『壹』 为什么在石墨炉原子吸收光谱法测定水中镉时要用硝酸酸化水样
酸化的作用是代替消解那一步,如果水样比较干净的话可以不消解,直接加硝酸定容就可以测了。
『贰』 水质铜锌和铅石墨炉原子吸收分光光度法GB/T7475-1987属于痕量分析吗
GB/T 7475-1987 水质 铜、锌、铅、镉的测定 原子吸收分光光度法
本标准规定了测定水中铜、锌、铅、镉的原子吸收光谱法。本标准分为两部分。第一部分分为直接法,适用于测定地下水、地面水和废水中的铜、锌、铅、镉;第二部分为螯合萃取法,适用于测定地下水和清洁地面水中的浓度的铜、铅、镉。
『叁』 酸溶-石墨炉原子吸收光谱法
方法提要
试样酸溶,以硫脲和磷酸氢二铵作基体改进剂,不经过任何分离,直接用石墨炉原子吸收光谱法测定。仪器检出限为0.008ng,方法测定下限为0.02μg/g。
仪器
原子吸收光谱仪。
试剂
盐酸。
氢氟酸。
高氯酸。
王水。
硫脲溶液(50g/L)。
磷酸氢二铵溶液(10g/L)。
银标准溶液ρ(Ag)=50.0ng/mL[(1+9)HNO3介质]由银标准储备溶液稀释配制。
校准曲线
移取0mL、0.25mL、0.50mL、1.00mL、1.50mL、2.00mL、2.50mL、3.00mL银标准溶液(0.50μg/mL)于25mL比色管中,加2.5mL(3+7)HNO3、5mL硫脲溶液、5mL磷酸氢二铵溶液,用水稀释至刻度,摇匀。其浓度分别为0ng/mL、5ng/mL、10ng/mL、20ng/mL、30ng/mL、40ng/mL、50ng/mL、60ng/mL。按表63.14工作条件在原子吸收光谱仪上进行测定。绘制校准曲线。
表63.14 石墨炉原子吸收光谱仪工作条件
波长328.1nm,灯电流3mA,狭缝0.7nm,进样体积20μL。
分析步骤
称取0.1~1g(精确至0.0001g)试样(硫化矿和含有机质高的试样须在600℃灼烧1h)于聚四氟乙烯塑料杯中,用水湿润,加15mLHF、3mLHCl、1mLHClO4,置于电热板上,加热分解试样。蒸至白烟冒尽,取下,冷却,加10mL新配制王水,在低温处蒸干。加2.5mL(3+7)HNO3、5mL硫脲溶液,加热提取10min,取下。冷却后加入5mL磷酸氢二铵溶液,以下步骤同校准曲线。
计算公式同式(63.7)。
『肆』 石墨炉原子吸收光谱法的介绍
石墨炉原子吸收光谱法是利用石墨材料制成管、杯等形状的原子化器,用电流加热原子化进行原子吸收分析的方法。由于样品全部参加原子化,并且避免了原子浓度在火焰气体中的稀释,分析灵敏度得到了显著的提高。该法用于测定痕量金属元素,在性能上比其他许多方法好,并能用于少量样品的分析和固体样品直接分析。因而其应用领域十分广泛。
『伍』 石墨炉原子吸收光谱法实验时有哪些因素影响结果
石墨炉原子吸收光谱法的质量控制是一个复杂的过程。由于仪器设备运行状态不佳,分析者的操作不熟练,测量时周围环境的变化,以及纯水、试剂、电源的稳定性等因素的影响,都会使分析结果产生误差。
1.化学试剂和实验用水的选择
选择化学试剂和实验用水是做好原子吸收光谱法的良好开端。分析测定时,试剂空白的大小直接影响测定结果的准确性和复现性。因此,实验时应该把试剂空白降到可以忽略。所以在原子吸收实验中,在条件允许下,选择超纯水,其次无机酸的纯度也是试剂空白的一个重要因素,尽量使用优质酸或纯酸。我们曾在实验中发现消化出的食品样品的铅含量均很高,随即对样品进行复测,但结果仍然很高。因为是所有的样品铅含量均高,我们对分析结果产生怀疑,开始认真查找原因。最后我们发现是我们所用的硝酸的空白值过高所致。通过此次事例,提示我们理化检测在日常工作中应特别注意对化学试剂的验收工作,以确保检测质量。
2. 器皿、容器的选择
洁净的容器是做好原子吸收光谱法的重要条件。其次,容器对分析结果的影响主要为表面吸附。因此,实验应选用合适的容器,特别对痕量分析,有条件的实验室应选用特隆,聚乙烯材料的容器。对选用石英玻璃管要注意内壁是否有磨损。通常国内实验室为硝酸(1+5)泡一次后,纯水清洗就使用。我们一般先用硝酸(1+5)泡24小时,直接用纯水清洗后晾干,再用硝酸(1+5)泡24小时,直接用纯水清洗后晾干后使用。容器经过这样处理后,实验取得良好的效果。同时注意所用的硝酸溶液要及时更新。
3.标准溶液的配制
样品的测定值应该落在标准曲线的线性上。标准溶液的吸光度值为0.1-0.6之间.标准曲线为4-6个点,重复读数2次以上.标准溶液使用液应现配现用,选择溶剂应与样品溶剂匹配。根据不同的元素应选用不同的曲线校准方法。例如,我们做镉的标准曲线时,吸光度大于0.3A后,标准曲线向X轴方向弯曲,这时,我们不必强用线性校准,而是选用二次曲线或其他方法校准。
4.样品制备
样品的取量要合适,取样量根据样品的含量来定。一般情况我们通过预实验知道样品的大概含量后确定样品的取量和定容体积。在考核中,我们一般控制样品的吸光度值在0.2A左右,这个吸光度值稳定,精密度高,测量容易。样品的酸度一般控制在0.1mol/L(0.6%)以下。酸度过大,会影响检测的灵敏度。
5.仪器条件
5.1石墨管的选用
石墨炉法需要根据待测元素及样品选择适合的石墨管。石墨管一般有三种,普通石墨管、涂层石墨管,平台石墨管。普通石墨管适用于一些原子化温度底的元素测定。涂层石墨管适用于一些原子化温度高的元素。平台石墨管使用于一些基体复杂的样品如生物样品。在测定一些元素,往往要在石墨管外表面添加一层膜,来达到很好的灵敏度和检出限,同时延长了石墨管的使用寿命。在我们日常工作中常用到的石墨管是普通石墨管和涂层石墨管。普通石墨管在测定一般食品和生活饮用水中的铅和镉,都能达到良好的灵敏度和精密度,但对于灰化温度高的元素,如测定生活饮用水中的铝,铜时,灵敏度会差很多和精密度不能达到良好的要求。
5.2升温参数的选择
在石墨炉分析中,石墨炉的升温参数在整个分析中起着极为重要的作用。做好灰化温度和吸光度关系曲线图,原子化温度和吸光度关系图及背景吸收和吸光度关系图尤为重要,从中我们可以找到最佳的升温参数。在处理一些基体复杂的样品时选好升温参数更为重要。
5.3 仪器进样
石墨炉原子吸收光谱仪一般都是自动进样。在实验过程中要控制好进样的质量,包括进样量的大小和进样管的进样深度。进样要保证进样完全和灵敏度,所以在进样量为20uL时,一般建议进样深度为离石墨管内壁底部剩三分之一左右。具体的进样深度由进样量来决定。有时,因为进样管不够干净,测定粘稠大的样品时常使样品沾在进样管上而使进样不完全,吸光度下降;所以我们要注意清洁进样管的内外壁。在直接测定尿中铅时,我们常常遇到这种情况,影响测定结果。
6.平行测定
由于测定过程中无法避免随机误差,而随机误差大又会导致成为大的测定误差。要减少测定中的随机误差,增加同一份样品的测定次数是非常有效的措施。
7.加标回收
加标回收是指向样品中加入一定量的待测物质,然后与样品同时进行前处理和测定,观察加入的待测物能否定量回收。考核样品分析中加标回收尽量接近100%。加标回收的作用是样品前处理是否合格,测定中是否存在干扰。加标回收接近100%也不能代表考核结果完全准确无误 。它不能检查标准物质本身所带来的误差,不能检查加和性干扰,如背景吸收。所以,作好加标回收的同时还要采用其他质量控制手段才能更好地做好样品检测。加标量应尽量与样品中被测物的含量相近,加标后的测定值不得超过方法的检测上限。我们在2006年测定考核盲样(白酒)中铅时,用磷酸二氢氨做基体改进剂所得的回收只有60%左右,我们认真查找原因后发现测定中存在干扰。之后,我们改用其他基体改进剂,调好仪器条件,测定样品的回收在95%左右。
8.标准加入法
标准加入法是一种消除干扰的一种方法。本法不足之处是不能消除背景干扰,所以只要消除背景干扰才能得到待测样品的真实含量,否则结果会偏高。当样品中基体含量高而成分不详或变化不定时,很难配制成与样品基体相似的标准,这是必须采用标准加入法。将试液的标准曲线斜率和待测元素的工作曲线斜率比较,可知基体效应是否存在。一是试液的标准曲线斜率大于待测元素的工作曲线斜率,表明基体存在增敏效应;二是试液的标准曲线斜率小于待测元素的工作曲线斜率,表明基体存在抑制效应,三是试液的标准曲线斜率等于待测元素的工作曲线斜率,表明无基体效应。
使用标准加入法要注意几个问题,该方法仅适用于吸光度和浓度成线形的区域,校准曲线应是通过原点的直线。为了得到较好的外推结果,至少采用四个点。首次加入的浓度最好与待测元素的浓度大致一样。标准加入法只能消除物理干扰和轻微的与化学无关的化学干扰,因为这两种干扰只影响校准曲线的斜率而不会使校准曲线弯曲,与浓度有关的化学干扰,电离干扰、光谱干扰以及背景吸收干扰,利用标准加入法是不能克服的。一般生物材料的检测都用到标准加入法。
9.标准样品的选择
选择基体和浓度相似的标准参考物质同步进行分析,这是最好的质量控制方法。所以我们要通过多种途径去了解标准样品,购买标准样品,选择好标准样品。
『陆』 原子吸收光谱法测定高浓钴的分析方法
在酸性条件下[1],有二氯化硒存在时,用硫氰酸铵与饮用水中的钴反应生成络合物,丙酮萃取分离,有机相加热蒸发丙酮后,加硝酸和过氧化氢消解,再利用基体改进剂技术[2],自动进样,石墨炉原子吸收光谱法测定,测定结果满意,检出限可达0.47 g·L一 。
1.1 主要仪器与试剂
瓦里安AA-64O型原子吸收分光光度计
热解石墨管(瓦里安公司)
钴标准溶液:1.00mg·L (国家标准物质中心提供)
镁一钯混合基体改进剂:用优级纯的硝酸镁和硝酸钯配制成600~g·L 镁和400~g·L 钯。水为高纯水,其余试剂为优级纯。
1.2 仪器工作条件
波长240.7nm,光谱通带宽度0.2nm,灯电流7mA,氘灯扣背景,进样体积3O l,原子化阶段停气。
1.3 试验方法
移取饮用水250ml,加浓盐酸5.OOml,300g·L 二氯化硒溶液1.OOml,混匀加固体硫氰酸铵0.020g,丙酮30.OOml,振摇5min,静止分层,将有机相转移至50ml烧杯中,加热蒸发丙酮,待丙酮蒸发后,加硝酸(1+3)10.OOml,加过氧化氢溶液1.OOml,加热湿式消解,水样澄清后,放冷,加混合基体改进剂1.OOml,并用硝酸(O.1+99.9)定容至25ml,上机自动进样测定。
2.2 石墨炉测定条件选择
2.2.1 基体改进剂的作用和用量
试验证明,添加镁一钯混合基体改进剂,钴的最高允许灰化温度明显提高,在改变混合基体改进剂用量时,选择加入混合基体改进剂1.OOml时,钴的吸光度达到恒定。
2.2.2 灰化和原子化温度的选择
在选定的条件下,采用30.O0/lg·L 钴溶液,进样体积3O l时,经试验,灰化温度、原子化温度可分别选择1450℃和2500℃ 。
2.3 干扰试验和二氯化硒的作用
试验证明,水样中的Fe。+与SCN一易反应生成Fe(SCN);一,水样中的Cu2+浓度高时,也生成硫氰酸铜,它们都影响钴的测定。而在水样中加入二氯化硒溶液能将Fe、Cu。+还原为低价的离子,为消除影响,选择加入300g ·L 二氯化硒溶液1.00ml。
按试验方法测定3.00/lg·I 钴,以下离子不干扰测定,500倍的Fe抖、Cu抖、Zn抖,700倍的K+、Na+、Ca。+、Mg +,50倍的Mn。+、Cd。+、Pb。+、Ni抖。
2.4 校正曲线和检出限
取钴标准溶液,用高纯水稀成含钴0.00~5.00/lg·L 标准系列溶液,按试验方法进行处理和测定,钴浓度在0.o0~5.00/lg·L 范围内呈线性关系,相关系数为0.9985,同时按试验方法进行l1次空白测定,用CL(是一3)一3SA/S(进样体积为30/A)计算得出检出限为0.47 g·L -1 。
『柒』 石墨炉原子吸收光谱法的原理
原理:试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收283.3nm共振线,在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。
石墨炉原子吸收光谱法是利用石墨材料制成管、杯等形状的原子化器,用电流加热原子化进行原子吸收分析。
(7)石墨炉原子吸收光谱法测定废水中扩展阅读
20世纪80年代,横向加热石墨炉的出现从理论上阐明在石墨管的长度方向上不存在纵向加热石墨管的温度梯度现象。石墨炉原子化技术的出现大大提高了原子化效率,其分析的灵敏度较火焰原子化技术提高了3~4个数量级,灵敏度可达10-12~10-14g,无疑是原子吸收光谱法发展的里程碑。
石墨炉原子吸收光谱法还具有进样量少(一般仅需要5~100μl便可进行1次测定)、原子化温度可自由调节、试验操作过程中安全系数高的优点。
石墨炉的缺点在于其分析范围较窄,测定速度较慢,检测费用较高,测定精度较差,重现性不如火焰法(变异系数一般为4%~12%),有时候由于部分样品基体较为复杂,产生严重的背景吸收干扰,极大地影响了测定结果。
『捌』 原子吸收光谱法
一、内容概述
原子吸收光谱法(AAS)又称为原子吸收分光光度法,基本原理是每种元素都有其特征的光谱线,当光源发射的某一特征波长的光通过待测样品的原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使光源发出的入射光减弱,可以将特征谱线因吸收而减弱的程度用吸光度表示,吸光度与被测样品中的待测元素含量成正比;即基态原子的浓度越大,吸收的光量越多,通过测定吸收的光量就可以求出样品中待测的金属及类金属物质的含量,对于大多数金属元素而言,共振线是该元素所有谱线中最灵敏的谱线,这就是该法之所以有较好的选择性,可以测定微量元素的根本原因。
原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到10 -9 g/mL数量级,石墨炉原子吸收法可测到10 -13 g/mL数量级。其氢化物发生器可对8种挥发性元素汞、砷、铅、硒、锡、碲、锑、锗等进行微痕量测定。在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。
二、应用范围及应用实例
(一)石墨炉原子吸收法检测化探样品中Au的不确定度
2013年最新推出的Z-3000系列原子吸收光谱仪,它应用两个完全匹配的光电倍增管做检测器,分别接受光源中偏振面平行于磁场和垂直于磁场的偏振方向的辐射,测量原子吸收线的π成分及σ±成分,实现背景校正。这是一个理想的方案,可以保证在同一波长、同一测量空间、同一时间(实时)进行背景校正。
Z-3000 AAS的稳定性极好,因为普通原子吸收石墨炉上石墨管的电阻极小,需要使用低压大电流,通常要使石墨管升至3000℃需要400~600 A的电流。Z-3000 AAS 石墨炉使用的是高阻值石墨管,石墨的阻值在30~33 mΩ。使用高阻值石墨管就可以在小的加热电流下工作,要将石墨炉加热到3000℃温度时,在市电电源上所用的电流仅为15 A。由于加热电流值低,内置变压器与石墨炉连接使用了实心电缆,各接触点和电缆中的损耗极小。石墨炉体最大功率升温时,升温速率达到2600℃/s,提高灵敏度的同时给出极佳的检测稳定性和重现性,降低了基体干扰,极大地提高了石墨管的使用寿命,从80~400次/只增加到2000~4800次/只。
它具有语音自动导航、全信息分析软件、多媒体操作教程、视频维护保养程序,几乎无须任何使用说明书即可操作仪器。在地矿系统实验室有着广泛的用户基础和地球化探样品的测试方法。
(二)电热原子吸收光谱法(ET-AAS)同时测定沉积物中的 As、Cd、Cu、Cr、Ni、Pb和Ti
María A(2012)使用ET AAS同时测定了沉积物中重金属As、Cd、Cu、Cr、Ni、Pb和Ti的总量及其分布情况。该方法使用3×3的Box-Behnken 设计矩阵。对修改后的BCR连续萃取方案和总分布分析矩阵的条件进行了优化,以确定适当的雾化温度和群众钯(NO3)2和Mg(NO3)2。考虑对所有矩阵中的元素进行同时测定,在不使用的化学改性剂的情况下,在1700℃下对Cd和Ti进行雾化,2100℃下雾化砷、铜、铬、镍和铅,使用一个标准的校准曲线校准。得到的砷、镉、铬、铜、镍、铅和铊的检测限分别为36.5pg、1.8pg、6.5pg、28pg、34pg、46.5pg、48pg和0.11μg/g、0.001μg/g、0.022μg/g、0.04μg/g、0.2μg/g、0.03μg/g、0.003μg/g。通过分析3个泥沙质标准参考物质(CRM直流73315和LKSD的NCS-4的总含量和BCR 701可用的分数),对该方法进行了验证,得到良好的精度(P=0.05,并显示出每个矩阵中的每个元素的高回收率),除了总砷的分布矩阵,其中被分析物的损失可以归因于样品处理过程中用的HNO3。该方法的精度在0.6%和6%之间。
(三)冷原子吸收测定废水中的As、Se和Hg
Aaron等使用PinAAcle 900T光谱仪和FIAS 400流动注射系统,应用Winlab 32TM数据平台分析测试了废水中的As、Se和Hg的含量,结果如表1所示。
表1 系统灵敏度指标
分析结果表明,该方法的检出限可以满足美国EPA生活饮用水卫生规范的要求,As和Se的检出限还可以满足加拿大环境委员会(CCME)的标准,该方法对Hg的检出能力可以达到加拿大土壤分析的检出限标准。但如果要达到CCME针对海洋保护提出的汞标准,该方法还需要配备流动注射系统(FIMS)或者更大的进样回路。
(四)contrAA® 700 火焰原子吸收光谱法测定长石中Fe、Ca、K、Na 和Mg的含量
2006年,德国耶拿公司推出了高分辨火焰/石墨炉一体连续光源原子吸收光谱仪contrAA® 700,该仪器使用高聚焦短弧氙灯、中阶梯光栅光谱仪(光学分辨率0.002nm,波长范围189~900nm)、CCD线阵检测器,可测量元素周期表中67个金属元素,同时还可能获得更多的光谱信息。
Song等(2010)使用contrAA®700测定了长石中的Fe、Ca、K、Na和Mg的含量(图1~图10)。
图1 铁的特征吸收峰图
图2 铁三维测试峰图
图3 钙的特征吸收峰图
图4 钙的特征吸收峰图
图5 钾的特征吸收峰图
图6 钾三维测试峰图
图7 钠的特征吸收峰图
图8 钠三维测试峰图
图9 镁的特征吸收峰图
图10 镁三维测试峰图
结果表明,采用连续光源原子吸收法可以快速、准确地测定长石中痕量金属元素Fe、Ca、K、Na、Mg的含量,即使样品消解液中待测元素含量超低,可以增加像素点数来提高灵敏度,这是连续光源原子吸收优于传统原子吸收的独一无二的特点之一;另外,某些元素含量超高(百分含量),如果选择次灵敏线,传统原子吸收往往由于分辨率和光源强度有限,存在光谱干扰以及灯能量不足的问题,无法避免稀释带来的误差。由于连续光源具有极高的分辨率(2pm)和足够高的发光强度,可以任意选择不同灵敏度的谱线,并且有效避免光谱干扰,与此同时,完全消除了稀释误差。
(五)火焰原子吸收光谱法测定铁矿石原料中K、Na、As、Sn、Pb、Zn的含量
Song等(2010)使用连续光源ContrAA® 700准确快速地测定了铁矿石原料中多种金属元素的含量,与传统原子吸收相比分辨率有了两个数量级的提升。高浓度金属钠的测定可以选择次灵敏线准确实现分析测定,从而有效地避免了稀释带来的误差。
样品经过酸前处理后,按一定比例稀释,用ContrAA® 700 火焰原子吸收光谱法进行测量。测量条件分别为:
国外地质矿产科技成果
其中Sn的标准曲线为:
国外地质矿产科技成果
三、资料来源
张华,王开奇.2008.石墨炉原子吸收光谱法测定化探样品中进的不确定度评定.矿床地质,27:91~95
www.analytik-jena.com.cn/ 宋春明等.德国耶拿分析仪器股份公司,2010
Aaron Hineman.Determination of As,Se and Hg in Waters by Hydride Generation/Cold Vapor Atomic Absorption Spectros
María A.Álvarez,Génesis Carrillo.2012.Simultaneous determination of arsenic,cadmium,copper,chromium,nickel,lead and thallium in total digested sediment samples and available fractions by electrothermal atomization atomic absorption spectros(ET AAS).Talanta,97(15):505~512
『玖』 用石墨炉原子吸收光谱法测水中镍一定要硝酸反萃取吗
用火焰原子吸收光百谱法测量溶液中金属离子含量时,一般在稀释时加入几毫升硝酸或盐酸,目的是保持酸性度环境,防止金属离子沉淀,多加入几知毫升对结果影响不大。但照你说的,用硝酸来从哪儿提取金属道,此时若5毫升硝酸已经过量,而且不管版用多少硝酸,最终体积都相同,则用10毫升影响也不大;若不过量或最终体积不同,那肯定有影响权。
对火焰没什么影响。