A. 最近在国内最常用的污水除油方法是有那些
国内对含油污水治理的方法主要有以下三类:
1、物理化学处理法
①气浮法;②吸附法;③膜分离法
2、化学处理法
①化学絮凝法;②电化学法
3、生物处理法
①活性污泥法;②生物滤池法
含油废水的处理方法根据其成分以及作用原理一般可以分为:物化法、化学法、生物法,但各种方法都有其局限性,在实际应用中通常将几种方法联合分级使用,从而实现良好的除油效果。
一、含油废水的特点
随着经济和工业的快速发展,石油化工,金属工业,机械工业,食品加工等行业也在快速发展,进而产生了大量的含油废水。
据统计,世界上每年至少有500~1000 万吨油类污染物通过各种途径进入水体,它已严重影响,破坏了环境,并且危害人体健康。含油废水是一种量大面广且危害严重的工业废水,具有COD,BOD 值高,有一定的气味和色度,易燃,易氧化分解,难溶于水的特点。
二、含油废水的处理。
1、物理化学法
①气浮法
气浮法是向废水中通入空气,利用油珠粘附于高度分散的微气泡后使浮力增大,进而上浮速度提高近千倍,因此油水分离效率很高。它可用于水中固体与固体、固体与液体、液体与液体乃至溶质中离子的分离。
②吸附法
吸附法是利用多孔固体吸附剂对含油废水中的溶解油及其它溶解性有机物进行表面吸附。活性炭是最常用的吸附剂,其吸附能力强但成本高,再生困难,加之吸附有限,限制了其应用,因此寻求合适的吸附剂成为目前迫待解决的问题。
③膜分离法
膜分离法利用多空薄膜分离介质,截留含油废水中的油及表面活性剂而使水分子通过,达到油水分离的目的。
2、化学法
①化学絮凝法
絮凝法是向废水中投加一定比例的絮凝剂,在废水中生成亲油性的絮状物,使微水油滴吸附于其上,然后沉降或气浮的方法将油分去除。
②电化学法
电化学法是以金属铝或铁作阳极电解处理乳化油废水,近年来,电化学工艺用于降解难处理有机物的研究不仅被人们所关注,而且已经有了相当大的进展。随着科学技术的迅猛的发展,利用电解法制备新型物质用于含油废水的处理已成为当今研究的发展方向。
3、生物法
①活性污泥法
活性污泥法是以活性污泥为主体,利用微生物形成菌胶团吸附和絮凝废水中的溶解油,在有氧的条件下,菌体使废水中的溶解油化为自身的组成部分,或将它们氧化为CO2和H2O等,从而达到净化废水的目的。由于活性污泥法运行方式灵活,工作效率高,费用低,所以目前已广泛被使用
②生物滤池法
生物滤池法也在含油废水的处理中有着广泛的应用,它是通过微生物使废水中的有机物被分解除去。
含油废水处理技术的主要发展趋势应集中在以下几个方面:
(1)开发新型材料,例如新型膜、高效絮凝剂等。
(2)将单一的处理方法联合分级使用,避免其局限性,达到高效率除油。
(3)重视清洁生产,从源头减少污染,同时注重中水回用的问题。
参考:http://ke..com/view/2202626.htm
http://ke..com/view/10490921.htm
B. 废水中油的测定,1.有哪些方法异同点和适用条件
一.方法原理
重量法(CJ/T51-2004)的原理:以硫酸酸化样品,用石油醚从样品提取油类,蒸发去除石油醚,再称其重量。
红外光度法(GB/T16488-1996)的原理:用四氯化碳萃取水中的油类物质,测定总萃取物,然后将萃取液用硅酸镁吸附,经脱除动植物油等极性物质后,测定石油类。总萃取物和石油类的含量均由波数分别为2930 cm-1(CH2基团中C—H键的伸缩振动)、2960 cm-1(CH3基团中的C—H键的伸缩振动)和3030 cm-1(芳香环中C—H键的伸缩振动)谱带处的吸光度A2930、A2960、A3030进行计算。动植物油的含量按总萃取物与石油类含量之差计算。
从以上两种方法的原理中可看出,重量法测定的是酸化样品中可被石油醚萃取的、且在试验过程中不挥发的物质总量。在溶剂去除过程中,部分轻质油随之挥发,会有明显损失。又由于石油醚对油有选择性的溶解,石油类中的较重组分中可能含有不为溶剂萃取的物质。因此用石油醚萃取的重量法测定油类物质往往不彻底,测定结果偏低。而且重量法测定的只是水中可被石油醚萃取的物质总量,不能准确测出样品中石油类和动植物油的含量。红外光度法不受油品成分结构的影响,在红外吸收光谱中,不但考虑了亚甲基CH2基团中C—H键,甲基CH3基团中C—H键,还考虑了芳香环中的C—H键,因此测定油类物质比较完全。而且用此方法萃取时用的是四氯化碳溶剂,此溶剂只含有C—Cl键,因此不会影响上述三种C—H键的红外吸收。用此方法可以准确地测定出石油类和动植物油。由此可见,红外光度法比重量法更适合水中油类物质的分析测定,这也是分析方法的一种进步。
二.方法的适用范围及排放标准
重量法(CJ/T51-2004)只适用于测定城市污水中的油,适用范围狭窄。而红外光度法(GB/T16488-1996)适用于地表水、地下水、生活污水、工业废水中石油类和动植物油的测定。另外在环境监测中还可用于餐饮业的厨房油烟的测定,适用范围相当广泛。在中华人民共和国《污水综合排放标准》(GB8978-1996)中,将红外光度法作为检测油类物质的标准方法。在中华人民共和国城镇建设行业标准《污水排入城市下水道水质标准》(CJ3082-1999)中,分别将重量法和红外光度法作为检测油类物质的标准方法。
用不同的方法测定油类物质,其排放标准也不同。排放标准见下表1。
表1排放标准
排放标准编号 污染物
排放标准值(mg/L)
CJ 3082-1999
油脂
100
矿物油类
20
GB8978-1996
污染物
一级标准
二级标准
三级标准
石油类
10
10
30
动植物油
20
20
100
三.萃取溶剂
重量法萃取时使用的是石油醚溶剂,此溶剂沸程为30℃-60℃,极易挥发,易燃,其蒸气与空气能形成爆炸性混合物,因此一般当温度超过30℃时此方法就不能使用,这样就给城市污水的监测带来了极大的局限性。而红外光度法萃取时使用的溶剂是四氯化碳,四氯化碳对于油类是一种优良的溶解溶剂,而且四氯化碳沸点为76.5℃,其使用不会受到外界温度的限制。红外光度法对四氯化碳的纯度要求较高,有时不同批号的四氯化碳空白值也存在较大差异。因此当同批样品较多时,应将多瓶四氯化碳混和后使用,以减少四氯化碳空白值的变动对最终测定结果的影响。但必须注意到四氯化碳是一种有毒溶剂,长期使用会影响操作者的身体健康,吸入过量会引起中毒,因此必须在通风良好的环境下操作。
四.操作过程
重量法测定样品时,操作时间长,方法繁琐,对于油含量很低的样品测定误差大,但其测定成本相对来说较低。红外光度法测定样品时,简便快速,方法成熟,而且目前国内外有许多自动化程度相当高的红外测油仪,其操作简单,分析效率高,精度也相当高。
五.检出限
重量法的检出限为5mg/L,小于5 mg/L的样品误差大。而红外光度法的检出限可达到0.1mg/L,对于油含量很小的样品其测定结果也准确可靠,这是红外光度法最显著的优点。
六.准确度
对于重量法(CJ/T51-2004),目前国内还没有一种专门的标准物质来测定其回收率。该方法也没有明确指出所能达到的精密度。而对于红外光度法,可使用专门由国家环境保护总局标准样品研究所研制的矿物油标准,通过测定标准样品的回收率和加标回收率来确定检测结果的准确度。
以下是对矿物油标准进行回收率和加标回收率的测定,测定结果见表2,表3。
表2 回收率测定
测定次序 1
2
3
4
5
标准值(mg/L)
5.55
10.4
29.8
56.9
74.5
测定值(mg/L)
5.64
10.3
29.7
57.7
73.6
回收率%
102
99.0
99.7
101
98.8
实验结果表明,用该方法测定的回收率可达到98.8%—102%。
给好评啊 亲
C. 炼油厂污水及其处理方法是什么
炼油厂的生产过程需要大量的水,虽然大部分水可循环使用,但是仍会产生废水,其数量约是原油加工量的60%~70%。炼油厂废水中含有有害的物质,必须经过处理后才能排放。
废水中有害物质的成分很复杂,而且各厂也不尽相同。所以,一般用“需氧量”作为综合衡量其被污染程度的指标,因为炼油厂废水中的杂质大多是有机物,它们在一定条件下都可被氧化,其氧化所需氧量基本与废水中污染物的含量相对应。测定废水需氧量的方法有化学法和生物化学法两种,所得结果分别用“化学耗氧量”和“生物耗氧量”来表示,它们的英语缩略语相应为“COD”(全称为:Chemical Oxidation Demand)和“BOD”(全称为:Biological Oxidation Demand)。
炼油厂废水的处理至少需经过以下环节才能排放。第一是隔油。炼油厂的废水里都混有一些污油,由于油轻于水,会不断浮升到水面而形成油膜,可通过隔油池被刮去。
经过隔油池后,废水里所含油明显减少,但是还存在一些很细的、悬浮在水里不会自动浮到水面的小油珠。炼油厂废水处理的第二个环节是要用凝聚和气浮的方法除掉这些小油珠。人类早就知道使用的明矾可以净化水,其实质也是利用明矾在水中的凝聚作用。炼油厂处理废水则用的是高效率的凝聚药剂。气浮法就是使凝聚的油珠等杂质粘附在不断上浮的小空气泡的周围,并升到水面形成浮渣,这样便可很容易地被刮掉。
最后,对废水中还有的被溶解的杂质,可用生物化学方法,就是利用自然界存在的各种微生物(例如,细菌)来分解废水中可溶性的杂质。细菌可以把溶于水的杂质转化为不溶于水的、可以分离的物质。
炼油厂废水通过上述三个环节,一般就可以达到排放标准了。但是,为了万无一失,有时最后还增加一个环节:通过活性炭吸附,这样处理的废水就更加纯净了。
当处理含有硫化物和氨类很多的废水时,通常在进入隔油池之前,再增加一个预处理环节:先用水蒸气驱排大部分硫化氢和氨类,然后再对废水进行处理。
D. 污水中的含油量,都用什么分析方法
含油废水主要来自于石油,石化,钢铁,焦化,煤气站,机械加工回等工业部门。废水中的油污答染物,除了至少为1.1重量焦油的相对密度,小于1油物质的废水中的相对密度的其余部分通常是三种状态。 (1)浮动油滴尺寸大于100微米,从废水中容易地分离。 (2)分散的油。间10液滴直径100μm左右,肯浮在水面上。 (3)乳化油,液滴尺寸小于10微米,容易从废水分离。由于在工业部门中含油污水的浓度差排出大,如在炼油过程中产生的废水,中石油大约为1501000mg / L时,焦化约500废水焦油含量为800mg到/ L,废水排放气体站高达2000的焦油含量为3000mg / L。因此,含油废水处理的应先用隔油,浮油或重油回收,60%的处理效率,以80%的油在水中的约100至200毫克/ L,废水的乳化油和分散油更难以治疗,应该防止或减轻乳化。一种方法是要注意减少油浪费在制造过程中的乳化;第二,在此过程中,以最小化的次数,泵提升的废水,以免增加乳化程度。处理方法常用的浮选法和破乳。
E. 油化废水用什么方法处理最好
粗粒化法:粗粒化法系利用钢丝、塑料(聚乙烯、聚苯乙烯等),合成纤维等疏水亲油性材料做成纤维状集合体或粒状体,作为粗粒化介质,在一定压力下,使废水通过这些介质。废水中的微细油粒就在粗粒化介质表面逐段聚结成较大油滴,并借助水流冲力或波纹板出口的塑料微孔曝气管喷出的微小气泡,迅速上浮至水面,达到油水分离之目的。粗粒化油水分离使废水含油从200.300rag/1,下降至20mg/1以下。
电解凝聚浮选法:在污水处理池内装有间距为5-20mm的电极,通入几伏的直流电,阳极电析出氧,阴极电析出氢。在氧和氢气泡上浮时,将油粒夹带到水面。采用铝板、铁板和不锈钢板作阳极,使在电解过程中溶解出Al。或Fe,进入水中形成氢氧化物胶体,使水中呈阴电性的乳化油发生电中和而破乳,提高处理能力,可使废水含油率降至10rag/1左右。
该法具有处理效果好,占地面积小,操作方便,浮渣量少,投资省等优点。该法缺点是阳极金属耗损大,若处理量为5000米/日,每年消耗钢板18o吨以上。
化学凝集法:含油污水绝大多数系水包油型乳化液,稳定而难以聚积分离。向废水中投加多价金属盐,如铅盐,铁盐等,使之水解为氢氧化离子,中和油滴表面负荷,能促使油滴汇合成大油滴上浮,即使乳化液破乳。多价金属离子与少量高分子凝聚剂并用时,效果更好。
化学凝聚法处理速度快,装置小,但药荆较贵,污泥生成量多。该法常用作隔油池出水的深度处理。
活性炭吸附法:主要用于除去水溶性油,常作为其它处理方法的后处理手段。
生化法:含油污水经隔油、浮选等处理后,出水含油仍达20·30mg/1,达不到国家规定的排放标准,尚需采用生化法进行处理。我国石油化工企业采用较多的是生物滤池,活性污泥法来自石油或矿物油的衍生物,属非极性的石油烃类,较难被生物降解,一般进水浓度应控制在30mg/l以下‘另一类来自含硫、氧、氮、碳氢化合物衍生物的油类,如植物油、有机酸、有机碱等,属于极性化台物,较易被生物降解,一般进水含量可达lOOmg/1。
F. 生活废水中的动植物油是油脂吗
是的。只要是油类的东西都可以算是油脂。
G. 水质化验的水质检测方法
水质 化学需氧量(COD)的测定
1 主题内容与适用范围
本方法适用于水样中化学需氧量(COD)的测定,测定范围为0~1500mg/L。
2 仪器及用具
2.1 分光光度计:HACH DR2000;
2.2 COD消化器。
3 试剂
3.1 COD消化液。
4 分析步骤
4.1 样品制备
吸取2mL混匀水样于COD消化液试剂瓶中,混合均匀。然后将试剂瓶置于COD消化器中,150℃恒温加热2小时。取出冷却至室温比色。同时用蒸馏水代替试样进行空白试验。
4.2 比色
4.2.1 按POWER 键打开仪器,仪器预热结束后输入数字键435,按READ/ENTER 键确认;
4.2.2 转动波长旋钮将波长调至620nm,按READ/ENTER 键确认;
4.2.3 将空白试样瓶放入检测槽中,按ZERO 键,调零;
4.2.4 将试样瓶放入检测槽中,按READ/ENTER 键,读取读数。结果以mg/L计。
备注:对于COD较大的水样(如精炼厂、榨油厂污水和中和水)需将水样稀释后再进行检测。
水检测方法
水质 PH值的测定
1 主题内容与适用范围
本方法适用于水样中PH值的测定。
2 原理
PH值由测量电池的电动势而得。在25℃时,溶液每变化1个PH单位,电位差改变59.16mV,据此在酸度计上直接以PH的读数表示。
3 仪器及用具
3.1 PH计;
3.2 电极。
4 试剂
4.1 标准PH缓冲溶液:PH 4.003、PH 6.864、PH 9.182;
4.2 蒸馏水。
5 分析步骤
5.1 按仪器使用说明书启动仪器,并预热半小时;
5.2 用标准PH缓冲溶液校准电极;
5.3 用蒸馏水水冲洗电极,然后将电极放入样品中,按动测量钮,待数据稳定后读取PH值。
水检测方法
水质 电导率的测定
1 主题内容与适用范围
本方法适用于水样中电导率的测定,测定范围0~10000us/cm。
2 原理
电导度(S)是用来表示水中离解成分的导电性能,它是水溶液电阻的倒数。它与水中总离解成份的总浓度、离子价数、各种离子的相对浓度、迁移度、温度等条件有关。
电导率(K)为距离1cm,截面积1cm2的二电极之间介质的电阻倒数。
3 仪器及用具
3.1 便携式电导仪:EP-10型。
4 分析步骤
用蒸馏水冲洗电导仪检测杯三次,将冷却至室温的样品倒入检测杯内,调节旋钮选择设定参数比例,按住检测按钮,读出数据。
水检测方法
水质 含油量的测定
1 主题内容与适用范围
本方法适用于水样中含油量的测定。
2 仪器及用具
2.1 恒温水浴锅;
2.2 空气烘箱;
2.3 电子天平;
2.4 分液漏斗:500mL;
2.5 平底烧瓶: 带标准磨口的250mL平底烧瓶;
2.6 冷凝回收装置:与平底烧瓶磨口配套。
3 试剂
3.1 石油醚: 分析纯。
3.2 氯化钠: 分析纯。
3.3 无水硫酸钠:分析纯。
4 分析步骤
4.1 量取混匀水样100mL于三角烧瓶中,加入2g氯化钠,轻轻摇晃使氯化钠溶解;
4.2 加入25ml石油醚充分振摇,将混合液倒入分液漏斗中,静置分层收集上层液;
4.3 用25mL石油醚分别洗涤混合液两到三次;
4.4 收集所有上层液于碘量瓶中,加入无水硫酸钠脱水,加盖静置半小时,过滤到烘至恒重的平底烧瓶中;
4.5 将平底烧瓶置于水浴锅中,连接上冷凝回收装置,回收溶剂;
4.6 再将平底烧瓶置于105℃烘箱中烘干1小时,取出冷却称重;
4.7 再复烘半小时,直到前后重量差值小于0.002g为止。
5 计算
W2-W1
含油量(mg/L) = --------------- ×1000000
V
式中:W2 ---- 平底烧瓶与油的重量,g;
W1 ---- 平底烧瓶的重量,g;
V ------ 水样体积,mL。
水检测方法
水质 碱度的测定
1 主题内容与适用范围
本方法适用于水样中碱度的测定。
2 原理
用酚酞做指示剂,用标准酸溶液滴定水样,达到终点,所测得的碱度称为酚酞碱度,此时水样中所含全部氢氧根和二分之一碳酸根与酸化合。在滴定酚酞碱度的水样中加入甲基橙指示剂,继续用标准酸溶液滴定达到终点时(包括酚酞碱度的用量),所测得的碱度称为甲基橙碱度,也称总碱度,此时水样中所含碳酸氢根全部被中和。
3 仪器及用具
3.1 三角烧瓶:250mL;
3.2 滴定管:50mL。
4 试剂
4.1 盐酸标准溶液: 0.1mol/L。
4.2 酚酞指示剂: 10g/L的95%乙醇溶液。
4.3 甲基橙指示剂:1g/L的水溶液。
5 分析步骤
5.1 酚酞碱度的测定(P-碱)
量取100mL水样于三角烧瓶中,加三滴酚酞指示剂,若不显色,说明酚酞碱度为零,若显红色,用盐酸标准溶液滴定至红色刚好褪去为终点,记录盐酸标准溶液用量(V1)。
5.2 总碱度的测定(T-碱)
在测定酚酞碱度后的水样中,再加入1滴甲基橙指示剂,继续用盐酸标准溶液滴定至刚好出现橙红色为终点。记录下盐酸标准溶液的用量(包括酚酞碱度用量)V2。
6 计算
c×V2
酚酞碱度(meq/L) = ---------------
100
c×V3
总碱度(meq/L) = ---------------
100
式中:c ---- 盐酸标准溶液浓度,mol/L;
V2 --- 用酚酞指示剂时,滴定消耗盐酸标准溶液体积,mL;
V3 ----- 用甲基橙指示剂后,滴定消耗盐酸标准溶液体积,mL。
注:设水中的碱度全部由氢氧化物、碳酸盐、重碳酸盐形成,并认为不存在其它弱无机酸和有机酸,并假定氢氧化物与重碳酸根不共存的条件下,水中氢氧化物、碳酸根、碳酸氢根的关系如下表 滴定结果 氢氧化物碱度以(CaCO3)计 碳酸盐碱度以(CaCO3)计 碳酸氢根碱度以(CaCO3)计 P=0 0 0 T 2P<T 0 2P T-2P 2P=T 0 2P 0 2P>T 2P-T 2(T-P) 0 P=T T 0 0 毫克当量/升(meq/L)值100.08×÷2即为以碳酸钙计的毫克/升(mg/L)值。
水检测方法
水质 氯离子的测定
1 主题内容与适用范围
本方法适用于水样中氯离子的测定,其范围小于100mg/L。
2 原理
在中性介质中。硝酸银与氯化物反应生成氯化银白色沉淀,当水样中氯离子全部与硝酸银反应后,过量的硝酸银与铬酸钾指示剂反应生成砖红色铬酸银沉淀。
3 仪器及用具
3.1 三角烧瓶:250mL;
3.2 滴定管:50mL;
4 试剂
4.1 硝酸银标准溶液: 0.1mol/L。
4.2 铬酸钾指示剂: 100g/L的水溶液。
5 分析步骤
量取100mL水样于三角烧瓶中,加三滴铬酸钾指示剂,用硝酸银标准溶液滴定至砖红色为止,同时以蒸馏水做空白试验。
6 计算
c×(V1-V0)×35.45
氯离子含量(mg/L) = ------------------------- × 1000
100
式中:c ---- 硝酸银标准溶液浓度,mol/L;
V1 --- 试样滴定消耗硝酸银标准溶液体积,mL;
V0 ----- 空白滴定消耗硝酸银标准溶液体积,mL;
35.45----- 氯离子的摩尔质量,克/摩尔。
注:0.1mol/L硝酸银标准溶液的标定
称取于500~600℃灼烧至恒重的基准试剂氯化钠0.15~0.17g于三角烧瓶中,加入60mL蒸馏水,铬酸钾指示剂2滴,用0.1mol/L硝酸银标准溶液滴定由黄色变为黄红色不消失即为终点。
m×1000
C(AgNO3)= ------------------------
V×58.442
式中:m ---- 氯化钠的重量,g;
V --- 硝酸银溶液的体积,mL;
58.442 ----- 氯化钠的摩尔质量,g/mol。
水检测方法
水质 溶解氧的测定
1 主题内容与适用范围
本方法适用于水中溶解氧的测定。
2 仪器及用具
2.1 便携式溶解氧测定仪:JPB-607型;
2.2 溶解氧电极:DO-952型。
3 试剂
3.1 5%亚硫酸钠溶液: 称取5克亚硫酸钠溶于100毫升蒸馏水中。
4 分析步骤
4.1将仪器的测量/调零电源开关拨至“测量”档,溶氧/温度测量选择开关拨至溶氧档,盐度调节旋钮向左旋至底(0g·L-1);
4.2仪器预热5分钟,然后将电极放入5%新鲜配制的亚硫酸钠溶液中5分钟,等读数稳定后,调节调零旋钮,使仪器显示为零。由于电极的残余电流极小,如果没有亚硫酸钠溶液,只要将电极放在空气中,然后将测量/调零电源开关置于调零,调节调零档,调节调零旋钮,使仪器显示为零;
4.3 将电极从溶液中取出,用蒸馏水水冲洗干净,用滤纸小心吸干薄膜表面水分,放入空气中等读数稳定后,调节校准旋钮,使读数指示值为纯水在此温度下饱和溶解氧值。各种温度下饱和溶解氧值见附表;
4.4 校准之后,将电极浸入被测液中,此时仪器的读数即为被测水样的溶解氧值。
备注:1.下表中的栏2是氧溶解氧度(Cs)。以每升水含若干毫克氧表示:在101.3kPa压力下。纯水中含有带饱和水蒸汽的空气时,含氧量为20.94%(v/v)。
2.氧在水中的溶解度随含盐度的增加而降,其关系是线性关系,实际上水的含盐量可高达35g/L,含盐量以每升水中含多少克盐表示之。下表中所列的△C3,是进行校准时每升每克盐浓度要减去的数值。因此,氧在含有mg/L盐水中溶液解度,要用对应的纯水的氧溶解度减去n△C3的数值可求得。
氧在不同温度和氯化物浓度的水中饱和含量表(气压101.3kPa) 温度(℃) C3(mg/L) △C3(mg/L) 温度(℃) C3(mg/L) △C3(mg/L) 0 14.64 0.0925 20 9.08 0.0481 1 14.22 0.0890 21 8.90 0.0467 2 13.82 0.0857 22 8.73 0.0453 3 13.44 0.0827 23 8.57 0.0440 4 13.09 0.0798 24 8.41 0.0427 5 12.74 0.0771 25 8.25 0.0415 6 12.42 0.0745 26 8.11 0.0404 7 12.11 0.0720 27 7.96 0.0393 8 11.81 0.0697 28 7.82 0.0382 9 11.53 0.0675 29 7.69 0.0372 10 11.26 0.0653 30 7.56 0.0302 11 11.01 0.0633 31 7.43 12 10.77 0.0614 32 7.30 13 10.53 0.0595 33 7.18 14 10.30 0.0577 34 7.07 15 10.08 0.0559 35 6.95 16 9.86 0.0543 36 6.84 17 9.66 0.0527 37 6.73 18 9.46 0.0511 38 6.63 19 9.27 0.0496 39 6.53 水检测方法
水质铁离子的测定
1 主题内容与适用范围
本方法适用于水中铁离子的测定。
2 仪器及用具
2.1 分光光度计:HACH DR2000;
2.2 专用样品瓶:25mL。
3 试剂
3.1 乙酸铵缓冲溶液:250g乙酸铵溶于150mL蒸馏水中,再加入700mL冰乙酸。
3.2 邻菲咯啉溶液:1g邻菲咯啉溶于蒸馏水中,加20滴浓盐酸,用蒸馏水定容至1000mL。
3.3 溶液A:乙酸铵缓冲溶液:邻菲咯啉溶液=1:2的体积比混合。
4 分析步骤
4.1 样品制备
量取50mL混匀水样于100mL容量瓶中,加入30mL溶液A,用蒸馏水定容至100mL混合均匀。同时用蒸馏水代替水样进行空白试验。5~10分钟内比色。
4.2 比色
4.2.1 按POWER 键打开仪器,仪器预热结束后输入数字键255,按READ/ENTER 键确认;
4.2.2 转动波长旋钮将波长调至510nm,按READ/ENTER 键确认;
4.2.3 倒25mL空白试样于样品瓶中,放入检测槽中,按ZERO键,调零;
4.2.4 将混合均匀的试样倒入样品瓶中,放入检测槽中,按READ/ENTER 键,读取读数。读数×2为试样Fe2+含量,结果以mg/L计。
水检测方法
水质 悬浮物的测定
1 主题内容与适用范围
本方法适用于水中悬浮物的测定。
2 仪器及用具
2.1 分光光度计:HACH DR2000;
2.2 专用样品瓶:25mL。
3 分析步骤
3.1 按POWER 键打开仪器,仪器预热结束后输入数字键630,按READ/ENTER 键确认;
3.2 转动旋钮将波长调至810nm,按READ/ENTER 键确认;
3.3 倒25mL蒸馏水于样品瓶中,放入检测槽中,按ZERO键调零;
3.4 将混合均匀的试样倒入样品瓶中,放入检测槽中,按READ/ENTER 键,读取读数,结果以mg/L计。
水检测方法
水质余氯的测定
1 主题内容与适用范围
本方法适用于自来水中余氯的测定。
2 原理
水样中的余氯与邻联甲苯胺反应显黄色,与标准玻片进行比色测定。
3 仪器及用具
3.1 立式比色器:SLS-3型;
3.2 比色管:50mL。
4 试剂
4.1 邻联甲苯胺溶液:将150mL浓盐酸用蒸馏水稀释至500mL,精确称取1.35g邻联甲苯胺盐酸盐溶于500mL蒸馏水中,在不停搅拌下,将此溶液溶于500mL稀盐酸中,贮于棕色瓶内,放置暗处。
5 分析步骤
在50毫升比色管中加入被测水样至刻度,然后加入邻联甲苯胺溶液2.5毫升混合均匀。静置10分钟进行比色,如水温低于15~20℃时,则将水样浸入温水中加热至15~20℃以上再进行比色。空白水样取样后不加试剂。
水检测方法
水质 浊度的测定
1 主题内容与适用范围
本方法适用于水样浊度的测定。
2 仪器及用具
2.1 分光光度计:HACH DR2000;
2.2 专用样品瓶:25mL。
3 分析步骤
3.1 按POWER 键打开仪器,仪器预热结束后输入数字键750,按READ/ENTER 键确认;
3.2 转动旋钮将波长调至450nm,按READ/ENTER 键确认;
3.3 倒25mL蒸馏水于样品瓶中,放入检测槽中,按ZERO键调零;
3.4 将混合均匀的试样倒入样品瓶中,放入检测槽中,按READ/ENTER 键,读取读数,结果以FTU计。
水检测方法
水质总磷的测定
钼酸铵分光光度法
1 主题内容与适用范围
本标准规定了用过硫酸钾为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度测定总磷的方法。
总磷包括溶解的、颗粒的、有机的和无机磷。
本标准适用于地面水、污水和工业废水。
2 原理
在中性条件下用过硫酸钾使试样消解,将所含磷全部转化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。
3 仪器及用具
3.1 具塞(磨口)比色管:50mL
3.2 加热板
3.3 刻度吸管: 5mL,2mL,1mL
3.4 紫外分光光度计
3.5 烧杯:1000mL
4 试剂
本标准所列试剂除磷酸二氢钾为工作基准试剂外,其余均为分析纯,水为蒸馏水。
4.1 过硫酸钾溶液: 50g/L。 将25g过硫酸钾溶于水并稀释至500mL。
4.2 钼酸铵溶液: 26g/L。称取13g钼酸铵,精确至0.1g。称取0.35g酒石酸锑钾,精确至0.01g。溶于在200mL水中,加入300mL硫酸溶液,混匀,冷却后用水稀释至500mL,混匀,存于棕色试剂瓶中(冷藏可保存两个月)。
4.3 抗坏血酸溶液:100g/L。称取50g抗坏血酸,精确至0.1g。溶于蒸馏水中,用水稀释至500mL,贮于棕色试剂瓶中(冷藏可稳定几周,如不变色可长时间使用)。
4.4 磷标准贮备溶液:1mg/mL。溶解磷酸二氢钾(使用前在105℃下干燥2h)1.0967g于蒸馏水中,移入250mL容量瓶中,稀释至刻度,摇匀。
4.5 磷标准工作溶液:10ug/mL。吸取5mL磷标准储备溶液于500mL容量瓶中,以蒸馏水稀释至刻度,摇匀。
5 分析步骤
5.1 空白试样
按(5.2)的规定进行空白试验,用水代替试样,并加入与测定时同体积的试剂。
5.2 测定
5.2.1 消解
吸取5mL混匀水样于50mL具塞比色管中,加入 5mL过硫酸钾溶液(4.1),用蒸馏水稀释至25mL,将比色管置于沸水浴中加热30分钟,取出冷却至室温。
5.2.2 发色
分别向各份消解液中加入1mL抗坏血酸溶液(4.3),2mL钼酸铵溶液(4.2),用蒸馏水稀释至50mL,充分混合均匀。
5.2.3 分光光度测量
室温下放置30分钟后,使用光程为10mm比色皿,在700nm波长下,以蒸馏水为参比液,空白试液调节零点,测定吸光度后,从工作曲线(5.2.4)上查得磷的含量。
5.2.4 工作曲线的绘制
取6支具塞比色管分别加入0.0;0.50;1.0;2.0;3.0;4.0mL磷标准溶液(4.5)。然后按步骤(5.2)进行处理,以蒸馏水为参比液,空白试液调节零点,测定吸光度后,和对应的磷的含量绘制工作曲线。
6 计算
总磷含量以C(mg/L)表示,按下式计算:
m×X
C = --------
V
式中:m ---- 试样测得含磷量,ug;
X --- 样品稀释倍数;
V ---- 测定用试样体积,mL。
注:1、对于总磷较大的水样(如精炼厂、榨油厂污水和中和水)需将水样稀释50倍后再进行检测;排放水采样量为10mL。
2、若消解后的试样有悬浮物需过滤后再发色。
水检测方法
水质总硬度的测定
1 主题内容与适用范围
本方法适用于水样中总硬度的测定。
2 原理
在PH=10时,乙二胺四乙酸二钠(EDTA)和水中的钙镁离子生成稳定络合物,指示剂铬黑T也能与钙镁离子生成葡萄酒红色络合物,其稳定性不如EDTA与钙镁离子所生成的络合物,当用EDTA滴定接近终点时,EDTA自铬黑T的葡萄酒红色络合物夺取钙镁离子而使铬黑T指示剂游离,溶液由酒红色变为蓝色,即为终点。
3 仪器及用具
3.1 三角烧瓶:250mL;
3.2 滴定管:50mL;
3.3 刻度吸管:1mL。
4 试剂
4.1 乙二胺四乙酸二钠(EDTA)标准溶液: 0.05mol/L。
4.2 硬度缓冲溶液: (1)称取16.9g氯化铵,溶于143mL浓氨水中。(2)称取0.78g硫酸镁(或0.644g氯化镁或0.381无水硫酸镁)及1.179g乙二胺四乙酸二钠溶于50mL蒸馏水中。合并(1)&(2)并用蒸馏水定容至250mL。(可保存一个月)
4.3 铬黑T指示剂:5g/L。称取0.5g铬黑T和2g氯化羟胺(盐酸羟胺),溶于95%乙醇并定容至100mL。
5 分析步骤
5.1 取澄清水样100mL于三角烧瓶中,加入1mL硬度缓冲溶液,3滴铬黑T指示剂;
5.2 用乙二胺四乙酸二钠标准溶液激烈振荡滴定至溶液由玫瑰红变为天蓝色为止。
5.3 同时用100mL去离子水或蒸馏水做空白试验。
6 计算
c×(V-V0)
总硬度(meq/L) = --------------- ×1000
100
式中:c ---- 乙二胺四乙酸二钠标准溶液浓度,mol/L;
V0 --- 空白试验滴定消耗乙二胺四乙酸二钠标准溶液体积,mL;
V ----- 试样滴定消耗乙二胺四乙酸二钠标准溶液体积,mL;
H. 如何检测压缩空气的油含量和水含量
如何检测压缩空气的油含量和水含量
压缩空气油水分离器,用于分离压缩空气中凝聚的水分和油分等杂质,使压缩空气得到初步净化。一般使用压力0.1Mpa-2.5Mpa。其工作原理是:当压缩空气进入油水分离器后产生流向和速度的急剧变化,再依靠惯性作用,将密度比压缩空气大的油滴和水滴分离出来。对常见的撞击式和环形回转式油水分离器来说,压缩空气自入口进入分离器壳体后,气流先受隔板阻挡撞击折回向下,继而又回升向上,产生环形回转。这样使水滴和油滴在离心力和惯性力作用下,从空气中分离析出并沉降在壳体底部,定期打开底部阀门即可排出油滴水滴。经初步净化的空气从出口送往储气罐。
油水分离器是由外壳、分离器、滤芯、排污部件等组成。当含有大量油和水固体杂质的压缩空气进入分离器后,沿其内壁旋而下,所产生的离心作用,使油水从汽流中析出并沿壁向下流到油水分离器底部,然后再由滤芯进行精过滤。因滤芯采用的是粗、细、超细三种纤维滤材折叠而成,具有很高的过滤效率(可达98%以上)并且阻力小,气体通过滤芯时,由于滤芯的阻挡,惯性碰撞以及分子间的范德华力,静电吸引力和真空吸力而被牢牢的粘附在滤材纤维上,并逐渐增大变成液滴,在重力作用下滴入分离器底部。由排污阀排出。
需要注意的几点:
1.装置要正确安装,并要有资质的操作工按照操作指南进行调试和维护,才能使其安全运行;
2.安装维修时不关闭隔离阀将对系统的部件造成损害,对人体造成伤害,危险还包括:关闭了保护装置和通气管道或者报警系统。确保隔离阀关闭,避免系统的冲击;
3.压力:维护维修时要考虑油水分离器管道中是否有介质,要确保压力介质已被隔离并且安全气道已通向大气,以通过安装排空阀来解决,即使压力表指示为零也不要认为系统以排空;
4.温度:关闭隔离阀后要有一段时间使操作部位接近常温,避免烫伤。;
5.处置:产品可再循环。处理得当不会引起生态问题。
I. 油砂含油率和含油饱和度
油砂含油率是就是油砂中油的重量百分含量,是评价油砂资源的重要指标。目前,国外以化学方法测定含油率是应用改良式索氏抽提法。
含油饱和度是指油砂中原油体积所占油砂储层孔隙体积的百分数。
对于浅钻井油砂含油率根据油砂样品对应的油砂层厚度加权平均进行取值。对于无钻井取心分析资料控制的计算单元,利用地面油砂样品的分析结果进行含油率恢复,针对不同地区的地质条件,采用不同的恢复系数。
南方沥青矿的含油率可用沥青的体积百分含量(有效面孔率)与含沥青饱和度的乘积表示。含沥青岩石的有效面孔率主要根据露头尺度的照片,并结合单个样品的薄片统计结果综合确定。当一个矿区有两件以上样品时,取不同样品有效面孔率的厚度加权平均值,作为该矿区的含沥青岩石的平均有效面孔率。
含沥青饱和度主要根据样品的薄片统计结果计算,即含沥青孔隙占总孔隙的比率。同一矿点多个薄片分别统计,取算术平均值。
含沥青岩石中纯沥青比重r可通过实测结果获得,本次工作中利用中石化南方勘探开发公司实测结果,取纯沥青比重为1.50t/m3。
有效总孔隙率与有效面孔隙率之比m,参考四川石油管理局研究成果,该参数统一取1.4。
J. 废水测含油量的方法,
你别告诉我说不用国标啊!
重量法
原理以硫酸酸化水样用石油醚萃取矿物油蒸除石油醚后称其重量此法测定的是酸化样品中可被石油醚萃取的且在试验过程中不挥发的物质
总量溶剂去除时使得轻质油有明显损失由于石油醚对油有选择地溶解因
此石油的较重成分中可能含有不为溶剂萃取的物质
仪器
1.分析天平
2.恒温箱
3.恒温水浴锅
4.1000mL 分液漏斗
5.干燥器
6.直径11cm 中速定性滤纸
试剂
1.石油醚将石油醚沸程30 60 重蒸馏后使用100mL 石油醚的蒸
干残渣不应大于0.2mg
中国化工仪器网版权所有未经书面授
权不得以任何形式进行复制
2.无水硫酸钠在300 马福炉中烘1h 冷却后装瓶备用
3.1+1 硫酸
4.氯化钠
测定步骤
1.在采集瓶上作一容量记号后以便以后测量水样体积将所收集的大约
1L 已经酸化pH 2 水样全部转移至分液漏斗中加入氯化钠其量约为
水样量的8% 用25mL 石油醚洗涤采样瓶并转入分液漏斗中充分摇匀3min
静置分层并将水层放入原采样瓶内石油醚层转入100mL 锥形瓶中用石油醚
重复萃取水样两次每次用量25mL 合并三次萃取液于锥形瓶中
2.向石油醚萃取液中加入适量无水硫酸钠加入至不再结块为止加盖后
放置0.5h 以上以便脱水
3.用预先以石油醚洗涤过的定性滤纸过滤收集滤液于100mL 已烘干至恒
重的烧杯中用少量石油醚洗涤锥形瓶硫酸钠和滤纸洗涤液并入烧杯中
4.将烧杯置于65 5 水浴上蒸出石油醚近于后再置于65 5 恒温箱内
烘干1h 然后放入干燥器中冷却30min 称量
计算
中国化工仪器网版权所有未经书面授
权不得以任何形式进行复制
式中 W1 烧杯加油总重量g
W2 烧杯重量g
V水样体积mL
注意事项
1.分液漏斗的活塞不要涂凡士林
2.测定废水中石油类时若含有大量动植物性油脂应取内径20mm 长
300mm 一端呈漏斗状的硬质玻璃管填装100mm 厚活性层析氧化铝在
150 160 活化4h 未完全冷却前装好柱然后用10mL 石油醚清洗将石
油醚萃取液通过层析柱除去动植物性油脂收集流出液于恒重的烧杯中
3.采样瓶应为清洁玻璃瓶用洗涤剂清洗干净不要用肥皂应定容采样
并将水样全部移入分液漏斗测定以减少油附着于容器壁上引起的误差