㈠ 哪些废水可以采用生物处理法处理
有机污染物含量占比较高的工业废水. 如造纸,皮革, 食品等行业的废水; 而如硅酸盐, 有色金属等行业的工业废水就不适于用生物处理法处理, 因为其废水中的主要污染物为无机物.
㈡ 什么是可生化性
可生化性是指污水中污染物被微生物降解的难易程度。污水的可生化性取决内于污水的水质,即污水所含污染物容的性质。若污水的营养比例适宜,污染物易被生物降解,有毒物质含量低,则污水的可生化性强。适于微生物生长的污水可生化性强,不适于微生物生长的污水可生化性差。
(2)废水可生物处理评价扩展阅读:
污水的可生化性常用BOD5或COD的比值来评价。5日生化需氧量BOD5粗略代表可生物降解的还原性物质的含量(主要是有机物),化学需氧量COD粗略代表还原性物质(主要为有机物)的总量。
由BOD5/COD=1/m*CODB/COD(CODB为可生物降解的还原性物质含量)知,BOD5/COD为还原性物质中可生物降解部分所占的比例(CODB/COD)与生物降解速度(1/m)的乘积,能粗略代表还原性物质可生物降解的程度和速度,即污水的可生化性。
㈢ 速分生物技术处理污水效果怎么样
该项目所采用的处理工艺的核心部分,即速分生化处理技术,为北京科净源科技股份有限公司自主研发的专利技术,近年来取得了多项荣誉,并成功应用于多处国家级重点工程:
(1)几项专利技术名称与专利号;
“一种用于污水净化装置的速分生化球”——ZL 02253989.1 “速分生物污水处理系统”——ZL 2005201450346 “速分生物污水处理方法及系统”——ZL 200510132150.9
“用于水体生物净化处理的载体生化球及生物净化床”——ZL 200620158684.9
“速分生物处理装置”——ZL 200720169890.4
“用于污水净化装置的速分生化球”——ZL 200720103339.X “景观水环境仿生强化净化方法”——ZL 200710100171.1 “一种用于污水净化装置的填料”——ZL 200810113599.4 “一种用于污水净化的速分生化球”——ZL 200820108330.2 (2)速分生化处理系统及装置通过了国家级科学技术成果鉴定; (3)荣获国家环保部颁发的2007年环境保护科学技术二等奖; (4)速分生化处理工艺是国家建筑标准设计图集《建筑中水处理工程(二)》(08SS703-2)推荐使用的污水生化处理工艺;
(5)与大学合作完成了速分工艺的数学模型分析;
(6)应用于奥运会主会场——森林公园15座污水处理项目;
(7)应用于残奥中心污水处理项目;
(8)应用于亚洲博鳌论坛北京文化坛污水处理项目;
(9)应用于全国三个生态县之一 ——北京密云县污水处理项目。
1、速分生物处理技术的提出
1.1目前污水处理厂设计运行中存在的问题
国内外大部分污废水的处理均采用以生物处理为主的工艺技术,原因在于生物处理工艺具有运行费用低,处理程度高的优势,但同时生物法也存在着许多迫切需要解决的重大问题。
1.1.1气味问题
由于污水处理过程中会产生不良气味,导致污水处理厂建设一直遵循“宜远不宜近”的原则,大多远离城镇居民生活区,继而造成管网投资庞大,回用成本高。为了解决这一问题,需要从工艺原理上解决气味问题,减少产生臭气的环节。 1.1.2污泥问题
生物法往往伴随着剩余污泥的处理问题,造成污水处理厂建设运行过程中,大量剩余污泥处理困难,增加投资、处理成本。为了解决这一问题,需要深入研究污泥减量化问题,从根本上降低污泥处理费用,同时可以改善污水处理厂周边的环境。 1.1.3建设规模与实际负荷差距问题
污水处理厂建设,多执行“宜大不宜小”的原则,造成建设规模与实际负荷的巨大偏差,运行成本高,无法形成良性循环。由此,需研制一种启动速度快,不需接种、驯化,可适应模块化运行的生物处理工艺。再将污水处理构筑物建设成模块化的单元,根据污水量的变化决定模块的建设数量和运行数量。 1.1.4微污染水的治理难
地表水富营养化程度日趋严重,但其水质指标较生活污水要低很多,造成常规污水生物处理工艺很难适应,处理效率低。而化学氧化等化学、物理深度处理技术,处理成本之高,很难大规模应用。因此需要研发出处理程度高、运行成本低的适用于微污染水体的处理技术和工艺。
1.1.5运行成本问题
各种化学、生物、膜处理工艺的运行成本问题,一直以来制约其推广应用,特别是在我国目前经济状况下,很多处理设施建得起,用不起。为解决这一问题,只能从源头的处理工艺上,降低能耗,解决运行费用高的问题。 1.1.6运行操作复杂问题
常规生物处理工艺,流程长,运行过程中其维护、操作均需较强的专业性,造成许多污水处理设施不能长期稳定运行。因此,需从工艺上解决操作难的问题,推出“傻瓜工艺”。
1.2速分生化处理工艺的技术指标
COD去除率85%以上,BOD去除率90%以上,NH3-N去除率90%以上,总氮去除率85%以上;
㈣ 通过什么指标来判断废水是否可以采用生物法处理
有BOD和COD的比值,大于0.3可生化性好,可以使用生物化学法,反之,不可以
㈤ 废水可生化性问题的实质是什么
在废水中存在着各种有机物和无机物,大部分为有机物,部分为无机物被微生物作为营养加以利用,使微生物获得需要的能量和合成新的细胞,这些被微生物利用的物质称为底物。底物降解在污水处理中具有十分重要的意义,如果污水中的底物是可降解的,说明该污水采用生物处理法进行无害化处理是可行的。生物处理法按净化原理可分为生物膜法和活性污泥法,由于活性污泥法研究十分充分,有大量的经验和数据,运行管理方便,亦较经济,因而在城市污水处理中普遍采用物理法与活性污泥法相结合的方法,故人们首先要考虑采用活性污泥法处理污水的可行性,简称污水的可生化性。
评价污水处理的可生化性有很多方法,最简单的方法是用BOD5、CODcr之间关系简单评价。BOD5与CODcr是污水处理中最基本的指标,BOD简称生化需氧量,可间接地反映能为微生物分解的有机物的总量,BOD5为5天的生化需氧量;COD简称化学需氧量,它是在高温有机催化剂及强酸环境下,强氧化剂氧化有机物所消耗的氧的量,所用的氧化剂为重铬酸钾,记作CODcr由于这个反应不受有机物是否能为微生物分解的影响,能够氧化微生物无法分解氧化的有机物,所以CODcr比BOD5值高。
㈥ 可生化处理的废水 BOD5/COD属于什么范围
传统观点认为BOD5/CODCr,即B/C比值体现了废水中可生物降解的有机污染物占有机污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微生物可降解性。目前普遍认为,BOD/COD<0.3的废水属于难生物降解废水,在进行必要的预处理之前不易采用好氧生物处理;而BOD/COD>0.3的废水属于可生物降解废水。该比值越高,表明废水采用好氧生物处理所达到的效果越好
㈦ 污水处理生物膜法的优缺点
污水处理生物膜法也是城市污水二级生物处理的一种常用方法,具有以下优点:
一是生物膜对污水水质、水量的变化有较强的适应性,管理方便,不会发生污泥膨胀。
二是微生物固着在载体表面、世代时间较长的微生物也能增殖,生物相对更为丰富、稳定,产生的剩余污泥少。三是能够处理低浓度的污水。
污水处理生物膜法的不足之处在于生物膜载体增加了系统的投资;载体材料的比表面积小,反应装置容积有限、空间效率低,在处理城市污水时处理效率比活性污泥法低;附着于固体表面的微生物量较难控制,操作伸缩性差;靠自然通风供氧,不如活性污泥供氧充足,容易产生厌氧。
㈧ 污水的可生化性怎么判断
用BOD/COD的比值来判断。
BOD/COD大于0.3时,一般认为该废水具有可生化性。
判定废水可生化性能有B/C值法:
B/C>0.58 完全可生物降解;
B/C=0.45~0.58 生物降解良好;
B/C=0.30-0.45 可生物降解;
B/C<0.3 难生物降解;
BOD测定方法使用五日生物需氧量测定法,COD测定使用重铬酸钾法。
还有一种是好氧呼吸参量法。通过测定COD、BOD等水质指标的变化以及呼吸代谢过程中的O2或CO₂含量(或消耗、生成速率)的变化来确定某种有机污染物(或废水)可生化性的判定方法。根据所采用的水质指标,主要可以分为:水质指标评价法、微生物呼吸曲线法、CO₂生成量测定法。
(8)废水可生物处理评价扩展阅读:
传统观点认为BOD5/CODCr,即B/C比值体现了废水中可生物降解的有机污染物占有机污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微生物可降解性。在一般情况下,BOD5/COD值愈大,说明废水可生物处理性愈好。
在各种有机污染指标中,总有机碳(TOC)、总需氧量(TOD)等指标与COD相比,能够更为快速地通过仪器测定,且测定过程更加可靠,可以更加准确地反映出废水中有机污染物的含量。
无论BOD/COD、BOD/TOD或者BOD/TOC,方法的主要原理都是通过测定可生物降解的有机物(BOD)占总有机物(COD、TOD或TOC)的比例来判定废水可生化性的。
微生物在降解污染物的过程中,在消耗废水中O2的同时会生成相应数量的CO2。因此,通过测定生化反应过程CO2的生成量,就可以判断污染物的可生物降解性。
常用的方法为斯特姆测定法,反应时间为28d,可以比较CO2的实际产量和理论产量来判定废水的可生化性,也可以利用CO2/DOC值来判定废水的可生化性。由于该种判定实验需采用特殊的仪器和方法,操作复杂,仅限于实验室研究使用,在实际生产中的应用还未见报道。
㈨ 废水的可生化性指标是如何规定的
一般考虑废水的B/C,如果在0.3以上,可认为可生物处理,如果低于0.2,基本可不用考虑生化处理,在0.2~0.3之间尝试如何提高B/C——水解酸化,高级氧化等。
(9)废水可生物处理评价扩展阅读:
模拟实验法是指直接通过模拟实际废水处理过程来判断废水生物处理可行性的方法。根据模拟过程与实际过程的近似程度,可以大致分为培养液测定法和模拟生化反应器法。
1、培养液测定法
培养液测定法又称摇床试验法,具体操作方法是:在一系列三角瓶内装入某种污染物(或废水)为碳源的培养液,加入适当N、P等营养物质,调节pH值,然后向瓶内接种一种或多种微生物(或经驯化的活性污泥)。
将三角瓶置于摇床上进行振荡,模拟实际好氧处理过程,在一定阶段内连续监测三角瓶内培养液物理外观(浓度、颜色、嗅味等)上的变化,微生物(菌种、生物量及生物相等)的变化以及培养液各项指标:pH、COD或某污染物浓度的变化。
2、模拟生化反应器法
模拟生化反应器法是在模型生化反应器(如曝气池模型)中进行的,通过在生化模型中模拟实际污水处理设施(如曝气池)的反应条件,如:MLSS浓度、温度、DO、F/M比等,来预测各种废水在污水处理设施中的去除效果,及其各种因素对生物处理的影响。
由于模拟实验法采用的微生物、废水与实际过程相同,而且生化反应条件也接近实际值,从水处理研究的角度来讲,相当于实际处理工艺的小试研究,各种实际出现的影响因素都可以在实验过程中体现,避免了其他判定方法在实验过程中出现的误差,且由于实验条件和反应空间更接近于实际情况,因此模拟实验法与培养液测定法相比,能够更准确地说明废水生物处理的可行性。
但正是由于该种判定方法针对性过强,各种废水间的测定结果没有可比性,因此不容易形成一套系统的理论,而且小试过程的判定结果在实际放大过程中也可能造成一定的误差。