导航:首页 > 污水知识 > 喷水织机废水中石油污染物浓度

喷水织机废水中石油污染物浓度

发布时间:2022-12-24 01:31:46

① 水质检测指标有哪些

水是生命之源,人类在生活和生产活动中都离不开水,生活饮用水水质的优劣与人类健康密切相关。随着社会经济发展、科学进步和人民生活水平的提高,人们对生活饮用水的水质要求不断提高,饮用水水质标准也相应地不断发展和完善。由于生活饮用水水质标准的制定与人们的生活习惯、文化、经济条件、科学技术发展水平、水资源及其水质现状等多种因素有关,不仅各国之间,而且同一国家的不同地区之间,对饮用水水质的要求都存在着差异

检测范围

污水纯水、海水、渔业水、泳池用水、中水、瓶装纯净水、饮用天然矿泉水、冷却水、农田灌溉水、景观用水、生活饮用水、地下水、锅炉水、地表水、工业用水、试验用水等。


水质常规指标

微生物指标(4项):总大肠菌群、大肠埃希氏菌、耐热大肠菌群、菌落总数

毒理指标(15项):砷、硒、四氯化碳、镉、氰化物、溴酸盐、铬、氟化物、甲醛、铅、硝酸盐、亚氯酸盐、汞、三氯甲烷、氯酸盐

感官性状和一般化学指标(17项):色度、铁、溶解性总固体、浑浊度、锰、总硬度、臭和味、铜、耗氧量、肉眼可见物、锌、挥发酚类、水溶液酸碱度、氯化物、阴离子合成洗涤剂、铝、硫酸盐

放射性指标(2项):总ɑ放射性、总β放射性

饮用水消毒剂指标(4项):氯气及游离氯制剂、臭氧、一氯胺、二氧化氯


检测指标

1、色度:饮用水的色度如大于15度时多数人即可察觉,大于30度时人感到厌恶。标准中规定饮用水的色度不应超过15度。

2、浑浊度:为水样光学性质的一种表达语,用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一,也是考核水处理设备净化效率和评价水处理技术状态的重要依据。浑浊度的降低就意味着水体中的有机物、细菌、病毒等微生物含量减少,这不仅可提高消毒杀菌效果,又利于降低卤化有机物的生成量。

3、臭和味:水臭的产生主要是有机物的存在,可能是生物活性增加的表现或工业污染所致。公共供水正常臭味的改变可能是原水水质改变或水处理不充分的信号。

4、肉眼可见物:主要指水中存在的、能以肉眼观察到的颗粒或其他悬浮物质。

5、余氯:余氯是指水经加氯消毒,接触一定时间后,余留在水中的氯量。在水中具有持续的杀菌能力可防止供水管道的自身污染,保证供水水质。

6、化学需氧量:是指化学氧化剂氧化水中有机污染物时所需氧量。化学耗氧量越高,表示水中有机污染物越多。水中有机污染物主要来源于生活污水或工业废水的排放、动植物腐烂分解后流入水体产生的。

7、细菌总数:水中含有的细菌,来源于空气、土壤、污水、垃圾和动植物的尸体,水中细菌的种类是多种多样的,其包括病原菌。我国规定饮用水的标准为1ml水中的细菌总数不超过100个。

8、总大肠菌群:是一个粪便污染的指标菌,从中检出的情况可以表示水中有否粪便污染及其污染程度。在水的净化过程中,通过消毒处理后,总大肠菌群指数如能达到饮用水标准的要求,说明其他病原体原菌也基本被杀灭。标准是在检测中不超过3个/L。

9、耐热大肠菌群:它比大肠菌群更贴切地反应食品受人和动物粪便污染的程度,也是水体粪便污染的指示菌

② 水质标准的石油类是包括什么

矿物油类化学物质,是各种烃类的混合物。石油类可以溶解态、乳化态和分散态存在于废水中。石油类进入水环境后,其含量超过0.1~0.4mg/L,即可在水面形成油膜,影响水体的复氧过程,造成水体缺氧,危害水生物的生活和有机污染物的好氧降解。

水体油类污染是海洋污染中最普遍、最严重的污染。石油是一种很复杂的自然的有机混合物,具有一定毒性。在极微量浓度下也可使鱼肉带有石油味。大量石油在海面形成油膜,会影响水中氧的补充和植物的光合作用。油污染会对自然环境产生多种复杂的影响。工业废水中的油类也可使地表水体遭受污染。

(2)喷水织机废水中石油污染物浓度扩展阅读:

一、主要来源

油类通过不同途径进入水体环境形成含油污水. 含油污水是一种量大、面广且危害严重的污水. 全世界每年有500 ~ 1 000 万T石油通过各种途径进入水体。按其来源可分为:自然来源( 约占8%) 和人类活动来源( 约92%) 。

自然来源主要海底、大陆架渗漏,含油沉积岩缺损等。人类活动来源主要有油轮事故和海上石油开采的泄漏与井喷事故,港口和船舶的作业含油污水排放、石油工业的废水及餐饮业、食品加工业、洗车业排放的含油废水等。

二、油类污染物对渔业的影响

石油污染破坏水体环境给渔业带来的损害是多方面的。首先是石油污染能破坏渔场,沾污鱼网、养殖器材和渔获物,水体污染可直接引起鱼类死亡,造成渔获量的直接减产。

其次表现为产值损失,油污染能使鱼虾类生物产生特殊的气味和味道,而且这些气味和味道无论采取怎样的加工方法都无法消除,因此可降低水产品的食用价值,严重影响其经济利用价值。当海水中的石油含量为0.01 mg/L 时,在24 h内即可使鱼、虾、贝类产生异味。

人们在食用受石油烃衍生出的致癌物质特别是多环芳烃污染的水产品时,这些致癌物质可通过食物链的传递危及人体的健康和安全。另外,水体石油污染还会造成相当大的社会和经济损失,如影响到旅游和娱乐。

③ 什么是石油类污染物

石油类污染物是指石油在开采、运输、装卸加工和使用过程中,由于泄漏和排放石油引内起的污染,主要发生容有海洋,石油漂浮在海面上,迅速扩散形成油漠,可通过扩散、蒸发、溶解、乳化、光降解以及生物降解和吸收等进行迁移,转化。

④ 污水中的含油量,都用什么分析方法

含油废水主要来自于石油,石化,钢铁,焦化,煤气站,机械加工回等工业部门。废水中的油污答染物,除了至少为1.1重量焦油的相对密度,小于1油物质的废水中的相对密度的其余部分通常是三种状态。 (1)浮动油滴尺寸大于100微米,从废水中容易地分离。 (2)分散的油。间10液滴直径100μm左右,肯浮在水面上。 (3)乳化油,液滴尺寸小于10微米,容易从废水分离。由于在工业部门中含油污水的浓度差排出大,如在炼油过程中产生的废水,中石油大约为1501000mg / L时,焦化约500废水焦油含量为800mg到/ L,废水排放气体站高达2000的焦油含量为3000mg / L。因此,含油废水处理的应先用隔油,浮油或重油回收,60%的处理效率,以80%的油在水中的约100至200毫克/ L,废水的乳化油和分散油更难以治疗,应该防止或减轻乳化。一种方法是要注意减少油浪费在制造过程中的乳化;第二,在此过程中,以最小化的次数,泵提升的废水,以免增加乳化程度。处理方法常用的浮选法和破乳。

⑤ 水资源受污染的情况

水是一种宝贵的自然资源。人类生活、工业生产、农业灌溉,都离不开水。一般说来,人类要维持生命,每人每天最少需要5升水,可以说,没有水人类就无法生存。
什么是水污染泥?在环境学领域,有一个重要名词叫“水体”,它包括我们平时所说的水,另外,还把水中的悬浮物、溶解物、水生生物和底泥都作为水体的组成部分来看。
水体一般是指海洋、湖泊、河流、沼泽、水库、地下水的总称;水体按类型可以分为海洋水体和陆地水体。陆地水体可分为河流、湖泊和地下水体。
在环境学领域中,区分“水”和“水体”的概念非常重要,例如重金属污染物,由于本身的重量,容易从水中转移到底泥中,水中的重金属含量一般并不高,若着眼于水,似未受到重金属污染,但从水体看,可能受到较严重的污染。所以,我们平时说的水污染准确说是水体污染,即指排入水体的污染物超过了水体的自净能力,破坏了水体原有的用途。所谓水体污染就是指水、底质(底泥)和水生生物的污染。
那么,水污染是怎么引起的呢?水体中的污染物,根据它们的性质,可以概括为下列几类:
1.病原体污染:生活污水、医院污水、畜禽饲养场污水等,常含有病原体,如病毒、病菌和寄生虫。这类污水如不经过适当的净化处理,流入水体后,即会通过各种渠道,引起痢疾、伤寒、传染性肝炎及血吸虫病等。
2.需氧性污染物:生活用水,造纸和食品工业污水中,含有蛋白质、油脂、碳水化合物、木质素等有机物。这类物质随污水进入水体后,在微生物对它们的分解过程中,需要消耗水体中的溶解氧,使水体含氧减少,从而影响鱼类和其它生物的生长繁殖。当水中的溶解氧耗尽后,水中的有机物即产生厌氧消化,生成甲烷、硫化氢等,使水体出现臭味,危害水生生物的生存。
3.植物营养污染物:造纸、皮革、食品、炼油、合成洗涤剂等工业污水和生活污水以及施用磷肥、氮肥的农田水,含有氮、磷、钾等营养物,如果大量的这类污水排入水体,使营养物质增多,引起藻类及其它浮游生物暴发性繁殖。这类物质多呈红色,称“赤潮生物”。赤潮生物的大量繁殖,会覆盖水面,附在鱿类肋上,使它们呼吸困难。死亡的赤潮生物被微生物分解,消耗掉水中的溶解氧。有些赤潮生物体内及其代替产物含有生物毒素,常常引起鱼贝类中毒死亡,并能通过食物链,危害人体健康。
4.石油污染物:多发生在海洋中,主要来自油船的事故泄露、海底采油、油船压舱水以及陆上炼油厂和生化工厂的废水。
5.剧毒污染物:主要是重金属、氰化物、氟化物和难分解的有机污染物,它们大都来自矿山、冶炼废水,它们都富集在生物体中,通过食物链,危害人类健康。
此外,水体的污染还有放射性污染,这是由于放射性物质进入水体造成的。盐类污染,各种酸碱盐无机化合物进入水体,使淡水含盐量增加,影响水质。热污染,发电站等的冷却水是热污染的主要来源,大量热水排入水体,使水温增高,水体中溶解氧减少,影响鱼类的生存与繁殖。

⑥ 废水中石油类污染物有哪些去除方法

1、利用石油类比重比水轻能浮在水面的特点,使用分液器原理将其分离去除。
2、利用吸附原理,使用毛毡、化纤织物、活性炭、浮石等吸附石油类物质将其去除。
3、对于某些被泥沙沾附沉入水底的石油类物质,可使用沉降法让它与污水分离去除。

⑦  水土体石油污染治理现状及防治对策

5.3.1石油部门目前治理现状

据统计从1964年油田成立到年底,油田累计环保投资总额为9.63亿元,其中,固定资产中环保设施为96349万元,1998年环保投资为11095万元。1998年环保投资中,用于废水治理的8747万元,用于废气治理的1182万元,用于固体废弃物治理的86万元,用于噪声治理的20万元,其他1060万元。

1.油田工业废水处理情况

工业废水目前的处理情况主要着眼于提高达标排放率、减少废水污染物中石油类含量和提高油田采出水回注率等几项措施。根据最新资料:

1998年油田排放工业废水2753.32万t,达标排放量为2070.93万t,达标排放率为75.22%;油田1999年工业废水排放量为2727.04万t,达标排放量为2030.37万t,达标排放率为74.45%。

1998年排放工业废水污染物中石油类为414.52t;油田1999年排放的工业废水污染物中石油类为288.36t;预计2000年排放的工业废水污染物中石油类为162t,石油类可比1998年消减252.52万t。油田废水中石油类的产生量约为540万t/a,回收率约为70%(回收量约为378万t/a)。

由于油田废水污染主要是由油田采出水外排造成的,目前对采出的外排水主要回注地层。1998年油田采出水达2.6亿t,92%以上回注,并且有六个采油厂回注率达100%。

2.落地原油的回收情况

胜利油田采油井场和其他工作现场都存在落地原油污染问题,每年进入环境的落地原油数量巨大,落地原油产生量约为6.12万t/a。

由于工艺和技术上的原因,不能完全杜绝落地油,为避免浪费和污染,目前主要采用井口设固定或活动贮存池定期回收来解决,各采油厂专门成立落地原油污油回收队负责回收,回收率在98%左右(回收量约为6万t/a),但仍有一部分残留地表,每年仍有0.12万t的落地原油因无法回收而留在环境中。

5.3.2水土体污染防治对策

1.水体污染防治对策

从油田污染源调查来看,在工业污水中按等标污染负荷比计,挥发酚是第一号污染物,其次是石油类、化学需氧量。从地面水实际监测,按等标污染负荷比来看,化学需氧量是第一位污染物,石油类是第二位污染物。在水污染总量控制研究中,石油类和化学需氧量都列为主要控制污染物,为保证受纳污水河流中污染物在国家允许范围之内,提高以下污染物防治对策:

(1)油田主要排污口有19个,对地面水污染严重的污染源主要是采油污水,因此要加强采油污水处理管理,要严格按照污水处理设计流程、操作流程规范,严禁私自简化处理流程、违反操作,要加强监督检查,外排污水一定要达标排放。

(2)新建和改建污水处理站,一定要选用处理工艺先进处理效率高的污水处理设备。

(3)积极推广不外排污水采油厂的经验,将污水处理合格后,全部回注地层,油田内部实行污水处理奖惩办法,并限定时间实现采油厂污水不外排。

(4)各污水处理站都要建立防渗、防溢污水暂存池,一旦发生事故后污水处理不合格时,污水可以暂时存放该池,再经过处理合格后回注或外排。

(5)加强钻井废弃泥浆、废水管理,使钻井泥浆和废水重复利用和回收。完钻后,将泥浆及井场其他污染物全部清到泥浆池,防止外溢,待泥浆干固后在其上面及周围种树绿化。

(6)加强作业废水处理管理、提高无污染作业率。油水井作业时,将含污水压进干线,作业完工后,将作业现场污油、污水及其他污染物一并清理到泥浆中,以减少作业时落到地面上的污染物。

(7)由于化学需氧量是河流中除了石油类外的另一主要污染物,而该污染物除了油田工业污水贡献外,其主要来源是地方企业,尤其是造纸厂、石油化工工业。化学需氧量另一个主要来源是城镇居民生活污水。要想彻底改善水环境,还要必须对这些部门的污水进行处理和控制。

2.土体污染防治对策

(1)推行泥浆的回收利用:为使泥浆具有钻井工艺所要求的各种性能,需加入大量的无机和有机处理剂,一旦钻井完毕,这些化学药物处理剂也就随泥浆一起废弃于井场,这样不仅造成了极大的浪费,而且这些化学药品必然随地表水的运动,迁移扩散到周围地区,污染当地的环境,如果将这些泥浆收集起来,加以重复利用,不仅能为国家节省大量资金,还大大减轻了污染。

(2)无毒害新型泥浆的利用,同样是减轻污染的有效措施。目前,泥浆中经常加入纯碱和烧碱,使泥浆的pH值达10~11,这些高碱性化学剂进入农田能改变土壤成分,使土壤碱性增加板结变硬;在钻深井时大量使用的铁铬盐,使含铬元素的有毒物质,对人体的消化道、皮肤具有强烈的刺激和腐蚀作用,对呼吸道也造成了很大的损害,常常引起皮炎、皮肤溃疡、嗅觉缺失、甚至致癌。从1993年的统计情况来看,目前全油田钻井生产中铁铬盐的使用量仍然很大,这必然对本地区的人群造成很大危害,故新型无毒泥浆的使用已经是大势所趋。

(3)研究落地原油产生的原因,减少原油生产中落地原油数量,在钻井、油气集输和储运过程中,各种事故泄漏,设备、管线的跑冒滴漏的污油,及井场场地的落地原油积累起来也具有很大的数量,它们被排放到环境当中,对土壤、植物及人类造成危害。所以探讨其产生的原因以减少落地原油的数量,研究其回收以减少浪费,都是解决落地原油对环境污染的方法。

(4)对外排污水的无组织漫流的控制:无组织排放的污水主要产生于钻井过程中,包括柴油机冷却水、钻井废水和洗井水,对其进行控制可以限制污染物扩散的范围以减弱其污染。

(5)及早进行落地原油的生物处理,据研究,很多细菌能有效地分解落地原油,这样不仅可以消除其污染,还可以增加土壤肥力。

⑧ 除它们之外 还有哪些水质指标可以用来判别水中有机物质含量的多寡

水体中的污染物质除无机化合物外,还含有大量的有机物质,它们是以毒性和使水体溶解氧减少的形式对生态系统产生影响。已经查明,绝大多数致癌物质是有毒的有机物质,所以有机物污染指标是水质十分重要的指标。
水中所含有机物种类繁多,难以一一分别测定各种组分的定量数值,目前多测定与水中有机物相当的需氧量来间接表征有机物的含量(如CoD、BOD等),或者某一类有机污染物(如酚类、油类、苯系物、有机磷农药等)。但是,上述指标并不能确切反映许多痕量危害性大的有机物污染状况和危害,因此,随着环境科学研究和分析测试技术的发展,必将大大加强对有毒有机物污染的监测和防治。
一、化学需氧量(COD)
化学需氧量是指水样在一定条件下,氧化1升水样中还原性物质所消耗的氧化剂的量,以氧的m8从表示。水中还原性物质包括有机物和亚硝酸盐、硫化物、亚铁盐等无机物。化学需氧量反映了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之一。
对废水化学需氧量的测定,我国规定用重铬酸钾法,也可以用与其测定结果一致的库仑滴定法。
(一)重铬酸钾法(CODcI)
在强酸性溶液中,用重铬酸钾氧化水样中的还原性物质,过量的重铬酸钾以试铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据其用量计算水样中还原性物质消耗氧的量。反应式如下:
测定过程见图2—35。
水样20mL(原样或经稀释)于锥形瓶中
↓←H8S0‘0.48(消除口—干扰)
混匀
←0.25m01/L(1/6K2Cr20?)100mL
↓←沸石数粒
混匀,接上回流装置
↓←自冷凝管上口加入A82S04—H2S0‘溶液30mL(催化剂)
混匀

回流加热2h

冷却
↓←自冷凝管上口加入80mL水于反应液中
取下锥形瓶
↓←加试铁灵指示剂3摘
用0.1m01从(N氏久Fe(S04)2标液滴定,终点由蓝绿色变成红棕色。
图2—35 CoDcr测定过程
重铬酸钾氧化性很强,可将大部分有机物氧化,但吡啶不被氧化,芳香族有机物不易被氧化;挥发性直链脂肪组化合物、苯等存在于蒸气相;不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸钾氧化,并与硫酸银作用生成沉淀;可加入适量硫酸汞缀合之。
测定结果按下式计算:
式中:V。——滴定空白时消耗硫酸亚扶铵标准溶液体积(mL)5—
Vl——滴定水样消耗硫酸亚铁铵标准溶液体积(mL);
V——水样体积(mL); ‘
c——硫酸亚铁铵标准溶液浓度(m01儿)t3
8——氧(1/20)的摩尔质量(8/m01)。
用o.25m01几的重铬酸钾溶液可测定大于50m8从的COD值;用0.025m01儿重铬酸钾溶液可测定5—50m8/L的COD值,但准确度较差。
(二)恒电流库仑滴定法
恒电流库仑滴定法是一种建立在电解基础上的分析方法。其原理为在试液中加入适当物质,以一定强度的恒定电流进行电解,使之在工作电极(阳极或阴极)上电解产生一种试剂(称滴定剂),该试剂与被测物质进行定量反应,反应终点可通过电化学等方法指示。依据电解消耗的电量和法拉第电解定律可计算被测物质的含量。法拉第电解定律的数学表达式为:
式中:W——电极反应物的质量(8);
I——电解电流(A);
t——电解时间(s);
96500——法拉第常数(C);
M——电极反应物的摩尔质量(8);
n——每克分子反应物的电子转移数。
库仑式COD测定仪的工作原理示于图2—36。由库仑滴定池、电路系统和电磁搅拌器等组成。库仑池由工作电极对、指示电极对及电解液组成,其中,工作电极对为双铂片工作阴极和铂丝辅助阳极(置于充3m01几H2SOd,底部具有液络部的玻璃管
内),用于电解产生滴定剂;指示电极底部具有液络部的玻璃管中),以其电位的变化指示库仑滴定终点。电解液为10.2m01/L硫酸、重铬酸钾和硫酸铁混合液。电路系统由终点微分电路、电解电流变换电路、频率变换积分电路、数字显示逻辑运算电路等组成,用于控制库仑滴定终点,变换和显示电解电流,将电解电流进行频率转换、积分,并根据电解定律进行逻辑运算,直接显示水样的COD值。
使用库仑式COD测定仪测定水样COD值的要点是:在空白溶液(蒸馏水加硫酸)和样品溶液(水样加硫酸)中加入同量的重铬酸钾溶液,分别进行回流消解15分钟,冷却后各加入等量的、硫酸铁溶液,于搅拌状态下进行库仑电解滴定,即Fe”在工作阴极上还原为Fe”(滴定剂)去滴定(还原)CrzOv2—。库仑滴定空白溶液中CrzOv”得到的结果为加入重铬酸钾的总氧化量(以O 2
计);库仑滴定样品溶液中CrzO v”得到的结果为剩余重铬酸钾的氧化量(以02计)。设前者需电解时间为‘o,后者需‘,则据法拉第电解定律可得:
式中:1r——被测物质的重量,即水样消耗的重铬酸钾相当于氧的克数;
I=—电解电流;
M——氧的分子量(32);
n——氧的得失电子数(4);
96500——法拉第常数。
设水样coD值为c5(mg儿);水样体积为v(mL),则1y·c2,代入上式,经整理后得:
本方法简便、快速、试剂用量少,不需标定滴定溶液,尤其适合于工业废水的控制分析。当用3mI‘o.05mol儿重铬酸钾溶液进行标定值测定时,最低检出浓度为3m8入;测定上限为100m8/L。但是,只有严格控制消解条件一致和注意经常清洗电极,防止沾污,才能获得较好的重现性。
二、高锰酸盐指数,
以高锰酸钾溶液为氧化剂测得的化学耗氧量,以前称为锰法化学耗氧量。我国新的环境水质标准中,已把该值改称高锰酸盐指数,而仅将酸性重铬酸钾法测得的值称为化学需氧晕。国际标准化组织(1SO)建议高锰酸钾法仅限于测定地表水、饮用水和生活污水。
按测定溶液的介质不同,分为酸性高锰酸钾法和碱性高锰酸钾法。因为在碱性条件下高锰酸钾的氧化能力比酸性条件下稍弱,此时不能氧化水中的氯离子,故常用于测定含氯离子浓度较高的水样。
酸性高锰酸钾法适用于氯离子含量不超过300m8儿的水样。当高锰酸盐指数超过5mg从时,应少取水样并经稀释后再测定。其测定过程如图2—37所示。
取水样100mL(原样或经稀释)于锥形瓶中
↓←(1十3)H:SO‘5mL ‘
混匀
↓←o.olmoI儿高锰玻钾标液(十KMn04)10.omL
沸水浴30min
↓←o.olo omot儿草酸钠标液(专Nasc20‘)lo.oomL
退色 ‘
↓←o.01m01儿高锗酸钾标液回滴
终点微红色 :
图2—37 高锗酸盐指数测定过程
测定结果按下式计算:
1.水样不经稀释
高锰酸盐指数
式中:Vl——滴定水样消耗高锰酸钾标液量(mL);
K——校正系数(每毫升高锰酸钾标液相当于草酸钠标液的毫升数);
M——草酸钠标液(1/.2Na2C20d)浓度(nt01从);
8——氧(1/20)的摩尔质量(8/m01);
100——取水样体积(mL)。
2.水样经稀释
高锰酸盐指数
式中2V。——空白试验中高锰酸钾标液消耗量(mL)
Vz——分取水样体积(mL);
f——稀释水样中含稀释水的比值(如10.omL水样稀释至100mL.,Ng/=0.90)l
其他项同水样不经稀释计算式。
化学需氧量(CODcr)和高锰酸盐指数是采用不同的氧化剂在各自的氧化条件下测定的,难以找出明显的相关关系。一般来说,重铬酸钾法的氧化率可达90%,而高锰酸钾法的氧化率为50%左右,1两者均未达完全氧化,因而都只是一个相对参考数据。
三、生化需氧量(BOD)
生化需氧量是指在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。同时亦包括如硫化物、亚铁等还原性无机物质氧化所消耗的氧量,但这部分通常占很小比例。
有机物在微生物作用下好氧分解大体上分两个阶段。第一阶段称为含破物质氧化阶段,主要是含碳有机物氧化为二氧化碳和水;第二阶段称为硝化阶段,主要是含氮有机化合物在硝化菌的作用下分解为亚硝酸盐和硝酸盐。然而这两个阶段并非截然分开,而是各有主次。对生活污水及性质与其接近的工业废水,硝化阶段大约在5—7日,甚至10日以后才显著进行,故目前国内外广泛采用的20℃五天培养法(BODs法)测定BOD值一般不包括硝化阶段。
BOD是反映水体被有机物污染程度的综合指标,也是研究废水的可生化降解性和生化处理效果,以及生化处理废水工艺设计和动力学研究中的重要参数。
(一)五天培养法(20℃)
也苏标准稀释法。其测定原理是水样经稀释后,在29土1℃条件下培养5天,求出培养前后水样中溶解氧含量,二者的差值为BOD5。如果水样五日生化需氧量未超过7m8/L,则不必进行稀释,可直接测定。很多较清洁的河水就属于这一类水。
对于不合或少含微生物的工业废水,如酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BODs时应进行接种,以引入能降解废水中有机物的微生物。当废水中存在着难被一般生活污水中的微生物以正常速度降解的有机物或有剧毒物质时,应将驯化后的微生物引入水样中进行接种。
1.稀释水
对于污染的地面水和大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以保证在培养过程中有充足的溶解氧。其稀释程度应使培养中所消耗的溶解氧大于2血8凡,而剩余溶解氧在1m8儿以上。
稀释水一般用蒸馏水配制,.先通入经活性炭吸附及水洗处理的空气,曝气2—8h,使水中溶解氧接近饱和,然后再在20℃下放置数小时。临用前加入少量氯化钙、氯化铁、硫酸镁等营养盐溶液及磷酸盐缓冲溶液,混匀备用。稀释水的pH值应为7.2,BOD5应小于0.2血8儿。

高锰酸盐指数 (mg/L) 系 数
< 5
5 — 10
10 — 20
> 20 0 . 2 、 0 . 3
0 . 4 、 0 . 6
0 . 5 、 0 . 7 、

1 . 0
如水样中无微生物,则应于稀释水中接种微生物,即在每升稀释水中加入生活污水上层清液1—10mL,或表层土壤浸出液20—30mL,或河水、湖水10—100mL。这种水称为接种稀释水。为检查稀释水相接种液的质量,以及化验人员的操作水平,将每升含葡萄糖和谷氨酸各150m8的标准溶液以1:50稀释比稀释后,与水样同步测定BODs,测得值应在180—230m8儿之间,否则,应检查原因,予以纠正。
2.水样稀释倍数
水样稀释倍数应根据实践经验进行估算。表2—13列出地面水稀释倍数估算方法。工业废水的稀释倍数由CODcr值分别乘以系数0.075、o.15、0.25获得。通常同时作三个稀释比的水样。表2—13 由高锰酸盐指数估算稀释倍数乘以的系数
3.测定结果计算
对不经稀释直接培养的水样:
式中Icl——水样在培养前溶解氧的浓度(m8儿);
‘:——水样经5天培养后,剩余溶解氧浓度(m8儿)。
对稀释后培养的水样:
式中:Bl——稀释水(或接种稀释水)在培养前的溶解氧的浓度(m8儿);
Bz——稀释水(或接种稀释水)在培养后的溶解氧的浓度(m8儿);
f1——稀释水(或接种稀释水)在培养液中所占比例;
f2——水样在培养液中所占比例。
水样含有铜、铅、锌、镉、铬、砷、氰等有毒物质时,对微生物活性有抑制,可使用经驯化微生物接种的稀释水,或提高稀释倍数,以减小毒物的影响。如含少量氯,一般放置1—2h可自行消失;对游离氯短时间不能消散的水样,可加入亚硫酸钠除去之,加入量由实验确定。
本方法适用于测定BOD5大于或等于2m8儿,最大不超过6000m8儿的水样;大于6000m8儿,会围稀释带来更大误差。
(二)其他方法
1.检压库仑式BOD测定仪
检压库仑式肋D测定仪的原理示于图2—38。装在培养瓶中的水样用电磁搅拌器进行搅拌。当水样中的溶解氧因微生物降解有机物被消耗时,则培养瓶内空间中的氧溶解进入水样,生成的二氧化碳从水中选出被置于瓶内的吸附剂吸收,使瓶内的氧分压和总气压下降、用电极式压力计检出下降量,并转换成电信号,经放大送入继电器电路接通恒流电源及同步电机,电解瓶内(装有中性硫酸铜溶液和电解电极)便自动电解产生氧气供给培养瓶,待瓶内气压回升至原压力时,继电器断开,电解电极和同步电机停止工作。此过程反复进行使培养瓶内空间始终保持恒压状态。
根据法拉第定律;由恒电流电解所消耗的电量便可计算耗氧量。仪器能自动显示测定结果,记录生化需氧量曲线。
2.测压法
在密闭培养瓶中,水样中溶解氧由于微生物降解有机物而被消耗,产生与耗氧量相当的COz被吸收后,使密闭系统的压力降低,用压力计测出此压降,即可求出水样的BOD值。在实际测定中,先以标准葡萄糖—谷氨酸溶液的BOD值和相应的压差作关系
曲线,然后以此曲线校准仪器刻度,便可直接读出水样的BOD值。
3.微生物电极法
微生物电极是一种将微生物技术与电化学检测技术相结合的传感器,其结构如图2—39所示。主要由溶解氧电极和紧贴其透气膜表面的固定化微生物膜组成。响应BOD物质的原理是当将其插入恒温、溶解氧浓度一定的不含BOD物质的底液时,由于微生物的呼吸活性一定,底液中的溶解氧分子通过微生物膜扩散进入氧电极的速率一定,微生物电极输出一稳态电流;如果将BOD物质加入底液中,则该物质的分子与氧分子一起扩散进入微生物膜,因为膜中的微生物对BOD物质发生同化作用而耗氧,导致进入氧电极的氧分子减少,即扩散进入的速率降低,使电极输出电流减少,并在几分钟内降至新的稳态值。在适宜的BOD物质浓度范围内,电极输出电流降低值与BOD物质浓度之间呈线性关系,而BOD物质浓度又和BOn值之间有定量关系。
微生物膜电极BOD测定仪的工作原理示于图2—40。该测定仪由测量池(装有微生物膜电极、鼓气管及被测水样)、恒温水浴、恒电压源、控温器、鼓气泵及信号转换和测量系统组成。恒电压源输出o.72V电压,加于Ag—A8C1电极(正极)和黄金电极(负极)上。黄金电极因被测溶液BOD物质浓度不周产生的极化电流变化送至阻抗转换和微电流放大电路,经放大的微电流再送至A—D转换电路,改A—V转换电路,转换后的信号进行数字显示或记录仪记录。仪器经用标准BOD物质溶液校准后,可直接显示被测溶液的BOD值,并在20min内完成一个水样的测定①。该仪器适用于多种易降解废水的’BOD监测。除上述测定方法外,还有活性污泥法、相关估算法等。
四、总有机碳(TOC)
总有机碳是以碳的含量表示水体中有机物质总量的综合指标。由于TOC的测定采用燃烧法,因此能将有机物全部氧化,它比如Ds或COD更能反映有机物的总量。
目前广泛应用的测定TOC的方法是燃烧氧化J4F色散红外吸收法。其测定原理是:将一定量水样注入高温炉内的石英管,在900一950℃温度下,以铂和三氧化钻或三氧化二铬为催化剂,使有机物燃烧裂解转化为二氧化碳,然后用红外线气体分析仪测定C02含量,从而确定水样中碳的含量。因为在高温下,水样中的碳酸盐也分解产生二氧化碳,故上面测得的为水样中的总碳
(TC)。。为获得有机碳含量,可采用两种方法:一是将水样预先酸化,通入氮气曝气,驱除各种碳酸盐分解生成的二氧化碳后再注入仪器测定。另一种方法是使用高温炉和低温炉皆有的TOC测定仪。将同一等量水样分别注入高温炉(900℃)和低温炉(150℃),则水样中的有机碳和无机碳均转化为COz,而低温炉的石英管中装有磷酸浸渍的玻璃棉,能使无机碳酸盐在150℃分解为C02,有机物却不能被分解氧化。将高、低温炉中生成的CO:‘依次导入非色散红外气体分析仪,分别测得总碳(TC)和无机碳(IC),二者之差即为总有机碳(TOC)。测定流程见图2—41。该方法最低检出浓度为o.5mg/I。

五、总需氧量(TOD)
总需氧量是指水中能被氧化的物质,主要是有机物质在燃烧中变成稳定的氧化物时所需要的氧量,结果以02的m8儿表示。
用TOD测定仪测定ToD的原理是将一定量水样注入装有铂催化剂的石英燃烧管,通入含已知氧浓度的载气(氮气)作为原料气,则水样中的还原性物质在900℃下被瞬间燃烧氧化。测定燃烧前后原料气中氧浓度的减少量,便可求得水样的总需氧量值。
TOD值能反映几乎全部有机物质经燃烧后变成C02、H20、N0、S02̷所需要的氧量。它比BoD、CoD和高锰酸盐指数更接近于理论需氧量值。但它们之间也没有固定的相关关系。有的研究者指出,BODs/TOD=0.1—0,6;CoD/TOD=0.5—0.9,具体比值取决于废水的性质。
TOD和TOC的比例关系可粗略判断有机物的种类。对于含碳化合物,因为一个碳原子消耗注⑦ 参阅孙裕生等,《分析仪器》,(1),1992年两个氧原子,即Oz/C=2.67,因此从理论上说,TOD=2.67TOC。若某水样的TOD/TOC为2.67左右,可认为主要是含碳有机物j若TOD/TOC>4.o,则应考虑水中有较大量含S、P的有机物存在;若TOD/TOC<2.6,就应考虑水样中硝酸盐和亚硝酸盐可能含量较大,它们在高温和催化条件下分解放出氧,使TOD测定呈现负误差。
六、挥发酚类
根据酚类能否与水蒸气一起蒸出,分为挥发酚与不挥发酚。通常认为沸点在230℃以下的为挥发酚(屑一元酚);而沸点在2助℃以上的为不挥发酚。
酚屑高毒物质,人体摄入一定量会出现急性中毒症状;长期饮用被酚污染的水,可引起头昏、骚痒、贫血及神经系统障碍。当水中含酚大于5m8/L时,就会使鱼中毒死亡。
酚的主要污染源是炼油、焦化、煤气发生站,木材防腐及某些化工(如酚醛树脂>等工业废水。
酚的主要分析方法有容量法、分光光度法、色谱法等。目前各国普遍采用的是4—氨基安替吡林分光光度法;高浓度含酚废水可采用溴化容量法。无论溴化容量法还是分光光度法,当水样中存在氧化剂、还原剂、油类及某些金属离子时,均应设法消除并进行预蒸馏。如对游离氯加入硫酸亚铁还原;对硫化物加入硫酸铜使之沉淀,或者在酸性条件下使其以硫化氢形式逸出;对油类用有机溶剂萃取除去等。蒸馏的作用有二,一是分离出挥发酚,二是消除颜色、浑浊和金属离子等的干扰。
(一)4—氨基安替比林分光光度法
酚类化合物于pHl0.0土o.2的介质中,在铁氰化钾的存在下,与4—氨基安替比林(4—AAP)反应,生成橙红色的p5l噪酚安替比林染料,在510nm波长处有最大吸收,用比色法定量。反应式如下:
显色反应受酚环上取代基的种类、位置、数目等影响,如对位被烷基、芳香基、酯、硝基、苯酰、亚硝基或醛基取代,而邻位未被取代的酚类,与4—氨基安替比林不产生显色反应。这是因为上述基团阻止酚类氧化成醌型结构所致,但对位被卤素、磺酸、羟基或甲氧基所取代的酚类与4—氨基安替比林发生显色反应。邻位硝基酚和间位硝基酚与4—氨基安替比林发生的反应又不相同,前者反应无色,后者反应有点颜色。所以本法测定的酚类不是总酚,而仅仅是与4—氨基安替比林显色的酚,并以苯酚为标准,结果以苯酚计算含量。
用20m2d比色皿测定,方法最低检出浓度为o.12n8/L。如果显色后用三氯甲烷萃取,于460n2n波长处测定,其最低检出浓度可达o.o02m8/L;测定上限为0.12m8从。此外,在直接光度法中,有色络合物不够稳定,应立即测定;氯仿萃取法有色络合物可稳定3小时。
(二)溴化滴定法
在含过量溴(由溴酸钾和溴化钾产生)的溶液中,酚与镇反应生成三溴酚,并进一步生成溴代三溴酚。剩余的溴与碘化钾作用释放出游离碘,与此同时溴代三溴酚也与碘化钾反应置换出游离碘。用硫代硫酸钠标准溶液涵定释出的游离碘,并根据其消耗计算出以苯酚计曲捅发酚含量。反应式如下:
结果按下式计算:
挥发酚
式中:认——空白(以蒸馏水代替水样加D同体积溴酸钾—溴化钾溶液)试验滴定时硫代硫酸钠标
、— 液用量(mL)6
y2——水样滴定时硫代硫酸钠标液用量(mL);
—c——硫代硫酸钠标液的浓度(tpol儿)一
V——水样体积(mL);
15.68——苯酚(1/6C eHsOH)摩尔质量(8/m01)。
七、矿物油.
水中的矿物油来自工业废水和生活污水;工业废水中石油类(各种烃类的混合物)污染物主要来自原油开采、加工及各种炼制油的使用部门。矿物油漂浮在水体表面,影响空气与水体界面间的氧交换;分散于水中的油可被微生物氧化分解,消耗水中的溶解氧,使水质恶化。矿物油中还含有毒性大的芳烃类。
测定矿物油的方法有重量法、非色散红外法、紫外分光光度法、荧光法、比浊法等。
(一)重量法
重量法是常用的方法,它不受油品种的限制,但操作繁琐,灵敏度低,只适用于测定10m8儿以上的含油水样。方法测定原理是以硫酸酸化水样,用石油醚萃取矿物油,然后蒸发除去石油醚,称量残渣重,计算矿物油含量。
该法是指水中可被石油醚萃取的物质总量,可能含有较重的石油成分不能被萃取。蒸发除去溶剂时,也会造成轻质油的损失。
(二)非色散红外法
本法系利用石油类物质的甲基(—CH:)、亚甲基(—吧Hz一)在近红外区(3.4f4m)有特征吸收,作为测定水样中油含量的基础。标准油可采用受污染地点水中石油醚萃取物。根据我国原油组分特点,也可采用混合石油烃作为标准油;其组成为:十六烷:异辛烷:苯z 65:25:10(y/y)。
测定时,先用硫酸将水样酸化,加氯化钠破乳化,再用三氯三氟乙烷萃取,萃取液经无水硫酸钠层过滤、定容,注入红外分析仪测其含量。
所有含甲基、亚甲基的有机物质都将产生干扰。如水样中有动、植物性油脂以及脂肪酸物质应预先将其分离。此外,石油中有些较重的组分不镕于三氯三氟乙烷,致使测定结果偏低
(三)紫外分光光度法
石油及其产品在紫外光区有特征吸收。带有苯环的芳香族化合物的主要吸收波长为250一260nm;带有共扼双键的化合物主要吸收波长为215—230ngl。一般原油的两个吸收峰波长为225nm和254nm;轻质油及炼油厂的油品可选225nm。
水样用硫酸酸化,加氯化纳破乳化,然后用石油醚萃取,脱水,定容后测定。标准油用受污染地点水样石油醚萃取物。 不同油品特征吸收峰不同,如难以确定测定波长时,可用标准油样在波长215—300nm之间的吸收光谱,采用其最大吸收峰的位置。一般在220一225nm之间。
八、其他有机污染物质
根据水体污染的不同情况,常常还需要测定阴离子洗涤剂、有机磷农药、有机氯农药、苯系物、氯苯类化合物、苯并(a)花、多环芳烃、甲醛、三氯乙醛、苯胺类、硝基苯类等。·这些物质除阴离子洗涤剂外。其他均为主要环境优先污染物,其监测方法多用气相色谱法和分光光度法。对于大分子量的多环芳烃、苯并(a)芘等要用液相色谱法或荧光分光光度法。其详细内容参阅本教材后附的有关水质分析方面的文献。

⑨ 城市污水按其来源分为

1.城市污水厂污泥

城市物流系统中有难以胜数的用水环节,使用后的水大多转化为含不同种类与浓度污染物的污水。城市所产生的污水基本可以按来源分为两类:①工业污水,来自城市的工业部门,污染特征由相应的产业技术、过程决定;②城市污水,来自城市的居民区,商业服务业等非工业部门,其污染特征与具体的来源(如商业、居住区)关系较小,也就是说,不同来源的城市污水共性是它的主要方面。

城市污水的净化处理也是按来源分别安排的,城市污水处理厂的主要处理对象是城市污水。城市污水处理厂在对污水的处理过程中,污水中的部分污染物转化为可沉降物质排出,这股排出的物流是以固液混合为特征的所谓城市污水厂污泥。

2.城市给水污泥

现代城市使用的大部分水是以管网分配形式供应的所谓自来水给水,目前绝大部分城市的给水水源(原水),均仅能在进行必要的净化处理后,才能达到给水的水质要求。

原水的净化在专门的给水处理厂(自来水厂)完成,主要的处理工艺是混凝沉淀(将原水中的颗粒物、胶体和部分可溶态杂质转化为可沉降或可滤除的颗粒或胶体物质)和过滤(与沉淀一同完成对上述颗粒和胶体的最终去除),被去除的颗粒和胶体构成了城市给水污泥的固相部分,用于从沉淀池和滤池中排除这些固相物的水则构成了该污泥中的液相部分。

3.城市水体疏浚淤泥

城市水体指的是主要汇水区域为城市建成区的自然或人工水体(河道、湖、塘等)。城市水体除了具有景观、航运等功能外,主要的功能是城市排水的通道与调蓄容量的组成部分。由于汇水区的特征,城市水体可能受纳的水流包括城市地表径流、城市污水和工业污水等。这些水流中所夹带的颗粒物、胶体,在一定的水力、水文条件下成为城市水体的沉积物,同时上述水流中的可溶性物质在一定的生物、化学作用过程中也会生成可沉降物质,转化为水体沉积物。

⑩ 喷水织机污染有多严重

在工业污水治理中,喷水织机污染占80%,这势必对近年来产能极度扩增下的喷水行业迎面一击。

喷水织机是生产化纤长丝面料最适宜的设备。涤纶易产生静电,而喷水织机依靠水流束引纬,完全避免了静电带来的制造困扰,具有超越其他织机带来的无可替代的优越性。

喷水织机通过水流束引纬产生一定量的废水,废水中污染物的主要成分是纺丝油迹和聚丙烯酸酯的少量溶解物质浓度较低,而且这些微量的溶解物质也非常容易进行分离、回收处理,废水经处理后可全部回收利用。

目前纺织行业的绝大多数的废水经过处理后可循环使用,排放也完全达到环保要求。如今,纺织业的发展已经离不开喷水织机的使用。由于技术和环境的限制,织机的发展水平有待提高,未来的改造将会更加有利于环境的保护,实现可持续发展。

阅读全文

与喷水织机废水中石油污染物浓度相关的资料

热点内容
化肥生产废水mvr 浏览:490
水垢预防的基本原理 浏览:941
纯水和纯酒精为什么不能导电 浏览:410
电泳用超滤机 浏览:803
ro膜介绍 浏览:591
纯水机泵漏水怎么处理 浏览:522
安之源净水器中央超滤机 浏览:422
过滤水中的油用什么滤芯 浏览:491
污水泵国产什么牌子的质量好 浏览:629
找广州污水车 浏览:368
医院污水监测哪些项目 浏览:208
isapi过滤源代码 浏览:603
企业污水监控内容 浏览:450
滤芯厂属于什么档次 浏览:413
重庆商用纯水设备多少钱 浏览:439
污水管网id是表示什么 浏览:875
沁园净水器洗涤口接哪个管 浏览:146
名图空气净化器怎么样 浏览:722
空调滤芯有杂质是什么原因 浏览:14
火神山医院废水处理 浏览:363