此微生物可在污水净化和治理中得到广泛应用,造福人类。 微生物能降解和转化污染物主要是因为微生物具有以下几个特点:个体微小,比表面积大,代谢速率快;种类繁多,分布广泛,代谢类型多样;具有多种降解酶;繁殖快,易变异,适应性强;共代谢作用等。 利用微生物处理污水实际就是通过微生物的新陈代谢活动,将污水中的有机物分解,从而达到净化污水的目的.微生物能从污水中摄取糖,蛋白质,脂肪,淀粉及其它低分子化合物。微生物新陈代谢类型有需氧型和厌氧型两种,因此,净化方法分为好氧净化和厌氧净化.
1、好氧净化 氧存在条件下,许多好氧微生物通过分解代谢、合成代谢和物质矿物化,在把有机物氧化分解成CO2和H2O等过程中,获寻C源、N源、P源、S和能量。污水的微生物好氧净化就是模拟上述原理,把微生物置于一定的构筑物内通气培养,高效率净化污水的方法。 2、厌氧净化 微生物在严格厌氧条件下,有机物发酵或消化过程中,大部分有机物被解生成H2、CO2、H2S和CH4等气体。污水的生物厌氧净化就是根据污水经厌氧发酵后既到净化,又获得了生物能源CH4的原理。微物细胞能量转移的电子受体,由好氧条件下分子氧改变为厌氧条件下的有机物。在厌氧件下,不溶于水而难分解的大分子有机污物,被微生物的胞外酶降解为可溶性物质,再由产甲烷厌氧细菌和产氢细菌降解成低分子有酸类和醇类、并放出H2和CO2;有机酸类和类经产甲烷菌降解成H2、CO2和CH4。甲烷菌还可利用H2还原CO2,形成CH4。
微生物净化过程: Ⅰ.有机污染物的浓度由高变低 Ⅱ.异养细菌迅速氧化分解有机污染物而大量繁殖,然后是以细菌为食料的原生动物出现数量高峰,再后是由于有机物矿化,利于藻类的生长,而出现藻类的生长高峰。 Ⅲ.溶解氧浓度随着有机物被微生物氧化分解而大量消耗,很快降到最低点,随后,由于有机物的无机化和藻类的光合作用及其他好氧微生物数量的下降,溶解氧又恢复到原来水平。 这样,在离开污染源相当的距离之后,水中的微生物数量,有机物,无机物的含量,也都下降到最低点。于是,水体恢复到原来的状态。 微生物处理优点:微生物具有来源广,易培养,繁殖快,对环境适应性强,易变异的特征在生产上较容易的采集菌种进行培养繁殖,并在特定条件下进行驯化,使之适应不同的水质条件,从而通过微生物的新陈代谢使有机物无机化。加之微生物的生存条件温和,新陈代谢时不需要高温高压,它是不需要投加催化剂的.生物法具有废水处理量大、处理范围广、运行费用相对较低,所要投入的人力,物力比其他方法要少的多。在污水生物处理的人工生态系统中,物质的迁移转化效率之高是任何天然的或农业生态系统所不能比拟的。 三.污水中微生物种类变化与净化的关系 污水性质和污染程度不同,微生物种类和数量就会有很大差别。在处理系统中,好氧微生物的优势种群组成和数量也相应的发生变化。例如,当含纤维素较多的废水进入反应系统,则纤维素分解菌就会大量繁殖,当蛋白质大量进入该系统,就会使微生物群落中的氨化菌种群占优势。 原生动物中有的种类及数量对水质因素(如氧溶量、pH值等)的变化较敏感,故可以作为鉴定污水污染程度的指示生物。如草履虫、小口钟虫、肾状豆形虫、板壳虫等大量出现于受重污染和有机物很多的水中。在中度污染和有机污物较多的水中,原生动物种类及数量最多。水清澈有机污物又很少的则种类也少。污水中原生动物的种类和数量与净化处理的效果有着密切关系,因此原生动物可以作为净化情况的指示生物,可由它们对净化处理效果作出预报。一般说来,游动鞭毛虫类或自由生活的纤毛虫类占较大优势时,往往说明净化效果较差,或废水处于培育活性污泥初期。当发现有固着纤毛虫类时,活性污泥已经形成。轮虫有自净作用。如活性污泥中有大量轮虫和多种纤毛虫出现,说明有机污物含量很少,净化度较高,污水处理效果好。水蚯蚓对污水也有自净作用,其种类与数量随污染的减轻而减少。在净化效果较好的污水中,还会出现线虫、颤蚯蚓等后生动物。
⑺ 在污水处理生化曝气阶段,有的说加一种生物酶能降低COD,这种生物酶是什么呢
生化曝气抄过程本身就是利用微生物袭酶对有机污染物进行讲解从而降低COD的过程,有一些添加剂能够改善微生物的营养状况、增加其活力从而提高处理效率,人工提纯的生物酶道理上也属于这些添加剂的一种,大约是人工纯化的胞外酶,但是酶具有很强的针对性,所以如果存在这样的添加剂,也可能要看具体的水质情况,by the way,一般工程上对于生活废水极少需要采用这样的强化措施。
⑻ 废水生物处理机理是什么
废水生物处理大概包括活性污泥法和生物膜法。其本质是人工强化自专然的微生物降解有属机废物的过程。废水生物处理过程,是经人工培育驯化得到的微生物群体,对废水中的有机物产生吸附并把有机物当作食物进行消化分解,这样微生物群体得到持续生存,同时污水水质得到净化。
⑼ 酶的应用
酶在生产和生活中的应用
自19世纪末德国生物学家毕希纳(Edward
Buchner)证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶的名称以来,人类已经发现并鉴定出3000多酶。酶作为一种催化剂,已被广泛地应用于轻工业的各个生产领域。近几十年来,随着酶工程的迅猛发展,酶在生物工程、生物传感器、环保、医药等方面的应用也日益扩大,可以说酶已成为国民经济中不可缺少的一部分,现实生活中,人们的衣、食、住、行及其他方面的新技术几乎都离不开酶。
常见的酶在生产和生活中的应用
洗涤剂工业:
(加酶洗衣粉等)碱性蛋白酶类
易于洗去衣物上的血渍、奶渍等污渍,加酶洗衣粉不能用于丝、毛等天然蛋白质纤维类织品的洗涤。
淀粉酶类
餐厅洗碗机的洗涤剂,用于去除难溶的淀粉残迹等
烘烤食品:
真菌产生的a一淀粉酶
催化淀粉降解成可被酵母利用的糖,面包等食品制作等
蛋白酶类(饼干松化剂)
制作饼干过程中,水解面粉中的蛋白质;乳制品生产中,水解乳清蛋白。有利于食品中蛋白类营养的消化吸收。
酿酒工业:
麦芽中的淀粉酶、蛋白酶、葡聚糖酶。
将酿酒原料淀粉和蛋白质降解成能被酵母利用的单糖、氨基酸和肽,从而提高乙醇的产量。
β一葡聚糖酶
分解β-葡聚糖,降低麦汁粘度,加快麦汁过滤速度,避免因β-葡聚糖引起的啤酒混浊。
木瓜蛋白酶
去除啤酒储存过程中生成的混沌物
肉类烹饪:
木瓜蛋白酶(嫩肉粉)菠萝蛋白酶
分解肉的胶原蛋白,使肉类嫩滑。木瓜蛋白酶的最适宜温度为600C,适宜pH7-7.5,不要在高温和酸性环境下使用。
乳制品工业:
凝乳酶
奶酪生产的凝结剂,并可用于分解蛋白质。
乳糖酶
降解乳糖为葡萄糖和半乳糖,获得没有乳糖的牛乳制品,有利于乳品的消化吸收:
果汁生产:
果胶酶、纤维素酶。
处理果肉,提高出汁率、缩短出汁时间、提高果汁质量。
制糖工业:
淀粉酶等
将淀粉转化为葡萄糖及各类糖浆
葡萄糖异构酶
用于将葡萄糖转化为甜度高的果糖,生产高果糖浆。
纺织工业:
淀粉酶
广泛地应用于纺织品的褪浆,其中细菌淀粉酶能忍受100~110℃的高温操作条件。
纤维素酶
代替沙石洗工艺处理制作牛仔服的棉布,提高牛仔服质量。
制革工业:
胰蛋白酶类
除去毛皮中特定蛋白质使皮革软化,也可用于皮革脱毛。
医疗和药品工业:
胰蛋白酶
用于促进伤口愈合和溶解血凝块,还可用于去除坏死组织,抑制污染微生物的繁殖;
青霉素酰化酶
将易形成抗药性的青霉素改造成杀菌力更强的氨苄青霉素
L一天冬酰胺酶
用于治疗癌症,剥夺癌细胞生长所需的营养。
溶菌酶(黏多糖溶解酶)
破坏革兰氏阳性菌细胞壁而杀死细菌。抗菌、止血消肿、加快伤口愈合,也用于治疗鼻炎、咽喉炎、口腔溃疡等。
酪氨酸酶
生产(神经递质),多巴用于治疗帕金森综合症。
尿激酶、链激酶
溶血栓剂,治疗血栓病。
蛋白酶等(多酶片)
治疗消化不良,许多酶在医疗中还可作为诊断试剂。