㈠ 铁碳微电解填料处理重金属酸性废水反应原理
微电解技术是目前处理高浓度有机废水的一种理想工艺, 又称内电解法。 它是在不通电的情况下,利用填充在废水中的微电解材料自身产生1.2V电位差对废水进行电解处理,以达到降解有机污染物的目的。当 系统通水后,设备内 会形成无数的微电池系统 , 在其作用空间构成一个电场。 在处理过程中产生的新生态 [H] 、 Fe2 + 等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的 Fe2 + 进一步氧化成 Fe3 + ,它们的水合物具有较强的吸附 - 絮凝活性,特别是在加碱调 pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的吸附能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量吸附水中分散的微小颗粒,金属粒子及有机大分子。 其工作原理基于电化学、氧化 - 还原、物理吸附以及絮凝沉淀的共同作用对废水进行处理。该法具有适用范围广、处理效果好、成本低廉、操作维护方便,不需消耗电力资源等优点。该工艺用于难降解高浓度废水的处理可大幅度地降低 COD 和色度,提高废水的可生化性,同时可对氨氮的脱除具有很好的效果。 2 、拓步环保TPFC铁碳填料技术上的亮点: (1) 反应速率快,一般工...
铁碳微电解填料处理重金属酸性废水反应原理
请详细的描叙问题
㈡ 有机废水的简介
有机废水一般是指由造纸、皮革及食品等行业排出的在2000mg/L以上废水。这些废水中含版有大量的碳权水化合物、脂肪、蛋白、纤维素等有机物,如果直接排放,会造成严重污染。有机废水按其性质来源可分为三大类:
(1)易于生物降解有机废水;
(2)有机物可以降解,但含有害物质的废水;
(3)难生物降解的和有害的有机废水。 有机废水水质特点:
1、有机物浓度高。COD一般在2000mg/以上,有的甚至高达几万乃至几十万mg/L,相对而言,BOD较低,很多废水BOD与COD的比值小于0.3。
2、成分复杂。含有毒性物质废水中有机物以芳香族化合物和杂环化合物居,还多含有硫化物、氮化物、重金属和有毒有机物。
3、 色度高,有异味。有些废水散发出刺鼻恶臭,给周围环境造成不良影响。
4、 具有强酸强碱性。工业产生的有机废水中,酸、碱类众多,往往具有强酸或强碱性。
5、不易生物降解有机废水中所含的有机污染物结构复杂,如蔡环是由10个碳原子组成的离域共扼键,结构相当稳定,难以降解。这类废水中大多数的BODSC/OD极低,生化性差,且对微生物有毒性,难以用一般的生化方法处理。
㈢ 都说铁碳微电解能处理高浓度有机废水,它是怎么样的原理呢
铁碳形成原电池,电解产生活泼氧,能够氧化有机物,起到开环、断键的作用,使高分子有机物变小,使之易于吸附除去。
㈣ 废水生物处理机理是什么
废水生物处理大概包括活性污泥法和生物膜法。其本质是人工强化自专然的微生物降解有属机废物的过程。废水生物处理过程,是经人工培育驯化得到的微生物群体,对废水中的有机物产生吸附并把有机物当作食物进行消化分解,这样微生物群体得到持续生存,同时污水水质得到净化。
㈤ 废水厌氧生物处理的原理
在厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨等。在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统。对高分子有机物的厌氧过程的叙述,有助于我们了解这一过程的基本内容。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段
水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。它们在第一阶段被细菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白质酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。多种因素如温度、有机物的组成、水解产物的浓度等可能影响水解的速度与水解的程度。水解速度的可由以下动力学方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物浓度(g/L);
ρo———非溶解性底物的初始浓度(g/L);
Kh——水解常数(d^-1);
T——停留时间(d)
(2)发酵(或酸化)阶段
发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
在这一阶段,上述小分子的化合物发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。发酵细菌绝大多数是严格厌氧菌,但通常有约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够起到保护像甲烷菌这样的严格厌氧菌免受氧的损害与抑制。这一阶段的主要产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等,产物的组成取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未酸化废水厌氧处理时产生更多的剩余污泥。
在厌氧降解过程中,酸化细菌对酸的耐受力必须加以考虑。酸化过程pH下降到4时能可以进行。但是产甲烷过程pH值的范围在6.5~7.5之间,因此pH值的下降将会减少甲烷的生成和氢的消耗,并进一步引起酸化末端产物组成的改变。
(3)产乙酸阶段
在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
其某些反应式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG’0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG’0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG’0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG’0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG’0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG’0=-70.3KJ/MOL
(4)甲烷阶段
这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
甲烷细菌将乙酸、乙酸盐、二氧化碳和氢气等转化为甲烷的过程有两种生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3。
最主要的产甲烷过程反应有:
CH3COO-+H2O->CH4+HCO3- ΔG’0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG’0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG’0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG’0=-32.9KJ/MOL
在甲烷的形成过程中,主要的中间产物是甲基辅酶M(CH3-S-CH2-SO3-)。
需要指出的是:一些书把厌氧消化过程分为三个阶段,把第一、第二阶段合成为一个阶段,称为水解酸化阶段。在这里我们则认为分为四个阶段能更清楚反应厌氧消化过程。
上述四个阶段的反应速度依废水的性质而异,在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中,水解易成为速度限制步骤;简单的糖类、淀粉、氨基酸和一般蛋白质均能被微生物迅速分解,对含这类有机物的废水,产甲烷易成为限速阶段。虽然厌氧消化过程可分为以上四个过程,但是在厌氧反应器中,四个阶段是同时进行的,并保持某种程度的动态平衡。该平衡一旦被pH值、温度、有机负荷等外加因素所破坏,则首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,甚至导致整个消化过程停滞。
㈥ 大家帮我回我一下吧1.曝气池法处理废水的原理及流程.2土地处理系统处理有机废水的原理
1、活性污泥曝气池法
利用悬浮生长的微生物絮体处理有机废水的一类好氧生物处理方法。
活性污泥,是指由好气性微生物(包括细菌、真菌、原生动物和后生动物)及其代谢和吸附的有机物、无机物所共同组成的微生物絮体。活性污泥法中,进行污染物降解过程的主体是活性污泥中的微生物。可溶性有机物能被细菌、真菌等作为营养物质直接利用分解,而不能作为微型动物的直接营养源。细菌等腐生性微生物起着主要作用。此外,还存在原生动物、微型后生动物等完全动物营养性的微生物。形成活性污泥絮状体的细菌。
活性污泥法的主要类型:
按废水和回流污泥的进入方式及其在曝气池中的混合方式:
推流式:若干狭长流槽,废水从一端进入,另一端流出,随水流的过程,底物降解,微生物增长。
完全混合式:废水进入曝气池后,在搅拌下立即与池内活性污泥混合液混合,使进水得到良好稀释,污泥与废水充分混合,最大限度承受废水水质变化冲击。
推流式活性污泥法
废水和回流污泥从曝气池一端同时进入反应系统,水流呈推流式。
包括四个单元:初沉池、曝气池、二沉池和污泥回流装置。
曝气池内,污染物浓度(F)与微生物的生物量(M)的比值F/M沿流程不断降低。
短时曝气法
在曝气方法上加以改进:加大进口的通气量,然后随有机物浓度的逐渐降低而相应的减少通气量。又称为渐减曝气法。
阶段曝气法
在普通推流式曝气法基础上,对进水点加以调整,使废水沿池长分若干点流入。
又称为多点进水法。优点:可以降低曝气池前端的耗氧速率畅户扳鞠殖角帮携爆毛,避免缺氧情况,提高了空气利用率和曝气池的工作能力。可以使曝气池体积缩小30%左右。
污水土地处理系统
利用土地以及其中的微生物和植物根系对污染物的净化能力来处理已经过预处理的污水或废水,同时利用其中的水分和肥分促进农作物、牧草或树木生长的工程设施。利用土地生态系统的自净能力净化污水。
流程你就按照推流式活性污泥法的流程写就行了
2、污水土地处理系统与污灌的区别:
土地处理系统对污水进行必要的预处理;
土地处理系统是按照全年连续运行的污水处理设施;
土地处理系统具备完整的工程系统并可以调控,底层防渗系统能有效控制污水对地下水可能造成的污染;
土地处理系统种植有利于污水处理的经济作物,一般不种植直接食用的农作物。
㈦ 废水电解处理法的化学反应原理
电解槽内装有极板,一般用普通钢板制成。极板取适当间距,以保证电能消耗较少而又便于安装、运行和维修。电解槽按极板联接电源方式分单极性和双极性两种。双极性电极电解槽的特点是中间电极靠静电感应产生双极性。这种电解槽较单极性电极电解槽的电极连接简单,运行安全,耗电量显著减少。阳极与整流器阳极相联接,阴极与整流器阴极相联接。通电后,在外电场作用下,阳极失去电子发生氧化反应,阴极获得电子发生还原反应。废水流经电解槽,作 为电解液,在阳极和阴极分别发生氧化和还原反应,有害物质被去除。这种直接在电极上的氧化或还原反应称为初级反应。以含氰废水为例,它在阳极表面上的电化学氧化过程为:
CN-+2OH--2e─→CNO-+H2O
2CNO-+4OH--6e─→2CO2↑+N2↑+2H2O氰被转化为无毒而稳定的无机物。
电解处理废水也可采用间接氧化和间接还原方式,即利用电极氧化和还原产物与废水中的有害物质发生化学反应,生成不溶于水的沉淀物,以分离除去有害物质。电镀含铬废水的电解处理过程是:
铁阳极溶解:
Fe-2e─→Fe2+
6Fe2++Cr2O崼+14H+─→6Fe3++2Cr3++7H2O
CrO厈+3Fe2++8H+─→Cr3++3Fe3++4H2O
在上述电解过程中,废水中大量氢离子被消耗,氢氧根离子浓度增加,废水从酸性过渡到碱性,进而生成氢氧化铬和氢氧化铁等物质沉淀下来:
Cr3++3OH-─→Cr(OH)3↓
Fe3++3OH-─→Fe(OH)3↓
把沉淀物质同水分离,达到去除铬离子,净化废水的目的。以上反应式中除铁阳极发生阳极溶解是初级反应外,其他为次级反应。
在上述电解过程中,除初级反应和次级反应的处理废水作用外,还因电解水的作用,分别在阴极和阳极产生氢气和氧气,这两种初生态【H】和【O】能对废水中污染物起化学还原和氧化作用,并能产生细小的气泡,使絮凝物或油分附在气泡上浮升至液面以利于排除。这种方法称为电浮选。此外,由于铁或铝制金属阳极溶解的离子进一步水解,可以成为氢氧化亚铁或氢氧化铝等不溶于水的金属氢氧化物活性混凝剂。这种物质呈多孔性凝胶结构,具有表面电荷作用和较强的吸附作用,能对废水中的有机或无机污染物起抱合凝聚作用,使污染物相互凝聚而从废水中分离出来。这种方法称为电絮凝处理。
由此可见,废水电解处理包括电极表面上电化学作用、间接氧化和间接还原、电浮选和电絮凝等过程,分别以不同的作用去除废水中的污染物。