『壹』 酚类物质是什么
是芳烃的含羟基衍生物,根据其挥发性分挥发性酚和不挥发性酚。自然界中存在的酚类化合物大部分是植物生命活动的结果,植物体内所含的酚称内源性酚,其余称外源性酚。酚类化合物都具有特殊的芳香气味,均呈弱酸性,在环境中易被氧化。酚类化合物的毒性以苯酚为最大,通常含酚废水中又以苯酚和甲酚 的含量最高。目前环境监测常以苯酚和甲酚等挥发性酚作为污染指标。 环境中的酚污染主要指酚类化合物对水体的污染,含酚废水是当今世界上危害大、污染范围广的工业废水之一,是环境中水污染的重要来源。在许多工业领域诸如煤气、焦化、炼油、冶金、机械制造、玻璃、石油化工、木材纤维、化学有机合成工业、塑料、医药、农药、油漆等工业排出的废水中均含有酚。这些废水若不经过处理,直接排放、灌溉农田则可污染大气、水、土壤和食品。 酚是一种中等强度的化学毒物,与细胞原浆中的蛋白质发生化学反应。低浓度时使细胞变性,高浓度时使蛋白质凝固。酚类化合物可经皮肤粘膜、呼吸道及消化道进入体内。低浓度可引起蓄积性慢性中毒,高浓度可引起急性中毒以致昏迷死亡。一般来讲,酚进入人体后机体通过自身的解毒功能使之转化为无毒物质而排出体外。只有当摄入量超过解毒功能时才有蓄积而导致慢性中毒,表现为头晕、头痛、精神不安、食欲不振、呕吐腹泻等症状。 由于酚的用途极为广泛,预防其污染的工作也很困难。在生产和使用酚的工厂必须建立严格的操作制度,谨防酚的外泻。同时要搞好废水的回收利用和生物氧化处理,严禁含酚废水排入渗井、渗坑,以免污染地下水。
『贰』 含酚废水有何危害,怎样处理
酚类物质是美国国家环境保护总署(EPA)列出的129种优先控制的污染物之一,会危害水生生物的繁殖和生存。人体慢性酚中毒会导致诸如头痛、呕吐、吞咽困难、肝脏受损、昏晕等症状。
含酚废水处理方法主要包括溶剂萃取法,蒸汽脱酚法,吸附法,离子交换法,氧化法和生化法,其中
萃取法:萃取法有使用溶剂萃取,如苯、甲苯、醚类、醋酸丁酯做萃取剂萃取,也可以使用络合萃取剂萃取(如N503)。
蒸汽脱酚法:适用于处理含挥发酚为主的废水,利用酚与水蒸汽形成共沸使得酚从废水中脱离。
吸附法:常用的是利用活性炭进行吸附,以达到将水中酚含量降低的效果。
离子交换法: 常见的是以离子交换树脂吸附,采用公司特有的溶剂进行树脂再生及酚回收。
氧化法:氧化法有试剂氧化、臭氧氧化、微电解氧化、光催化氧化法、湿式氧化、超声 /H 2 O 2 法、ClO 2 氧化法等;具体使用工艺需要根据实际情况定。
生化法:利用酚作为微生物的营养,通过生物自身代谢分解,将废水中的酚含量除去。
三里枫香公司在为安徽某公司处理含酚废水时,首先采用了“气浮+蒸馏+吸附”的联合工艺,将水中酚含量降低到5mg/L以内,再通过生化处理,将水中酚含量降低到0.3mg/L以内。可以去请他们给你些建议。
『叁』 浅谈氯酚类化合物的污染现状及去除方法论文
1 环境中氯酚类化合物的来源
环境中氯酚类化合物的来源主要有人为源和自然源2 类。人为源主要是来自于炼油、炼焦、造纸、塑料加工等人类的生产活动向环境中排放的含有CPs 的有机化工废水。自然源主要包括2 类:① 由人类使用的一次化学物经过自然界的生物化学过程生成二次的CPs, 如农业生产过程中广泛使用的2,4- 二氯苯氧基乙酸和2,4,5- 三氯苯氧乙酸等杀虫剂通过自然界微生物的代谢作用降解生成CPs 等中间产物; ② 自然物质在某些催化作用下合成CPs, 如土壤腐殖泥层中的无机氯盐和有机化合物在过氧氯化酶的催化作用下会生成CPs,如4-CP、2,5-DCP、2,4-DCP、2,6-DCP 和2,4,5-TCP等。
2 氯酚类化合物的环境污染水平
由于氯酚类化合物是一类用途广、毒性大的持久性有机污染物(Persistent Organic Pollutants,POPs), 所以, CPs 一旦未经处理或处理不当释放到环境中, 就会污染自然生态环境, 进而威胁人类安全。目前, 关于氯酚类化合物在水体环境、沉积物和土壤环境及水生生物体内大量存在并造成污染的情况已有大量报道。
2.1 水体环境
CPs 广泛分布在水体的表面, 其含量与废水排放源有关。降水及水的流动也很大程度上影响了各种CPs 浓度的变化。有研究报道, 加拿大的Superior湖中被排入纸浆厂废水后, 其中DCP 和TCP 的浓度会迅速上升到4 mg/L 和13 mg/L; 荷兰境内河流及沿海海域中TCP、一氯酚(Mono-CP) 和DCP的浓度分别达到0.0030.l mg/L、320 mg/L 和0.011.5 mg/L。Gao 等研究发现我国北方的黄河、淮河、海河等水体中2,4-DCP 和2,4,6-TCP 的浓度较高, 且北方受其污染比南方严重; 而长江流域受PCP 的污染较为严重, 在85.4% 的地表水样品中能够检出, 且平均浓度达到50.0 ng/L。我国《城市供水水质标准(CJ/T 206-2005)》中将氯酚类化合物列为非常规检验项目, 要求氯酚类总量(含2-CP、2,4-DCP 和2,4,6-TCP) 检出浓度小于0.020 mg/L, 2,4,6-TCP 的最低检测浓度小于0.010 mg/L, PCP 的最低检测浓度小于0.009 mg/L。
2.2 底泥沉积物和土壤环境
CPs 的辛醇/水分配系数(Kow) 较大, 且随着苯环上氯原子个数的增多而增大, 导致其亲脂性增强。所以, 水相中CPs 易转移到底泥沉积物及土壤环境中。因此, CPs 在河流底泥中积累的量要远大于水体中的量, 在底泥沉积物中的环境污染也较为严重。此外, 底泥中CPs的滞留时间和危害程度与CPs 苯环上的氯原子取代基个数成正比。加拿大British Columbi 地区海域内排入了大量含有CPs 的生产废水, 致使海底沉积物中的TCP 和四氯酚(Tetra-CP) 的累积总浓度达96 mg/k。韩国核电站附近海域底泥中CPs 的含量高达0.14516.1 g/kg (干重)。希腊Thermaikos 海湾和Loudia 河沉积物中均检出了2,4-DCP。波兰Dzierzno Duze 水库沉积物中2,4-DCP 的浓度接近0.02 g/kg, 2,4,6-TCP 的浓度为0.010.62 g/kg。此外, 在我国长江中下游地区备受血吸虫病害威胁, 各省长期使用五氯酚钠防治血吸虫, 致使土壤和沉积物中积累了大量PCP。许士奋等检测了长江下游底泥沉积物中的CPs 含量, 发现PCP 浓度最高, 达到0.494.57 g/kg, 占18种待测氯酚含量的39.4 %, 明显高于其他氯酚在长江沉积物中的残留。此外, 张兵等测定洞庭湖区底泥沉积物中PCP 的含量也高达48.3 mg/kg (干污泥)。有监测数据报道, 台湾高雄地区的土壤环境中2-CP 的含量为28103.6 mg/kg[22]。Apajalahti 等检测了利用CPs 防腐的木材加工厂周围的土壤样品, 结果表明样品中PCP 含量达1 g/kg。
2.3 水生生物体
污染物在生物体内的富集效果可用生物富集因子(Bioconcentration Factors, BCF) 来评价。水生植物一般需要1020 min 的时间来完全吸收CPs,对绝大多数植物来说, CPs 的吸收速率随着pH 的升高而减小, 随着温度的升高而增大。对于水生动物或微生物而言, 动物类型、化合物种类和富集条件等因素对水中或食物中CPs 的BCF 有一定影响。蛤砺对PCP 的BCF 为41 78, 河螺对2,4,6-TCP 的BCF 可达7403 020。鳟鱼、金鱼对水中2,4-DCP 的BCF 分别为10 和34, 而藻类对2,4-DCP的BCF 高达257。Kondo 等报道青鳉鱼对2,4-DCP 在其体内的BCF 因CPs 种类和浓度不同而有所差异, 例如: PCP 的累积能力较2,4- DCP 和2,4,6-TCP 更高; 当2,4-DCP 暴露浓度为0.23 g/L和27.3 g/L 时, 其对青鳉的BCF 值分别为340 和92; 当PCP 的暴露浓度为0.07 g/L 和9.7 g/L 时,其对青鳉的BCF 分别为4 900 和2 100。不同鱼类对2,4,6-TCP 的BCF 值也有所不同, 一般在250310之间浮动。王芳等对鲫鱼开展了毒性试验,其研究结果表明鲫鱼的胆、肝、肾和肌肉等器官和组织对CPs 都有明显的吸收, 其中以胆对CPs 的吸收能力最强, 其BCF 值高达2 0006 300。
3 氯酚类化合物的去除方法
目前, 处理CPs 污染物的方法主要集中在生物处理技术、物理化学法、化学还原法和化学氧化法等。
3.1 生物处理技术
CPs 的生物处理技术主要是微生物以CPs 为碳源和能源, 在新陈代谢过程中将CPs 分解去除,主要有好氧生物法、厌氧生物法、厌氧/好氧联合法等工艺。好氧法降解CPs 机理主要有2 种理论:① 氧化开环-脱氯机制:例如, 4-CP 在好氧菌Pseudomonassp. 的单氧化酶的催化作用下, 发生邻位氧化作用生成4-氯-儿茶酚, 然后4-氯-儿茶酚在1,2-双加氧酶的催化诱导下邻位开环生成氯代顺顺粘糖酸, 接着氯代顺顺粘糖酸通过内酯化作用脱去氯原子, 并被氧化成马来酰基乙酸, 进入三羧酸循环(Tricarboxylic Acid Cycle, TAC) , 最终被矿化成CO2 和H2O。② 氧化脱氯-开环机制:Flavobacterium sp. 和Rhodococcuschlorophenolicus 可在好氧条件下将CPs 苯环氧化生成氯代二酚, 接着逐步脱去氯取代基生成单氯二酚或对苯酚, 然后氧化开环, 进一步被矿化成CO2和H2O, PCP 被好氧菌Flavobacterium sp。此外, 好氧微生物在有氧条件下可成功处理含CPs 浓度达0.11.2 g/L 的工业废水。
微生物降解PCP 的反应机理主要是厌氧微生物在无氧条件下, 发生还原脱氯及厌氧发酵, 其主要厌氧降解的途径包括前端还原脱氯、后续厌氧发酵,即PCP 在厌氧条件下还原脱氯生成低氯酚和苯酚。然后, 苯酚在被产乙酸菌的作用下转化为乙酸, 乙酸在产甲烷菌的作用下最终转化成甲烷与CO2 。周岳溪等利用升流式厌氧污泥床反应器(UASB)在中温条件下处理PCP 废水发现, PCP 在厌氧条件下经间位脱氯生成2,3,4,6-Tetra-CP, 接着间位脱氯生成2,4,6-TCP, 继续邻位脱氯生成2,4-DCP, 接着对位脱氯生成2-Mono-CP, 最后矿化生成CH4 和CO2。Armenante 等研究了厌氧/好氧组合工艺处理2,4,6-TCP 废水, 结果指出: 在厌氧阶段,
氧微生物作用下, 以甲酸、乙酸和琥珀酸为电子供体, 使2,4,6-TCP 还原脱氯生成2,4-DCP 和4-CP; 在好氧阶段, 好氧微生物在有氧条件下将脱氯产物2,4-DCP 和4-CP 完全降解。Arora 等分别研究了CPs 在好氧和厌氧条件下的降解机理, 指出: 在好氧条件下, CPS 在细菌作用下形成对应的氯邻苯酚或(氯) 对苯二酚, 进而进入三酸羧酸循环; 在厌氧条件下, CPs 通过还原脱氯作用形成苯酚, 进一步转化为苯甲酸, 最终矿化为CO2。
3.2 物理化学法
物理化学法用于CPs 的去除, 主要是基于吸附材料的吸附去除。Hameed 等制备了椰壳活性炭用于去除2,4,6-TCP, 研究发现其吸附等温线符合Langmuir 模型, 在30 ±C 条件下最大单层吸附容量达到716.10 mg/g。Ren 等通过磷酸活化香蒲纤维前体制备了具有比表面积大(890.27 m2/g) 和多种功能团(羟基、内酯、羧基等) 的活性炭吸附材料,可有效去除水中2,4-DCP 和2,4,6-TCP。Nourmoradi等通过阳离子表面活性剂十六烷基三甲基溴化铵(HDTMA) 和十四烷基三甲基溴化铵(TTAB) 修饰蒙脱土(Mt) 用于水中4-CP 的吸附去除, 其研究表明HDTMA-Mt 和TTAB-Mt 的吸附容量分别为29.96 mg/g 和25.90 mg/g, 相比之下, HDTMA-Mt 更有利于水中4-CP 的去除。Mubarik 等利用甘蔗渣制备了具有较大比表面积的圆柱形多孔结构的生物炭材料用于2,4,6-TCP 的吸附去除, 结果表明, 在多种有机污染物共存条件下, 生物炭也可有效去除2,4,6-TCP, 且最大吸附容量为253.38 mg/g。
3.3 化学还原法
化学还原法处理CPs 污染物, 主要基于零价金属体系的还原脱氯作用Morales 等利用Pd(0)/Mg(0) 双金属体系可以在常温常压条件下将异丙醇/水溶液中的4-CP,2,6-DCP、2,4,6-TCP 和PCP 完全脱氯, 尤其是化学性质极其稳定的PCP; 其研究结果表明, 利用1.0g 浓度为2.659 g/L 的`20 目的Pd/Mg 双金属合金可在48 h 内将2.48 mmol/L 的PCP 完全脱氯, 且产物中也仅检测到易进一步氧化降解的环己醇和环己酮。零价铁渗透氧化硅混合物对2,4,6-TCP、2,4-DCP、4-CP 等氯酚类化合物的还原脱氯效果与CPs苯环上氯取代基的个数成正比, 即脱氯效果随着氯取代基数目的增多而增强, 其产物鉴定与反应机理研究表明, 零价铁渗透氧化硅催化还原脱氯降解CPs, 主要是零价铁提供电子进攻C—Cl 键, 发生逐级脱氯, 最终生成苯酚。此外, Zhou 等对比研究了Pd/Fe 双金属纳米合金与Pt/Fe、Ni/Fe、Cu/Fe 和Co/Fe 等双金属纳米颗粒对4-CP、2,4-DCP 及2,4,6-TCP 等氯酚类化合物的还原脱氯效果, 结果表明, Pd/Fe 合金纳米颗粒的还原脱氯效果明显优于其他双金属体系, 且CPs 还原脱氯规律符合准一级动力学模型, 但是脱氯效果随苯环氯取代基个数的增多而降低, 即4-CP> 2,4-DCP >2,4,6-TCP。该研究与零价铁渗透氧化硅混合物还原降解CPs 脱氯效果相反。
4 总结与展望
目前, 关于CPs 污染物的降解和去除技术研究取得了显著的成果, 但是每种技术都有其自身的优势和缺陷。生物法的投资和运行成本相对较省, 但是需要特定种群驯化, 且处理周期相对较长; 此外,CPs 的毒性相对较大, 对微生物的生长代谢可能产生不良影响。物理化学吸附法用时短, 处理效果好,但吸附仅是发生了污染物的相转移过程, 没有从根本上消除污染物; 同时, 吸附后的固体吸附剂材料无论再生还是处理处置都会在一定程度上造成环境的二次污染; 再者, 常用吸附材料活性炭可有效吸附去除水中CPs, 但是吸附后活性炭的再生相对比较困难, 这将间接增加废水的处理成本。氯代物的毒性随着氯原子数目的增多而增强, 化学还原脱氯可实现CPs 的有效脱氯脱毒, 但是污染物无害化处理的终极目标是实现其矿化, 而化学还原脱氯只停留在脱氯的环节, 不能实现CPs 的开环和矿化。基于自由基反应的AOPs 具有氧化效率高、反应速率快、反应条件温和等优点, 在有机污染物降解尤其是CPs 污染物降解和去除方面得到了快速发展, 但这些常用的AOPs 都有一定局限性, 如O3 氧化技术需要现场制备氧化剂O3, 且产率较低, 这将进一步增加能耗, 间接增加运行成本; H2O2、过硫酸盐等氧化剂的投入也需要较高的成本, 且过硫酸盐经氧化还原过程转化为硫酸盐, 增加了体系的离子强度和盐度, 可能会对后续处理工艺产生不良影响; 钴、镍、银等金属离子催化剂, 为有毒重金属, 将其引入反应体系势必会增加环境风险或造成二次污染; 自由基反应降解CPs 过程中可能还会生成毒性更强的'多氯代二次污染物等。因此, 需要研发绿色、高效、廉价的单元处理技术或联合工艺实现氯酚类污染物的无害化处理。例如: 培育驯化耐高毒性、反应高效菌群; 研发可再生吸附剂; 将化学还原脱氯与高级氧化技术耦合, 形成分段式高级还原-氧化技术, 分步实现还原脱氯和氧化矿化, 避免多氯代二次污染的产生; 耦合生物还原脱氯与高级氧化技术, 实现CPs污染物的高效化、无害化处理。
『肆』 酚类化合物的外源性酚
酚类化合物的毒性以苯酚为最大,通常含酚废水中又以苯酚和甲酚的含量最高。目前环境监测常以苯酚和甲酚等挥发性酚作为污染指标。
环境中的酚污染主要指酚类化合物对水体的污染,含酚废水是当今世界上危害大、污染范围广的工业废水之一,是环境中水污染的重要来源。在许多工业领域诸如煤气、焦化、炼油、冶金、机械制造、玻璃、石油化工、木材纤维、化学有机合成工业、塑料、医药、农药、油漆等工业排出的废水中均含有酚。这些废水若不经过处理,直接排放、灌溉农田则可污染大气、水、土壤和食品。
酚是一种中等强度的化学毒物,与细胞原浆中的蛋白质发生化学反应。低浓度时使细胞变性,高浓度时使蛋白质凝固。酚类化合物可经皮肤粘膜、呼吸道及消化道进入体内。低浓度可引起蓄积性慢性中毒,高浓度可引起急性中毒以致昏迷死亡。一般来讲,酚进入人体后机体通过自身的解毒功能使之转化为无毒物质而排出体外。只有当摄入量超过解毒功能时才有蓄积而导致慢性中毒,表现为头晕、头痛、精神不安、食欲不振、呕吐腹泻等症状。
由于酚的用途极为广泛,预防其污染的工作也很困难。在生产和使用酚的工厂必须建立严格的操作制度,谨防酚的外泻。同时要搞好废水的回收利用和生物氧化处理,严禁含酚废水排入渗井、渗坑,以免污染地下水。
『伍』 酚类废水的危害和处理方法
危害:水中酚的质量浓度达到0.1一0.2mg/L时,鱼肉即有异味,不能食用;质量浓度增加到1mg/L,会影响鱼类产卵,含酚5—10mg/L,鱼类就会大量死亡。饮用水中含酚能影响人体健康,即使水中含酚质量浓度只有0.002mg/L,用氯消毒也会产生氯酚恶臭。 处理:通常将质量浓度为1000mg/L的含酚废水.称为高浓度含酚废水,这种废水须回收酚后,再进行处理。质量浓度小于1000mg/L的含酚废水,称为低浓度含酚废水。通常将这类废水循环使用,将酚浓缩回收后处理。回收酚的方法有溶剂萃取法、蒸汽吹脱法、吸附法、封闭循环法等。含酚质量浓度在300mg/L以下的废水可用生物氧化、化学氧化、物理化学氧化等方法进行处理后排放或回收。
『陆』 酚类,苯化合物,贡对身体有那些危害
苯对人体的危害及其来源
苯是一种无色、具有特殊芳香气味的液体,能与醇、醚、丙酮和四氯化碳互溶,微溶于水。苯具有易挥发、易燃的特点,其蒸气有爆炸性。经常接触苯,皮肤可因脱脂而变干燥,脱屑,有的出现过敏性湿疹。长期吸入苯能导致再生障碍性贫血。
苯主要来自建筑装饰中大量使用的化工原料,如涂料。在涂料的成膜和固化过程中,其中所含有的甲醛、苯类等可挥发成分会从涂料中释放,造成污染。
在酚类化合物中苯酚毒性最大,炼焦、生产煤气、炼油等行业所排废水中以苯酚为主。
酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物侵犯神经中枢,刺激脊髓,进而导致全身中毒症状。
酚类化合物可经皮肤、粘膜的接触,呼吸道吸入和经口进入消化道等多种途径进入体内。酚急性中毒大多发生于生产事故中,可以造成昏迷和死亡。皮肤接触酚液后,可引起严重灼伤,局部呈灰白色,起皱、软化,继而转化为红色、棕红色以致黑色,因其渗透力强,可使局部大片组织坏死。
环境中被酚污染的水,被人体吸收后,通过体内解毒功能,可使其大部分丧失毒性,并随尿排出体外,若进入人体内的量超过正常人体解毒功能时,超出部分可以蓄积在体内各脏器组织内,造成慢性中毒,出现不同程度的头昏、头痛、皮疹、皮肤搔痒、精神不安、贫血及各种神经系统症状和食欲不振、吞咽困难、流涎、呕吐和腹泻等慢性消化道症状。这种慢性中毒经适当治疗一般不会留下后遗症。酚类化合物污染地面水,如以地面水作为饮用水源,酚类化合物与水中余氯作用生成令人厌恶的氯酚臭类物质,使自来水有特殊的氯酚臭,其嗅觉阈值为0.01毫克/升。而在不含游离氯的水中,酚的最高允许浓度为1毫克/升。我国地面水中规定挥发酚的最高允许浓度为0.1毫克/升(Ⅴ类水)。我国生活饮用水水质标准中规定挥发酚类不超过0.002毫克/升。
『柒』 含酚废水的危害有哪些,怎样进行处理
含酚废水主要来自石油化工厂、树脂厂、塑料厂、合成纤维厂、炼油厂和焦化厂等化工企业。它是水体的重要污染物之一。由于工业门类、产品种类和工艺条件不同,其废水组成及含酚浓度差别较大,一般分为酸性、碱性、中性含酚废水和挥发、非挥发性含酚废水。
酚类化合物是一种原型质毒物,所有生物活性体均能产生毒性,可通过与皮肤、粘膜的接触不经肝脏解毒直接进入血液循环,致使细胞破坏并失去活力,也可通过口腔侵入人体,造成细胞损伤。高浓度的酚液能使蛋白质凝固,并能继续向体内渗透,引起深部组织损伤,坏死乃至全身中毒,即使是低浓度的酚液也可使蛋白质变性。人如果长期饮用被酚污染的水能引起慢性中毒,出现贫血、头昏、记忆力衰退以及各种神经系统的疾病,严重的会引起死亡。酚口服致死量为530mg/kg(体重)左右,而且甲基酚和硝基酚对人体的毒性更大。据有关报道,酚和其它有害物质相互作用产生协同效应,变得更加有害,促进致癌化。
含酚废水不仅对人类健康带来严重威胁,也对动植物产生危害。水中含酚含量达到10-6—2×10-6时,鱼类就会出现中毒症状,超过4×10-6—1˙5×10-5时会引起鱼类大量死亡,甚至绝迹。如果使用含酚废水灌溉农田,则会使农作物减产或枯死。含酚废水的毒性还可抑制水体中其它生物的自然生长速度,破坏生态平衡。
『捌』 酚类废水的危害有哪些
含酚废水
主要来自石油化工厂、树脂厂、塑料厂、合成纤维厂、
炼油厂
和焦化厂等化工企业。它是
水体
的重要
污染物
之一。由于
工业
门类
、产品种类和
工艺
条件不同,其
废水
组成及含酚
浓度
差别
较大,一般分为
酸性
、
碱性
、中性含酚废水和挥发、非
挥发性
含酚废水。
酚类
化合物
是一种原型质
毒物
,所有
生物
活性体均能产生
毒性
,可通过与皮肤、
粘膜
的接触不经
肝脏
解毒直接进入
血液循环
,致使
细胞
破坏并失去活力,也可通过
口腔
侵入人体,造成
细胞损伤
。高浓度的酚液能使
蛋白质
凝固,并能继续向体内渗透,引起深部组织损伤,坏死乃至全身中毒,即使是低浓度的酚液也可使蛋白质变性。人如果长期饮用被酚污染的
水能
引起
慢性中毒
,出现
贫血
、头昏、
记忆力
衰退以及各种神经系统的疾病,严重的会引起死亡。酚口服致死量为530mg/kg(体重)左右,而且甲基酚和硝基酚对人体的毒性更大。据有关报道,酚和其它
有害物质
相互作用产生协同效应,变得更加有害,促进致癌化。
含酚废水不仅对
人类
健康带来严重威胁,也对动植物产生危害。
水中
含酚
含量
达到10-6—2×10-6时,鱼类就会出现中毒症状,超过4×10-6—1˙5×10-5时会引起鱼类大量死亡,甚至绝迹。如果使用含酚废水灌溉
农田
,则会使
农作物
减产或枯死。含酚废水的毒性还可抑制水体中其它生物的自然生长速度,破坏生态平衡。
『玖』 工业上处理酚类废水的方法及酚类废水的危害
含酚废水主要来自石油化工厂、树脂厂、塑料厂、合成纤维厂、炼油厂和焦化厂等化工企业。它是水体的重要污染物之一。由于工业门类、产品种类和工艺条件不同,其废水组成及含酚浓度差别较大,一般分为酸性、碱性、中性含酚废水和挥发、非挥发性含酚废水。
酚类化合物是一种原型质毒物,所有生物活性体均能产生毒性,可通过与皮肤、粘膜的接触不经肝脏解毒直接进入血液循环,致使细胞破坏并失去活力,也可通过口腔侵入人体,造成细胞损伤。高浓度的酚液能使蛋白质凝固,并能继续向体内渗透,引起深部组织损伤,坏死乃至全身中毒,即使是低浓度的酚液也可使蛋白质变性。人如果长期饮用被酚污染的水能引起慢性中毒,出现贫血、头昏、记忆力衰退以及各种神经系统的疾病,严重的会引起死亡。酚口服致死量为530mg/kg(体重)左右,而且甲基酚和硝基酚对人体的毒性更大。据有关报道,酚和其它有害物质相互作用产生协同效应,变得更加有害,促进致癌化。
含酚废水不仅对人类健康带来严重威胁,也对动植物产生危害。水中含酚含量达到10-6—2×10-6时,鱼类就会出现中毒症状,超过4×10-6—1˙5×10-5时会引起鱼类大量死亡,甚至绝迹。如果使用含酚废水灌溉农田,则会使农作物减产或枯死。含酚废水的毒性还可抑制水体中其它生物的自然生长速度,破坏生态平衡。对含酚废水的治理,最有效的方法是控制污染源,一是合理选择工艺流程、开发无公害工艺、无公害催化剂,使用无公害试剂的反应实现清洗工艺技术,减少废水量或降低废水中的含酚浓度。例如,目前对氨基酚生产主要采用铁还原法老工艺,生产1吨成品出44吨废水,废水量大,污染严重。近年来人们开发用硝基苯催化氧化法生产对氨其基酚新工艺,1吨成品,只排放10吨含酚废水,使污染减少。二是选用有效的操作条件和生产设备,开发密闭循环生产酚类化合物系统尽量避免和减少污染物排入环境,实现“零排放”的清洁生产。三是加强企业的管理,对含酚废水采取有效处理、回收以及综合利用。
由于含酚废水的组成、酸碱性以及浓度的不同,治理方法也不一样,目前工业上治理含酚废水的方法一般分为物化法、化学法、生化法等三大类。主要介绍最常见的方法。
1.物化法
物化法是通过物理化学过程处理废水,除去污染物质的方法,因应用比较广泛,近年来发展很快。其主要方法有:吸附、萃取、反渗透、电渗析、液膜、气提、超过滤等方法。
1.1吸附法
吸附法广泛用于含酚废水的处理。吸附法是利用多孔性固体物质作用为吸附剂,如活性炭、硅藻土、活性氧化铝、交换树脂、磺化煤等,以吸附剂的表面(固相)吸附废水中的酚(液相)污染物的方法,根据吸附剂与酚类化合物之间的作用力不同,其吸附机理兼有物理吸附,化学吸附和交换吸附。在含酚废水处理过程中,主要是物理吸附,有时是几种吸附形式的综合作用 。选用吸附性能好,吸附容量大,容易再生,经久耐用的吸附剂是保证-分离效果的关键。
1.2萃取法
萃取法处理含酚废水两种途径,一种是选用高分配系数的萃取法,采用特定的萃取工艺及装置,利用酚类化合物在有机相和水相中不同的溶解度及两相互不溶的原理,达到分离酚的目的,另一种是根据可 配位反应原理,经单一萃取操作使废水中的含酚量低于国家排放标准。
1.3液膜法
液膜法是近年发展起来的一种新型废水治理分离技术液膜除酚采用水包油包水(W/0/W)体系。液膜由溶剂(如煤油)和表面活性剂构成。它是在分离的过程中使被分离的物质(酚)同时进行萃取与反萃取,通过液膜传递从而达到分离和浓缩的目的。液膜脱酚的过程为:乳状液通过搅拌形成许多细小的乳状液滴,分散在含酚废水中。这时,内水相为Na OH水溶液,外相为含酚废水。液膜内水相与外相相隔开。废水中酚能透过液膜进入内水相,作为弱酸与Na OH反应生成酚钠,而酚钠不溶于油,而向水相(封闭相)进行扩散所以不会返回外水相而扩散到被处理的废水中,这样就可以达到分离之目的。液膜法工艺分为制浮、摘触、破乳三步。这具有工艺简单、高效快速、选择性高[b]、分离效率高、乳液经破乳后可重复使用等优点。液膜法适用于对高低浓度含酚废水的处理,除酚率可达99.9%,有报道对含酚10—47g/L以下。近年来国同内外对液膜法处理含酚废水的研究取得了不少进展。九十年代初我国建成了50t/d的高浓度含酚废水的液膜处理工业装置已用于塑料厂、石化厂等含酚废水厂的治理。近年发展了选择转基塔之最佳转速,调节废水及乳液之流量进行分离,经液膜处理,废水含酚量可下降到0.5×10-6以下等工艺.但由于液膜法操作技术要求高,液膜的稳定性总是还未彻底解决,工业上还未能广泛地推广应用这一新技术。据报道,液膜稳定性的问题最近已基本解决,广泛应用这一技术为期不远了。
2.化学法
化学处理方法是利用物质之间的进行化学反应的方法,对石油化工废水的处理,是一种前景广阔的高效率的方法。在化学法中,常用的有中和法、沉淀法、氧化法、还原法、电解法、光催化法等。
2.1沉淀法
在废水中添加化学物质,使之与酚产生沉淀。方法简、经济,但处理后,废水含酚浓度似较高,如果与其它方法一起用,效果就更好。最近发展起来的共缩聚法是化学沉淀法中的一种有效除酚方法。在高浓度含酚废水中加甲醛并在酸性或碱性催化剂存在下调整酚醛摩尔比,将废水中酚缩聚成为低分子热塑性或热固性树脂即为酚醛缩聚法。分离树脂后,废水再加尿素进行二步反应,残渣为无害物,可以废弃或焚烧。处理前废水含酚浓度可高达30000mg/L以上。处理后放入废水沉降过滤池,待取样化验合格后即可以排放,然后清理池内滤渣,使用酚醛尿缩聚法时,要调节废水中酚:醛:尿=1:3:1和PH=9.7-10.0,加热制成酸性树脂并回收甲醛处理后的废水含酚量可降到(10-50)×10-6,再经生物处理或稀释,使之达到排放标准。
还有一种是酸煮沉淀法,它是在含酚的废水中盐酸加热进行缩聚反应,回收树脂,使含酚量由原来的3%下降到万分之一。
2.2氧气法
在废水中添加氧化剂,如Cl2,ClO2,O3,H2O,KmnO4等,使酚氧化分解,同时也氧化水中的还原性性质。化学氧化剂资源少,价格贵。通常用于低浓度含酚废水的处理。
2.3电解法
在废水中加入适量电解质,在电解过程中,通过复杂的氧化过程,达到净化酚的目的。其特点是:不需使用氧化剂、还原剂等化学药品,可省掉后处理;其次是单位体积设备处理能力大;再者,利用电流和电压的变化很容易控制反应速度和类型,操作也很简单。但电解法只适用于低浓度含酚废水的深度处理,能耗及处理费用较高,也引起一些副反应等。
2.4光催化法
此方法是用国内新开发的一种处理含酚废水的技术,其特点:可处理较高浓度的含酚废水;降解速度快,无二次污染;催化剂价廉易得;可回收反复使用,运行费用低;设备简单、投资少、效果好等,光催化法主要是处理共缩聚法回收树脂后的低浓度的含酚废水,在其中加入光催化剂,用光照射(紫外光或阳光)然后加热泪盈眶到600C搅拌通空气后两小时后取样测定,含酚量达到排放标准后即可停止反应。催化剂经回收后可循环使用。
含酚废水主要来自石油化工厂、树脂厂、塑料厂、合成纤维厂、炼油厂和焦化厂等化工企业。它是水体的重要污染物之一。由于工业门类、产品种类和工艺条件不同,其废水组成及含酚浓度差别较大,一般分为酸性、碱性、中性含酚废水和挥发、非挥发性含酚废水。
酚类化合物是一种原型质毒物,所有生物活性体均能产生毒性,可通过与皮肤、粘膜的接触不经肝脏解毒直接进入血液循环,致使细胞破坏并失去活力,也可通过口腔侵入人体,造成细胞损伤。高浓度的酚液能使蛋白质凝固,并能继续向体内渗透,引起深部组织损伤,坏死乃至全身中毒,即使是低浓度的酚液也可使蛋白质变性。人如果长期饮用被酚污染的水能引起慢性中毒,出现贫血、头昏、记忆力衰退以及各种神经系统的疾病,严重的会引起死亡。酚口服致死量为530mg/kg(体重)左右,而且甲基酚和硝基酚对人体的毒性更大。据有关报道,酚和其它有害物质相互作用产生协同效应,变得更加有害,促进致癌化。
含酚废水不仅对人类健康带来严重威胁,也对动植物产生危害。水中含酚含量达到10-6—2×10-6时,鱼类就会出现中毒症状,超过4×10-6—1˙5×10-5时会引起鱼类大量死亡,甚至绝迹。如果使用含酚废水灌溉农田,则会使农作物减产或枯死。含酚废水的毒性还可抑制水体中其它生物的自然生长速度,破坏生态平衡。
毫无疑问,含酚废水排入水体或用于灌溉均需经过治理处理,使之符合达到国家要求的排放标准。
参考资料:程为民《含酚废水的危害及其治理方法与技术》