⑴ 稀土行业废水氨氮如何去除
环瑞生态研发人员对稀土废水水质进行了大量研究实验, 例如:山东某稀土企业的废水水质:pH=3.8 氨氮360mg/L,实验总结如下:
1) PH:PH6~8时,处理氨氮效果最好。
2) 加入量:按氨氮1mg:0.025g的量加入,废水中氨氮浓度经检测低于稀土废水氨氮排放量的标准限值。
3) 反应时间:反应时间短,加入药剂5~6分钟后,废水中的氨氮便低于稀土废水氨氮的排放标准限值。
环瑞氨氮去除剂A2对于稀土废水具有较好的处理效果,反应迅速,去除率高,处理后的废水达到稀土工业污染物的排放标准。
⑵ 化工废水如何处理
化工废水的基本特征为极高的COD、高盐度、对微生物有毒性,是典型的难降解废水,是目前水处理技术方面的研究重点和热点。化工废水的特征分析如下:
(1)水质成分复杂,副产物多,反应原料常为溶剂类物质或环状结构的化合物,增加了废水的处理难度;
(2)废水中污染物含量高,这是由于原料反应不完全和原料、或生产中使用的大量溶剂介质进入了废水体系所引起的;
(3)有毒有害物质多,精细化工废水中有许多有机污染物对微生物是有毒有害的,如卤素化合物、硝基化合物、具有杀菌作用的分散剂或表面活性剂等;
(4)生物难降解物质多,B比C低,可生化性差;
(5)废水色度高。
化工废水处理方法:
废水处理技术已经经过了100多年的发展,污水中的污染物种类、污水量是随着社会经济发展、生活水平的提高而不断增加,污水处理技术也随着科学技术的发展而发生了日新月异的变化,同时,旧的污水处理技术也不断被革新和发展着。尤其现在的化工废水中的污染物是多种多样的,往往用一种工艺是不能将废水中所有的污染物去除殆尽的。用物化工艺将化工废水处理到排放标准难度很大,而且运行成本较高;化工废水含较多的难降解有机物,可生化性差,而且化工废水的废水水量水质变化大,故直接用生化方法处理化工废水效果不是很理想。
针对化工废水处理的这种特点,我们认为对其处理宜根据实际废水的水质采取适当的预处理方法,如絮凝、内电解、电解、吸附、光催化氧化等工艺,破坏废水中难降解有机物、改善废水的可生化性;再联用生化方法,如SBR、接触氧化工艺,A/O工艺等,对化工废水进行深度处理。
目前,国内对处理化工废水工艺的研究也趋向于采用多种方法的组合工艺。例如,采取内电饵混凝沉淀—厌氧—好氧工艺处理医药废水、采用大孔吸附树脂吸附和厌氧—好氧生物处理—絮凝沉淀法处理有机化工废水、采用絮凝—电饵法联用处理麻黄素废水、采取臭氧一生物活性碳工艺去除水中有机污染物、采用的光催化氧化—内电饵—sBR组合方法处理高浓化工废水都取得了比较好的结果。
⑶ 有研稀土新材料股份有限公司的科研中心
稀土冶炼分离提纯
五十多年来,有研稀土及其前身一直致力于稀土冶炼工艺研究和产业化开发,针对包括包头混合型稀土矿、氟碳铈矿、南方离子吸附型稀土矿在内的各种类型稀土资源开展了一系列的基础研究和工艺技术研究工作,开发出四十多项具有自主知识产权的冶炼分离工艺技术,大部分已在稀土工业生产中得到广泛应用,其中4项获全国科学大会奖, 11项获国家发明、国家科技进步二等奖或三等奖,如上世纪六十年代开发的锌粉还原碱度法制备高纯氧化铕工艺在国内广泛应用, 90%左右的高纯氧化铕均采用该方法生产;上世纪七十-八十年代开发的硫酸法冶炼包头稀土矿工艺,先后向甘肃稀土公司、稀土高科(包钢稀土三厂)、包头202厂等大型稀土企业推广应用,80%以上的包头稀土矿均采用该专利技术生产; P507-HCl体系连续萃取、半逆流反萃取分离稀土工艺、盐酸体系P507全分离流程 、环烷酸萃取法制备荧光级氧化钇工艺、电解还原法制备超纯氧化铕工艺和设备均在稀土工业上应用,其中向德国转让的荧光级氧化钇制备技术成为中国第一个对外转让的稀土技术项目。
“十五”以来,针对稀土冶炼分离过程中存在的“三废”污染严重、伴生资源利用率低等问题,开展了绿色冶炼分离新工艺研究,成功开发了“非皂化萃取分离提纯稀土新工艺” 原创性技术,萃取分离过程有机相不需要皂化,不使用氨或液碱,从源头消除了氨氮废水对环境的污染,分离成本大幅度降低,该项技术申报中国发明专利8项,国际发明专利1项,已签订技术转让合同8项。
该领域共获得国家级和省部级奖项32项,申报国家发明专利26项,其中8项已获授权。“十五”以来,共承担国家科技攻关计划、973计划、863计划和国家自然科学基金项目十多项。该领域主要研究方向包括:
⑴ 稀土冶炼清洁生产工艺
⑵ 稀土高效无污染分离提纯技术
⑶ 稀土伴生资源综合利用技术
⑷ 稀土冶炼分离过程废水循环利用技术
⑸ 稀土冶金过程控制技术
⑹ 稀土冶炼分离工程化设备开发
稀土金属及合金
有研稀土及其前身从事高纯稀土金属及其合金的研究和开发已有近五十年的历史,是国内最早从事稀土金属及其合金制备、提纯的单位之一。60年代初在国内率先制备出除钷外的16种稀土金属,并逐步实现批量生产,68年成功制备出金属钷。为中国稀土工业体系的建立与完善做出了突出贡献。
近几年,在高纯稀土金属、稀土合金速凝铸片、廉价稀土-镁(铝)中间合金的研发及产业化等方面开展了大量卓有成效的工作:1)以自主开发的低温还原(中间合金法)、还原蒸馏、真空蒸馏提纯三项技术为主进行了产业化开发,形成了多项达到国际先进水平的技术和大型装备,并在此基础上建成了亚洲最大的中重稀土金属及合金生产基地;2)成功开发了氧化物电解法制备稀土-镁(铝)中间合金工艺,创造性地提出了极化超电位共析法,该方法以氧化物为原料,通过浓差极化和阳极极化的双极化作用,平衡稀土与镁(铝)的析出电位,一步电解就可得到稀土镁(铝)中间合金,该方法可将稀土镁(铝)中间合金加工成本大大降低,有利于稀土镁(铝)合金的大量推广应用。
该领域共获得国家级和省部级奖项13项,申报国家发明专利12项,其中4项已获授权。从“八五”到“十五”期间,共承担国家科技攻关计划、973计划和发改委示范工程等项目十多项。主要研究方向包括:
⑴ (超)高纯稀土金属提纯技术和装备
⑵ 廉价稀土-镁(铝)中间合金的制备
⑶ 稀土合金速凝铸片技术及装备
⑷ 其它特种合金及靶材
稀土化合物
从上世纪70年代开始,有研稀土及其前身从稀土抛光材料入手,开展了稀土化合物材料制备工艺研究,在国内率先开发出系列抛光材料生产工艺,并定型“739”、“771”等系列稀土抛光产品,先后向甘肃稀土公司等企业转让技术,为构建中国的稀土抛光工业体系奠定了坚实的技术基础。“十一五”期间,在国家有关科技项目的支持下,开展了“液晶显示屏用高端稀土抛光材料研究”和“液晶显示屏用稀土抛光粉产业化技术开发”工作,并通过部级科技成果鉴定。
随着稀土在超导材料、发光材料、燃料电池、催化材料、涂层材料、磁性材料、屏蔽材料、电子陶瓷等新材料领域广泛应用,市场对稀土化合物粉体材料的形貌、粒度及分布、比表面、密度、孔容、孔径、晶形等物理参数提出严格要求,有研稀土将化学沉淀法、水热法、溶胶凝胶法、醇盐法等软化学合成工艺与萃取技术、表面改性技术、管道合成技术、晶形控制技术及后处理加工技术耦合,形成了具有产业化应用前景的稀土化合物物理性能可控制备制技术。“十五”期间,承担了“大比表面可控形貌氧化钇制备工艺及产业化开发”等项目的研发任务,并通过成果鉴定,建立了批量生产线。同时,针对稀土企业的需求,开发出沉淀法纯化除杂技术、碳钠沉淀稀土技术和除放射性技术等系列应用技术。
有研稀土在稀土化合物领域申报国家发明专利11项,其中4项已获授权,主要研究方向包括:
⑴ 高性能稀土抛光材料及其制备技术
⑵ 稀土发光材料前驱体制备技术
⑶ 大比表面稀土氧化物和氢氧化物制备工艺
⑷ 纳米、亚微米级稀土化合物制备工艺
⑸ 稀土塑料、陶瓷等功能助剂
⑹ 稀土表面化学处理剂
⑺ 复合稀土化合物合成工艺与装备
稀土功能材料
发光材料有研稀土及其前身从事发光材料的研究和开发已有三十多年的历史,是国内最早从事稀土荧光粉研制的单位之一,拥有国家唯一的“稀土荧光粉中间试验室”,配备有发光材料工程化研发所需的先进、齐备的仪器设备。
公司从上世纪70年代开始研制CRT彩电荧光粉及灯用稀土三基色荧光粉,80年代开发出PYG型飞点扫描荧光粉,在阳极射线荧光粉、光致发光稀土荧光粉以及X射线稀土荧光粉等方面取得了多项成果,其中“彩色电视稀土红色荧光粉和投影电视稀土白色荧光粉”获全国科学大会奖,彩色电视硫氧化物红粉为全国的标样粉;PYG型飞点扫描荧光粉等近二十种稀土发光材料的研究和开发获得了省部级奖励或通过了省部级鉴定。
为了满足平板显示、绿色照明及其他应用领域的发展需要,重点研究开发了PDP、FED等平板显示用发光材料,LED、HID、CCFL、金卤灯等灯用发光材料,承担了包括国家科技攻关计划、863计划、973计划、国家自然科学基金在内的10余项国家级项目的研究开发工作。项目研究成果大部分已在有研稀土形成了产业化,其中灯用三基色荧光粉技术还转让给了多家企业进行规模化生产,“彩色等离子显示屏(PDP)用荧光体产业化关键技术”获部级科学技术一等奖,“多颜色稀土长时发光材料及其制备技术的研究”获部级科学技术二等奖。
同时,有研稀土也积极致力于解决中国发光材料的表征难题,例如与有关单位共同研制了中国第一台PDP荧光粉发光性能测试设备、中国第一台FED荧光粉发光性能测试设备,这些装置的成功开发均极大地促进了中国相应荧光粉的研发进度。
有研稀土在发光材料领域申报发明专利24项(包括3项国际专利),其中15项已获授权,主要研究方向包括:
⑴ 显示用发光材料:PDP用荧光材料、FED用荧光材料
⑵ 照明用发光材料:白光LED用荧光材料、CCFL用荧光材料、金卤灯用发光材料
⑶ 特种发光材料:上转换发光材料、防伪荧光材料、纳米发光材料
催化与环境材料
上世纪70年代,有研稀土及其前身接受国家任务率先在国内进行汽车尾气净化稀土催化剂的研究与开发,随后成功研制出接近当时世界先进水平的汽车尾气净化稀土催化剂,并进行规模化生产与销售,开拓了国内稀土催化材料在环境方面的新应用。1992年受国家委托编制了“汽车尾气净化稀土催化剂”行业标准(编号XB/T503-93),为规范中国汽车尾气稀土催化剂的产业化生产做出了贡献。
“十五”期间, 在大比表面中孔稀土复合氧化物及在环保中的应用、高温稳定铈锆复合氧化物产业化制备工艺等方面承担并完成了包括863计划在内的多项国家级项目的研究开发工作,在关键技术上获得突破,并形成了铈锆复合氧化物完整的产业化制备技术,建成年产50吨铈锆复合氧化物中试生产线。目前正在承担国家“863”计划项目——“汽油车冷启动污染控制技术研究”。
有研稀土在该领域拥有先进的催化剂制备及性能评价装置;配有旋转蒸发仪、程序升温加热炉、气相色谱检测系统、比表面仪、粒度分析仪等,可满足多种稀土催化剂的制备与性能测试。在该领域已申报国家发明专利5项,主要研究方向包括:
⑴ 汽车尾气净化三效催化剂
⑵ 汽车尾气冷启动污染控制技术
⑶ 铈锆固溶体助剂与载体材料
⑷ 天然气燃烧催化材料
⑸ 可挥发性有机废气(VOCs)催化净化材料
⑹ 稀土改性甲烷催化制氢材料
磁效应材料
有研稀土及其前身从事稀土磁效应材料研究和开发已有三十多年的历史,是国内最早从事稀土永磁,磁致伸缩等材料研发的单位之一。其中研发的还原扩散法制备钐钴合金磁体成功地转让给上海跃龙化工厂,生产的钐钴磁环最早应用于东方红系列卫星中,为中国航天事业发展做出了重要贡献。
“十五”以来,成功开发了具有自主知识产权的高性能钕铁硼合金速凝铸片(Strip Casting)技术和关键装备,获得4项国家发明专利,打破了日本在该领域的技术垄断,并以此专利技术为基础,有研稀土与日本住友特殊金属(现由日立金属控股)等公司合资成立了廊坊关西磁性材料公司,有研稀土占66%股份。
开发成功了低成本、大直径稀土超磁致伸缩材料的一步法制备技术,制备的稀土超磁致伸缩材料已经批量供应给军工单位使用,效果良好;研发的新型磁电阻材料,采用薄膜复合技术和先进的微加工工艺制备的自旋阀型全钙钛矿锰氧化物巨磁电阻隧道结,其磁电阻变化率达到国际领先水平。目前有研稀土具有制备和测试磁效应材料的各种设备。
该领域共承担军工民口配套、国家科技支撑计划、863计划、中小企业创新基金、国家自然科学基金、北京市自然科学基金等项目20余项。先后申请国家发明专利32项,授权9项,国内外发表学术论文30余篇。获国家科技进步三等奖1项,北京市科学技术一等奖1项,中国有色金属工业科学技术一等奖1项、三等奖1项。
⑷ 稀土废水处理
不要过环评,就是来石灰就OK。PH值达标自就行。那就COD,氨氮肯定超标。
要过环评,那就麻烦了。除了PH值,最大问题是氨氮。所以没有经济方案。只能改工艺,用钙或镁皂化,或有人提出不要皂化。再就是沉淀最好不能用碳铵,最好用纯碱。
如查不改工艺,最后来处理废水,那成本可能会因为买设备等一次性投入大。而且这种处理氨氮的工艺又不稳定。
⑸ 皂化液是什么
皂化液是一种辅助剂,起到润滑、清洗、防锈作用,对减少车刀,钻头等刀 具的磨损、保证工件的加工精度。同时皂化液属于危险固废,所以现在不提 倡使用皂化液,许多厂家也减少了对皂化液的生产,改生产无污染无危害的 水基工作液,宝玛集团生产的水基不仅做到了无污染无危害,而且还可以循 环使用。
⑹ 废水处理的技术
【技术概述】
微电解技术是处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低cod和色度,还可大大提高废水的可生化性。
该技术是在不通电的情况下,利用微电解设备中填充的微电解填料产生“原电池”效应对废水进行处理。当通水后,在设备内会形成无数的电位差达1.2V 的“原电池”。“原电池”以废水做电解质,通过放电形成电流对废水进行电解氧化和还原处理,以达到降解有机污染物的目的。在处理过程中产生的新生态[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3 +,它们的水合物具有较强的吸附- 絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的絮凝能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量絮凝水体中分散的微小颗粒、金属粒子及有机大分子.其工作原理基于电化学、氧化- 还原、物理以及絮凝沉淀的共同作用。该工艺具有适用范围广、处理效果好、成本低廉、处理时间短、操作维护方便、电力消耗低等优点,可广泛应用于工业废水的预处理和深度处理中。
【技术特点】
⑴反应速率快,一般工业废水只需要半小时至数小时;
⑵作用有机污染物质范围广,如:含有偶氟、碳双键、硝基、卤代基结构的难除降解有机物质等都有很好的降解效果;
⑶工艺流程简单、使用寿命长、投资费用少、操作维护方便、运行成本低、处理效果稳定。处理过程中只消耗少量的微电解填料。填料只需定期添加无需更换,添加时直接投入即可。
⑷废水经微电解处理后会在水中形成原生态的亚铁或铁离子,具有比普通混凝剂更好的混凝作用,无需再加铁盐等混凝剂,COD去除率高,并且不会对水造成二次污染;
⑸具有良好的混凝效果,色度、COD去除率高,同量可在很大程度上提高废水的可生化性。
⑹该方法可以达到化学沉淀除磷的效果,还可以通过还原除重金属;
⑺对已建成未达标的高浓度有机废水处理工程,用该技术作为已建工程废水的预处理,即可确保废水处理后稳定达标排放。也可将生产废水中浓度较高的部分废水单独引出进行微电解处理。
⑻该技术各单元可作为单独处理方法使用,又可作为生物处理的前处理工艺,利于污泥的沉降和生物挂膜
【适用废水种类】
⑴.染料、化工、制药废水;焦化、石油废水; ------上述废水处理水后的BOD/COD值大幅度提高。
⑵. 印染废水;皮革废水;造纸废水、木材加工废水;
------对脱色有很好的应用,同时对COD与氨氮有效去除。
⑶. 电镀废水;印刷废水;采矿废水;其他含有重金属的废水;
------可以从上述废水中去除重金属。
⑷. 有机磷农业废水;有机氯农业废水;
------大大提高上述废水的可生化性,且可除磷,除硫化物
新型填料
【技术概述】
它由多元金属合金融合催化剂并采用高温微孔活化技术生产而成,属新型投加式无板结微电解填料。作用于废水,可高效去除COD、降低色度、提高可生化性,处理效果稳定持久,同时可避免运行过程中的填料钝化、板结等现象。本填料是微电解反应持续作用的重要保证,为当前化工废水的处理带来了新的生机。
【铁炭原电池反应】
阳极:Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V
阴极:2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
当有氧存在时,阴极反应如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V 电镀和金属加工业废水中锌的主要来源是电镀或酸洗的拖带液。污染物经金属漂洗过程又转移到漂洗水中。酸洗工序包括将金属(锌或铜)先浸在强酸中以去除表面的氧化物,随后再浸入含强铬酸的光亮剂中进行增光处理。
该废水中含有大量的盐酸和锌、铜等重金属离子及有机光亮剂等,毒性较大,有些还含致癌、致畸、致突变的剧毒物质,对人类危害极大。因此,对电镀废水必须认真进行回收处理,做到消除或减少其对环境的污染。
电镀混合废水处理设备由调节池、加药箱、还原池、中和反应池、pH调节池、絮凝池、斜管沉淀池、厢式压滤机、清水池、气浮反应,活性炭过滤器等组成。
电镀废水处理采用铁屑内电解处理工艺,该技术主要是利用经过活化的工业废铁屑净化废水,当废水与填料接触时,发生电化学反应、化学反应和物理作用,包括催化、氧化、还原、置换、共沉、絮凝、吸附等综合作用,将废水中的各种金属离子去除,使废水得到净化。 重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。如果不对重金属废水处理,就会严重污染环境。废水处理中重金属的种类、含量及存在形态随不同生产企业而异。除重金属在废水处理中显得很重要。
由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态,达到除重金属的目的。例如,废水处理过程中,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化合物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,废水处理除重金属原则是:
除重金属原则一:最根本的是改革生产工艺.不用或少用毒性大的重金属;
除重金属原则二:是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。重金属废水处理应当在产生地点就地处理,不同其他废水混合,以免使处理复杂化。更不应当不经除重金属处理直接排入城市下水道,以免扩大重金属污染。
废水处理除重金属的方法,通常可分为两类:
除重金属方法一:是使废水中呈溶解状态的重金属转变成不溶的金属化合物或元素,经沉淀和上浮从废水中去除.可应用方法如中和沉淀法、硫化物沉淀法、上浮分离法、电解沉淀(或上浮)法、隔膜电解法等废水处理法;
除重金属方法二:是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用方法有反渗透法、电渗析法、蒸发法和离子交换法等。这些废水处理方法应根据废水水质、水量等情况单独或组合使用。 陶瓷膜也称GT膜,是以无机陶瓷原料经特殊工艺制备而成的非对称膜,呈管状或多通道状。陶瓷膜管壁密布微孔,在压力作用下,原料液在膜管内或膜外侧流动,小分子物质(或液体)透过膜,大分子物质(或固体颗粒、液体液滴)被膜截留从而达到固液分离、浓缩和纯化之目的。
在膜科学技术领域开发应用较早的是有机膜,这种膜容易制备、容易成型、性能良好、价格便宜,已成为应用最广泛的微滤膜类型。但随着膜分离技术及其应用的发展,对膜的使用条件提出了越来越高的要求,需要研制开发出极端条件膜固液分离系统,和有机膜相比,无机陶瓷膜具有耐高温、化学稳定性好,能耐酸、耐碱、耐有机溶剂、机械强度高,可反向冲洗、抗微生物能力强、可清洗性强、孔径分布窄,渗透量大,膜通量高、分离性能好和使用寿命长等特点。
无机陶瓷膜在废水处理中应用最大的障碍主要有二个方面,其一是制造过程复杂,成本高,价格昂贵;其二是膜通量问题,只有克服膜污染并提高膜的过滤通量,才能真正推广应用到水处理的各个领域。
特点
⑴独有的双层膜结构:涤饵DEAR无机陶瓷膜系统在在膜过滤层表面,通过溶胶一凝胶法制备TiO2溶胶,采用浸渍提拉法在陶瓷膜上涂敷纳米TiO2光催化材料,使陶瓷膜表面具有“自洁”功能,减缓有机在膜表面积累和堵塞,一方面降低膜污染,另一方面提高陶瓷膜管强度和膜过滤通量,提高膜通量稳定性;Al2O3—ZrO2复合膜结构:使膜管机械性能更加优良,由于材料本身的性能缺陷或制备过程中存在的一些实际问题,单一无机膜材料一般不能满足实际需要,因此无机负载复合分离膜的研制得到迅速发展,涤饵DEAR无机陶瓷膜采用整体复合技术,通过溶胶凝胶法,制备Al2O3—ZrO2复合膜,由于含ZrO2材料与Al2O3、SiO2和TiO2等材料相比具有更好的机械强度、化学耐久性和抗碱侵蚀等特性,涤饵DEAR®;无机陶瓷膜具有更强的机械强度和热稳定性,而且复合膜的孔径分布窄,呈单峰。
⑵可实现在线反冲,膜通量稳定:由于复合陶瓷膜独特结构和机械性能,能有效承受0.4mp以下的反冲压力,可实现在线反冲,从而获得稳定的膜通量,克服了无机膜系统在水处理应用中价格高、易污染、膜通量小、设备庞大等问题,使无机陶瓷膜系统在水处理中应用成为可能。涤饵DEAR无机陶瓷膜是专为污水处理设计的,其最大特点是膜通量大,其运行膜通量是有机膜10-100倍,是普通多孔陶瓷膜的50-10倍、机械强度高、耐污染、可实现在线反冲。
技术参数
膜层厚度:50—60μm,膜孔径0.01-0.5μm;
气孔率:44—46%;
过滤压力:1.0 Mpa,反冲压力:0.4 Mpa以下;
膜材质:双层膜,外膜TiO2;内膜Al2O3—ZrO2复合膜
应用领域
中水回用;
工业废水回用:
工厂化养殖原水解毒处理;
发电厂、化工厂等大型冷却循环水旁滤系统;
油田采出水回用处理;
轧钢乳化液废液处理;
金属表面清洗液再生处理。
⑺ 目前稀土氯铵废水的处理还有哪些不足
氨氮废水是稀土分离厂最难解决的特征污染物,处理氨氮废水的方法主要有蒸发浓缩法、折点氯化法、膜法、氨吹脱法等。
蒸发浓缩法适用于铵浓度达80克/升以上的高浓度氯化铵废水,但要消耗大量的能量,生产出来的氯化铵产品也存在市场销售困难的问题,因此该方法仅适用于煤炭资源丰富且氯化铵销路较好的地区。
折点氯化法适用于处理低浓度氨氮废水,虽然其处理效果稳定,不受水温影响,投资较少,但是加氯量较大、费用高,副产物氯胺和氯代有机物会造成二次污染,要注意密封和再处理。
反渗透膜法是将低浓度含氨废水(0.3%)浓缩至6%~7%,然后再通过氨碱法生产氨水,其淡化水NH4+小于10毫克/升,淡水回用率达90%。日本科学家发明了一种隔膜电渗析—电透析法是处理含铵废水新技术,氯化铵、硝酸铵废水经预处理以及隔膜电渗析处理后,浓度得到富集,再经电解透析处理,可回收HCl、HNO3、氨水。目前已投入工业运行。
氨吹脱法通过调节pH值,使NH4+转化为NH3,然后大量曝气,促使NH3向空气中转移, 因此达到去除水体中NH4+含量的目的。氨吹脱法运行过程中最大的费用是调整pH值消耗的碱,用石灰虽然成本低但沉渣多难清理,采用纯碱或固碱成本较高,氨氮含量难以达到排放标准,而且NH3排放到大气中对环境造成二次污染。
尽管氨氮可以采用不同方法进行处理,但靠一种方法很难达到排放标准,而且造成大量能源消耗,处理成本高,最好的办法还是从源头消除氨氮的污染问题,业内研究机构开发了系列无氨氮排放的清洁生产技术,部分已推广应用。稀土非皂化萃取分离技术是采用氧化镁或氧化钙对有机相进行预处理,以此替代氨水或氢氧化钠,可节约生产成本30%~50%,分离过程不产生氨氮废水,极大地节约了治理成本,具有很好的经济效益和社会效益;碳酸钠沉淀稀土工艺是用碳酸钠代替碳铵沉淀稀土,也从源头上消除了氨氮废水的污染。
⑻ 废水处理的基本方法有哪些
废水中污染物多种多样,从污染物形态分,有溶解性的、胶体状的和悬浮状的污染物。从化学性质分,有有机污染物和无机污染物。有机污染物从生物降解的难易程度又可分为可生物降解的有机物和不可生物降解的有机物。废水处理即是利用各种技术措施将各种形态的污染物从废水中分离出来,或将其分解、转化为无害和稳定的物质,从而使废水得以净化的过程。根据所采用的技术措施的作用原理和去除对象,废水处理方法可分为物理处理法、化学处理法和生物处理法三大类。
1.废水的物理处理法废水的物理处理法是利用物理作用来进行废水处理的方法,主要用于分离去除废水中不溶性的悬浮污染物。在处理过程中废水的化学性质不发生改变。主要工艺有筛滤截留、重力分离(自然沉淀和上浮)、离心分离等,使用的处理设备和构筑物有格栅和筛网、沉砂池和沉淀池、气浮装置、离心机、旋流分离器等。
(1)格栅与筛网格栅是由一组平行的金属栅条制成的具有一定间隔的框架。将其斜置在废水流经的渠道上,用于去除废水中粗大的悬浮物和漂浮物,以防止后续处理构筑物的管道阀门或水泵受到堵塞。筛网是由穿孔滤板或金属网构成的过滤设备,用于去除较细小的悬浮物。
(2)沉淀法沉淀法的基本原理是利用重力作用使废水中重于水的固体物质下沉,从而达到与废水分离的目的。这种工艺处理效果好,并且简单易行。因此,在废水处理中应用广泛,是一种重要的处理构筑物。在废水处理中,沉淀法主要应用于:①在沉砂池去除无机砂粒;②在初次沉淀池中去除重于水的悬浮状有机物;③在二次沉淀池去除生物处理出的生物污泥;④在混凝工艺之后去除混凝形成的絮凝体;⑤在污泥浓缩池中分离污泥中的水分,浓缩污泥。
(3)气浮法用于分离比重与水接近或比水小,靠自重难以沉淀的细微颗粒污染物。其基本原理是在废水中通入空气,产生大量的细小气泡,并使其附着于细微颗粒污染物上,形成比重小于水的浮体,上浮至水面,从而达到使细微颗粒与废水分离的目的。
(4)离心分离使含有悬浮物的废水在设备中高速旋转,由于悬浮物和废水质量不同,所受的离心不同,从而可使悬浮物和废水分离的方法。根据离心力的产生方式,离心分离设备可分为旋流分离器和离心机两种类型。
2.废水的化学处理法化学处理法是利用化学反应来分离、回收废水中的污染物,或将其转化为无害物质,主要工艺有中和、混凝、化学沉淀、氧化还原、吸附、离子交换等。
(1)中和法中和法是利用化学方法使酸性废水或碱性废水中和达到中性的方法。在中和处理中,应尽量遵循“以废治废”的原则,优先考虑废酸或废碱的使用,或酸性废水与碱性废水直接中和的可能性。其次才考虑采用药剂(中和剂)进行中和处理。
(2)混凝法混凝法是通过向废水中投入一定量的混凝剂,使废水中难以自然沉淀的胶体状污染物和一部分细小悬浮物经脱稳、凝聚、架桥等反应过程,形成具有一定大小的絮凝体,在后续沉淀池中沉淀分离,从而使胶体状污染物得以与废水分离的方法。通过混凝,能够降低废水的浊度、色度,去除高分子物质,呈悬浮状或胶体状的有机污染物和某些重金属物质。
(3)化学沉淀法化学沉淀法是通过向废水中投入某种化学药剂,使之与废水中的某些溶解性污染物质发生反应,形成难溶盐沉淀下来,从而降低水中溶解性污染物浓度的方法。化学沉淀法一般用于含重金属工业废水的处理。根据使用的沉淀剂的不同和生成的难溶盐的种类,化学沉淀法可分为氢氧化物沉淀法、硫化物沉淀法和钡盐沉淀法。
(4)氧化还原法氧化还原法是利用溶解在废水中的有毒有害物质在氧化还原反应中能被氧化或还原的性质,把它们转变为无毒无害物质的方法。废水处理使用的氧化剂有臭氧、氯气、次氯酸钠等,还原剂有铁、锌、亚硫酸氢钠等。
(5)吸附法吸附法是采用多孔性的固体吸附剂,利用同一液相界面上的物质传递,使废水中的污染物转移到固体吸附剂上,从而使之从废水中分离去除的方法。具有吸附能力的多孔固体物质称为吸附剂。根据吸附剂表面吸附力的不同,可分为物理吸附、化学吸附和离子交换性吸附。在废水处理中所发生的吸附过程往往是几种吸附作用的综合表现。废水中常用的吸附剂有活性炭、磺化煤、沸石等。
(6)离子交换法离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换水处理法是利用离子交换剂对物质的选择性交换能力去除水和废水中的杂质和有害物质的方法。
(7)膜分离可使溶液中一种或几种成分不能透过,而其他成分能透过的膜,称为半透膜。膜分离是利用特殊的半透膜的选择性透过作用,将废水中的颗粒、分子或离子与水分离的方法,包括电渗析、扩散渗析、微过滤、超过滤和反渗透。
3.废水的生物处理法在自然界中,栖息着巨量的微生物。这些微生物具有氧化分解有机物并将其转化成稳定无机物的能力。废水的生物处理法就是利用微生物的这一功能,并采用一定的人工措施,营造有利于微生物生长、繁殖的环境,使微生物大量繁殖,以提高微生物氧化、分解有机物的能力,从而使废水中的有机污染物得以净化的方法。根据采用的微生物的呼吸特性,生物处理可分为好氧生物处理和厌氧生物处理两大类。根据微生物的生长状态,废水生物处理法又可分为悬浮生长型(如活性污泥法)和附着生长型(生物膜法)。
(1)好氧生物处理法好氧生物处理是利用好氧微生物,在有氧环境下,将废水中的有机物分解成二氧化碳和水。好氧生物处理效率高,使用广泛,是废水生物处理中的主要方法。好氧生物处理的工艺很多,包括活性污泥法、生物滤池、生物转盘、生物接触氧化等工艺。
(2)厌氧生物处理法厌氧生物处理是利用兼性厌氧菌和专性厌氧菌在无氧条件下降解有机污染物的处理技术,最终产物为甲烷、二氧化碳等。多用于有机污泥、高浓度有机工业废水,如啤酒废水、屠宰厂废水等的处理,也可用于低浓度城市污水的处理。污泥厌氧处理构筑物多采用消化池,最近20多年来,开发出了一系列新型高效的厌氧处理构筑物,如升流式厌氧污泥床、厌氧流化床、厌氧滤池等。
(3)自然生物处理法自然生物处理法即利用在自然条件下生长、繁殖的微生物处理废水的技术。主要特征是工艺简单,建设与运行费用都较低,但净化功能易受到自然条件的制约。主要的处理技术有稳定塘和土地处理法。
4.废水处理工艺流程由于废水中污染物成分复杂,单一处理单元不可能去除废水中全部污染物,常需要多个处理单元有机组合成适宜的处理工艺流程。确定废水处理工艺的主要依据是所要达到的处理程度。而处理程度又主要取决于原废水的性质、处理后废水的出路以及接纳处理后废水水体的环境标准和自净能力。
(1)城市废水的一般处理工艺流程其主要任务是去除城市废水中含有的悬浮物和溶解性有机物。一般处理工艺流程,根据不同的处理程度,可分为预处理、一级处理、二级处理和三级处理。
①预处理:主要工艺包括格栅、沉砂池,用于去除城市污水中的粗大悬浮物和比重大的无机砂粒,以保护后续处理设施正常运行并减轻负荷。
②一级处理:一级处理一般为物理处理,主要去除污水中的悬浮状固体物质。悬浮物去除率为50%~70%,有机物去除率为25%左右,一般达不到排放标准。因此一级处理属于二级处理的前处理。主要工艺为沉淀池。
③二级处理:二级处理为生物处理,用于大幅度去除污水中呈胶体或溶解性的有机物,有机物去除率可达90%以上,处理后出水BOD可降至20~30毫克/升,达到国家规定的污水排放标准。主要工艺有活性污泥法、生物膜法等。
④三级处理:在二级处理之后,用于进一步去除残存在废水中的有机物和氮磷,以满足更严格的废水排放要求或回用要求。采用的工艺有生物除氮脱磷法,或混凝沉淀、过滤、吸附等一些物化方法。
(2)工业废水的处理工艺流程由于工业废水水质成分复杂,且随行业、生产工艺流程、原料的变化而变化,故没有通用的工艺流程。