导航:首页 > 污水知识 > 污水安全系数

污水安全系数

发布时间:2022-07-08 20:55:32

『壹』 水质指标在污水处理中有什么作用

一、感官性状和一般化学指标

1、色度

天然水经常显示各种不同的颜色,水的色度通常来自植物界。工业废水的污染,可使水体产生多种颜色。地面水的色度变化很大,它与汇水的土嚷、植被情况有关。

水色可分为真色和外表色两种。水中悬浮物质完全移去后所呈现的颜色称为真色,它主要来源于溶解在水中的腐植质和水生物。水中存在的各种有机物或无机物的杂质,如植物的落叶,树根及泥土中的一些物质、泥沙、矿物质等,称为外表色,或称虚色、假色。

沼泽水由于含腐植质而呈黄色,低铁化合物使水成为淡兰绿色,高铁化合物及四价锰化物使水呈黄色,水中大量藻类存在时显亮绿色。

水色的的存在,使饮用者有外观不快的感觉。色度不一定都对人体有害,但会使工业尤其对一些轻工业品如食品、造纸、纺织、饮料工业等产品质量降低。色度是主要的污染指标之一,一些国家的水质标准,要求的色度都在5~20度之间,现标准规定色度不超过15度铂钴单位,并不得呈现其它异色。优质水最好在10度以内。

2、浑浊度

水的浑浊度,是指水中悬浮物和胶体杂质对光线透过时所发生的阻碍程度。它和水中杂质含量,颗粒大小、形状和表面反射性有关。测定浊度的方法比较简便,一般都用来间接反映水中悬浮和胶体杂质的数量。1升水中含有1毫克白陶土(或高岭土)时产生的浑浊程度,称为1度或1毫克/升。浑浊度是衡量水质污染程度的重要标志之一,它与河岸性质、水流速度、工业废水的污染有关,并随气候、季节变化而变动。

低浊度的水,对限制某些有害物质有积极的卫生学意义。水的浑浊度过高会影响消毒效果,增加消毒剂用量。根据各地反映,浑浊度达10毫克/升时已使人感到水质浑浊,因此水厂应尽最大努力,以求出厂水的浑浊度不超过3度,特殊情况下不超过5度。

新标准要求不超过1度,条件或技术限制时不超过3度。

3、嗅和味

洁净的水是无嗅无味的,污染的水才会产生嗅和味。藻类的某些浮游生物、有机物、溶解气体、矿物质、工业废水的污染,加氯消毒、水温、水中溶解氧的含量等等都会使水中带有嗅和味。水温越低,河水越浑浊,常有泥腥土臭、味涩;溶解氧较多,味略甜;兰绿藻类原生动物会发出草腥臭等更多污水处理技术文章参考易净水网资料库http://www.ep360.cn/qita/。

溶解于水中的化合物,一般要到一定的浓度,才能引起味觉。含氯化物在150毫克/升以上带苦咸味,含铁在0.3毫克/升以上带涩味,含过量的矿物质的水味涩或咸。含有嗅和味的水,饮用者产生不愿饮的感觉,对很多种工业生产用水也不利,使工业产品质量降低,因此标准规定自来水应保证无异嗅和异味。

4、肉眼可见物

饮用水不应含有沉淀物、肉眼可见的水生物及令人嫌恶的物质。

5、PH值

PH值表示水中所含活性氢离子的浓度,以代替氢离子的活度。水的PH值是描述水呈酸碱性的一个指标,凡水中PH值低于7.0时,水呈酸性,而PH值高于7.0则水带碱性,当PH值为7.0时水为中性。水在净化处理过程中,由于投加混凝剂和石灰等,可使水的PH值下降或升高,但过低可腐蚀管道,影响水质,过高又可析出溶解性盐类并降低氯消毒的效果。标准规定在6.5~8.5之间。

6、总硬度

水的硬度是指沉淀肥皂的程度,使肥皂沉淀的原因,主要由于天然水中含有钙盐和镁盐。地下水的硬度往往比较高,地面水的硬度随地理、地质情况等因素而变,地面水的硬度一般不会太高。

硬水不宜于工业方面使用,锅炉用水切忌硬水,否则会生成锅垢,浪费燃料。硬水也不宜于生产饮用,洗衣服会浪费肥皂,衣服染成斑点或不均匀的颜色;对健康不利,能引起暂时性的胃肠功能紊乱。据国内报道,饮用总硬度为707~935毫克/升(CaCO3计)的水,第二天人们就出现不同程度的腹胀、腹泻和腹痛等胃肠道症状,持续一周左右开始好转,20天后恢复正常。显然,人们对硬度的接受程度相差很大。

根据我国各地的调查,饮用水的硬度都不超过425毫克/升(CaCO3计),人们对该硬度的水反应也不大。

此外,水的硬度过高,可在配水系统中形成水垢,并需消耗过量的肥皂。

至于高硬度地区的水是否要采取必要的处理措施,可的根据当地居民的习惯和要求,由供水单位与卫生部门协商决定。为与多数国家取得一致,将原来按氧化钙计的总硬度单位,改为按碳酸钙计,经折算,并考虑其它因素将原来的硬度不应超过250毫克/升(以氧化钙计)改为不应超过450毫克/升(按碳酸钙计)。

7、铁

铁在天然水中普遍存在,是人类必需营养素,人体组织中含铁达3~5克,是合成血液中血红蛋白和氧化酶等所必需的元素,每人每日所需的铁质约6~12毫克。因此饮用水中含有少量的铁并无害处,食物中可以摄入。水中含量在0.3~0.5毫克/升时无任何异味,当达到1毫克/升时便有明显的金属味,含铁量为0.3毫克/升时色度约为20度,在0.5毫克/升时色度可大于30度。为了防止衣服、器皿的染色和形成令人反感的沉淀或异味,标准规定饮用水中铁含量不应超过0.3毫克/升。

8、锰

锰是人体需要的微量元素之一,每人每日需锰4毫克,主要从食物中摄入。水中锰可来自自然环境或工业废水污染。锰在水中不易被氧化,在净化处理过程中较难去除,水中有微量锰时,呈黄褐色。锰的氧化物能在水管内壁上逐步沉积,在水压波动时可造成"黑水"现象。一些地区曾发生过这种情况。

锰和铁对水感官性状的影响类似,两者经常共存于天然水中。当水中锰浓度超过0.5毫克/升时,能使衣服和固定设备染色,在较高浓度时使水产生不良味道。锰的毒性较小,在饮水中引起中毒的事例未见记载。

为防止对衣服、食具及白瓷器等产生色斑和满足水质感官性方面的要求,标准规定饮用水中含锰量不应超过0.1毫克/升。

9、铜

铜是人体中需要的主要微量元素之一,在新陈代谢中参与细胞的生长、增殖和某些酶系统的活化过程。成年人每天需铜约2毫克,小孩需铜量比成年人高,婴儿缺乏铜可发生营养性贫血。天然水中含铜量较少,而工业废水的污染可大大增加地面水的含铜量。

铜的毒性小,但过多则对人体有害。如口服1000毫克/日,则可引起恶心、腹痛,长期摄入引起肝硬化。

根据现有资料,水中含铜量达 1.5毫克/升时,即有明显的金属味;含铜量超过1.0毫克/升时,可使衣服及白瓷器染成绿色。根据感官性状的要求,标准规定饮用水中含铜量不超过1.0毫克/升。

10、锌

天然水中的锌含量很少,锌主要来源于工矿废水和镀锌金属管道。锌是人体必需的元素,是酶的组成部分,参与新陈代谢。学龄前儿童每天需要锌约为0.3毫克/公斤,成年人每天摄取量平均为10~15毫克。但摄入过多,则能刺激胃肠道和产生恶心,口服1克的硫酸锌可引起严重中毒。调查表明,饮水中含锌23.8~40.8毫克/升或泉水含锌50毫克/升均未见有害作用。但据报道,饮水中含锌30毫克/升,会引起恶心。水中含锌10毫克/升时呈现浑浊,5毫克/升有金属涩味。我国各地水中含锌量一般都很低。根据感官性状要求,标准规定饮用水中锌含量不应超过1.0毫克/升

11、挥发酚类(发苯酚计)

酚类化合物中能与氯结合形成氯酚臭的,主要是苯酚、甲酚苯、苯二酚等在水质检验中能被蒸馏出和检出的酚类化合物。水中含酚主要来自工业废水污染,特别是炼焦和石油工业废水,其中以苯酚为主要成分。挥发酚类有蓄积性,对人体和渔业生产的危害均很大,并且是缓慢而持久的。苯酚能使细胞蛋白质发生变性和沉淀,小剂量时有类似水杨酸的作用,能刺激呼吸中枢,引起高铁血红蛋白症,其口服致死量约2~15克。当水体含酚量达9~15毫克/升时,鱼类不能生存。苯的的中毒症状为苯醉、昏睡、刺激眼和呼吸道,而主要危害在神经系统。酚的中毒表现为胃肠炎、呼吸道病变,能引起血压降低、体温下降、呼吸中枢麻痹。

酚具有恶臭,对饮水进行加氯消毒时,能形成臭味更强烈的氯酚,往往引起饮用者的反感。根据感官性状的要求,标准规定饮用水中挥发酚类含量不应超过0.002毫克/升。

12、阴离子合成洗涤剂

目前,国产合成洗涤剂以阴离子的十二烷基苯磺酸盐为主,其化学性质稳定,不易降解和消除。人体摄入少量洗涤剂,很少表现有害作用。但是,当水中浓渡为0.5毫克/升时要产生泡沫,超过0.5毫克/升时有异味,进入肠胃后有刺激粘膜的作用,甚至引起腹泻、腹痛。根据嗅觉阈及泡沫形成的阈限度和大剂量的毒理作用,标准规定饮用水中阴离子合成洗涤剂含量不应超过0.3毫克/升,而作为优质水,则不能检出阴离子合成洗涤剂。

13、硫酸盐

硫酸盐是人体需要的大量元素之一,天然水中普遍含有硫酸盐,并作为主要矿化成份之一。硫酸盐与钙离子结合生成坚硬的锅垢,加剧锅炉的腐蚀,当水中硫酸盐含量达到400毫克/升时,使人产生饥饿感,水具有苦涩味。

硫酸盐是泻药,当含量超过750毫克/升时,可刺激肠胃引起腹痛、腹泻,含量再高,可招致便血,当水中硫酸盐与镁共存时,作用加剧,而低于600毫克/升则无此作用。基于硫酸盐对水味的影响和具有轻泻作用,标准规定饮用水硫酸盐含量不超过250毫克/升。

14、氯化物

地面水和地下水中通常都含有氯化物,它主要以钠、钙、镁的盐类存在于水中,氯化物在水中含量不多,对人体无害。饮用水中氯化物浓度过高(当为上千毫克/升)时,饮用后人体感到全身无力,口腔无味,水呈咸味或苦涩味,有时可引起腹泻。

水中存在氯化物,其钙、镁离子对锅炉有腐蚀作用,含量超过200毫克/升时,可加速金属管道的腐蚀。人摄入氯化物的主要来源为含盐食品,每天平均摄入量约为6克(氯离子)。根据味觉考虑,标准规定饮用水中氯化物含量不应超过250毫克/升。

15、溶解性总固体(矿化度)

水中溶解性总固体主要包括无机物,主要成份为钙、镁、钠的重碳酸盐、氯化物和硫酸盐。当其浓度高时,可使水产生不良的味道,并能损坏配水管道和设备。

据国外报道,浓度低于600毫克/升时,一般认为水味尚好,而高于1200毫克/升,会影响水味,但是长期饮用可能适应。基于对水味的影响,标准规定饮用水溶解性总固体不应超过1000毫克/升。

二、毒理学标准

16、氟化物 F

氟化物在自然界广泛存在,又是人体正常组织成分之一,人每日自食物及饮水中摄取一定量的氟。摄入量过多对人体有害,可致急、慢性中毒(主要表现为牙斑釉或氟骨症)。饮用水中氟含量达3~6毫克/升时出现氟骨症,超过10毫克/升时会引起残废。

综合考虑水中氟含量为1.0毫克/升时对牙齿的轻度影响,以及对我国广大的高氟区饮水进行除氟或更换水源所付的经济代价,标准规定饮用水中氟含量不得超过1毫克/升。原《标准》中规定适宜浓度0.5~1.0毫克/升,根据各地意见,以不订下限值为宜。因为许多地区饮用水中氟含量低于0.5毫克/升,而关于"加氟"措施,国内外均有争议,尚无法定论。我国幅员辽阔,各地气候条件很不一致,各地的特殊问题应与当地卫生部门具体商定解决。特别是高氟地区,从饮用水以外其他途径摄入的氟较高,故应尽量使用低氟水源。

17、氰化物过 CN

氰是水中主要的有毒物质之一,氰化物主要来自工业废水,有剧毒。作用于某些呼吸酶,引起组织内窒息。首先影响呼吸中枢及血管舒缩中枢。慢性氰中毒时,甲状腺激素生成量减少。

氰化物使水呈杏仁气味,其嗅觉浓渡为0.1毫克/升,口服氰化氢0.06克即可致死。氰化钠的致死量0.15~0.2克,口服苦杏仁40~60粒则可引起中毒甚至死亡,水体中含氰化物0.03毫克/升时,对鱼类有中毒作用,到0.3毫克/升时影响水体生物净化的作用。

考虑到氰化物毒性很强,采用较大安全系数,标准规定饮用水中氰化物的含量不得超过0.05毫克/升(以游离氰根计)。

18、砷 AS

天然水中含微量的砷;水中含砷量高,除地质因素外,主要来自工业废水和农药的污染。国内现场调查表明,某地深井水含砷量为1.0-2.5毫克/升,自1930年至1961年中发生慢性中毒病例多起,表现为皮肤出现白斑,后逐步变黑。角化肥厚呈橡皮状;发生龟裂性溃疡。国内调查表明,在供水中砷含量为0.05毫克/升,未见任何有害影响。饮用含砷量大于0.12毫克/升的饮用水,相当一部分居民发生砷增高,但未见任何中毒表现。一些国家报道,水中砷含量过高,长期饮用时引起皮肤癌发病率增高。基于上述资料将,原标准中规定的饮用水砷含量不得超过0.04毫克/升,改为0.05毫克/升。

19、硒

硒是人体必需元素之一,但硒的化合物在人体内积蓄过量就会引起急性中毒,它的表现为食欲不振,四肢乏力,出现黄胆贫血症。水中含硒除地质因素外,大都来自工业废水的污染,应从食物中限制摄入硒的含量。

标准规定饮用水中硒的含量,不得超过0.01毫克/升。

20、汞

汞即水银,是银白色发光液体。有机汞的毒物主要由有机汞农药造成,它是农业杀菌剂的一种,我国已规定不准使用有机汞农药。无机汞中以氯化汞和硝酸汞的毒性较高,小鼠口服氯化汞的最小致死量为0.81~0.88毫克。有机汞的毒性比无机汞大,小鼠口服氯化乙基汞的最小致死量为0.60~0.65毫克。

水中的汞主要来自工业用水和废渣。地面水中的无机汞,在一定条件下可转化为有机汞,并在水生生物(如鱼、贝类等)体内富集。人食用这些鱼、贝类后,可引起慢性中毒,如日本所称的"水俣病"的公害,即是无机汞毒害所致。 据报道,长期每天摄入约0.25毫克甲基汞,可导致神经损伤。但是,饮用水中汞浓度几乎均低于0.001毫克/升。基于汞的毒性,标准规定饮用水中汞的含量不得超过0.01毫克/升。

21、镉

镉是银白色的金属,耐腐蚀。镉在工业、农业上的应用日益广泛,含镉废水是危害最严重的重金属用水之一。镉是累积性毒物,能蓄积于体内软细胞组织中,镉在肾脏中可经肾排出,但持续时间很长,使人生病潜伏期可达10~40年,病程也长,引起肾脏病变,并导致镉污染的骨痛病。内服硫酸镉30毫克可致死;镀锌管中会溶解出镉,鱼类可以测出镉,含镉0.2毫克/升的水对鱼类有毒害作用。

标准规定饮用水中含镉量不得超过0.01毫克/升。

22、铬

六价铬化合物的毒性比三价铬大100倍,二价铬和金属铬的毒性最小,它们都能溶解于水。天然水中铬含量较少,地面水含量一般为2~2.6微克/升,由于工业用水的污染,使水体中含铬量增加。
铬是人体内需要的极微量元素,而六价铬却是水中的主要有毒物质之一。六价铬有很大的刺激和腐蚀作用,对人的致死量为5克。当六价铬含量超过0.1毫克/升时,就可能对人体产生毒害,引起皮肤、粘膜、肝脏、胃肠、口腔、血液的疾患,有导致肺癌的可能。六价铬在体内有沉积作用。优质水的六价铬含量最好为零,标准规定不超过0.05毫克/升。

23、铅

铅并非机体所必须的元素,常随饮水和食物进入人体,摄入量过高可引起中毒。

世界粮农组织和世界卫生组织专家委员会,于1972年确定每人每周摄入铅的总耐受量为3毫克。儿童、婴儿、胎儿和妊娠妇女对环境中的铅较成人和一般人群敏感,在确定饮用水中铅的标准值时应将该组人群考虑在内。

研究证实,饮用水中铅含量为0.1毫克/升时,可能引起大量儿童血铅浓渡超过30毫克/100毫升,这是推荐儿童血铅上限值。因此,饮用水中铅含量为0.1毫克/升,对儿童来讲是过高的。对成人而言,如果每日从食物中摄入铅量大于230微克,则每周从食物和水中摄入的铅量就会超过总耐受量。考虑到饮用水中铅含量为0.1毫克/升时,能引起儿童血铅含量增高,以及我国饮用水中现有的铅浓渡水平,故将原《标准》中规定的铅浓渡不得超过0.1毫克/升改为0.05毫克/升。

24、银

在天然水或制成水中发现微量的银,是由自然来源和工业废水引起的。如银是照相底片感光层的主要原料。吸入大剂量的胶体银(500毫升以上)可以致死,死因是肺水肿。

一般在地面上水和井水中查得范围只有0.1~40微克/升,在卫生标准0.05毫克/升以下。因此,可以不予考虑。

25、硝酸盐

天然水中所有含氮物质都可转化成硝酸盐。饮用水中存在硝酸盐会使婴儿血液失调,诱发正铁血红蛋白血症,甚至可能形成致癌的亚硝酸,标准规定不得大于20微克/升。

26、氯仿(即三氯甲烷)

用于致冷剂和烟雾剂的发射剂以及合成氟化树脂,也可作为杀虫剂。通过实验,对人的急性毒性表现为肝和肾的硬化和破坏。标准规定不得大于60微克/升。

27、四氯化碳(即四氯甲烷)

主要用于制造氯氟甲烷、灭火剂、清洁剂、熔剂等。美国环保局对自来水企业进行调查,证明四氯化碳并非加氯处理时的产物,而是来自工业废水。四氯化碳可迅速被胃肠道吸收和通过肺部吸入,对儿童的致死剂量低达3毫升,但随各人的易感性有很大的变化,肠的吸收可因脂肪、油类和酒精而增大。慢性接触一般会使胃肠道不适,造成呕吐,神经系统会觉得头痛、困倦。急性中毒可能发生肝癌,标准规定不得大于3微克/升。

28、苯并(a)蓖

苯并(a)蓖是一种普遍存在的多环芳香烃,是煤、石油、页岩和煤油中的成分,是一种致癌物质。标准规定不得大于0.01微克/升。

29、滴滴涕(DDT)

滴滴涕(DDT),化学名氯苯乙烷,是一种有机氯杀虫剂,不溶于水,能溶于煤油、苯等有机溶剂。对人体呼吸系统有刺激性,是一种中枢神经系统的抑制剂。标准规定不得大于1微克/升。

30、六六六

六六六化学名为六氯环乙烷,或叫六氯化苯,也是一种有机氯杀虫剂,由苯和氯气在光的作用下合成,杀虫力极强。据国外研究报告,口服量2~10克使人致死。标准规定不得大于5微克/升。

三、细菌学指标

31、细菌总数

指1毫升水在普通琼脂培养基中,在37℃温度下,经过24小时培养后生长的所有菌菌落的总数。被污染的水,每毫升中细菌可达几十万个。经过净化消毒处理后,病原菌被杀灭,普通的细菌也大为减少。一般认为,每毫升水中的细菌数不超过100个的水已基本良好。水质标准规定每毫升水中不超过100个(<100个/mL)。

32、大肠菌群

指一群在37℃,24小时能发酵乳糖、产酸、产气、需氧和兼性厌氧革兰氏阴性无牙孢杆菌,普遍存在于人畜粪便严重污染过的水中,大肠菌群每升可达几万个。大肠菌群本身不一定致病,但它同致病的肠道病菌,如伤寒、痢疾等杆菌是同属。大肠菌群抗氯的能力要比肠道致病菌大(如伤寒、痢疾)。因此,通过氯消毒,大肠菌群指数达到饮用水质要求时,则致病菌基本杀死。水质标准规定,每升水中大肠菌群不得超过三个(<3个/L)。

33、游离性余氯

指生活饮用水在加氯消毒、经过30分钟接触时间、留在水中的游离性余氯。它具有持续杀菌能力,可防止管道中污染,保证供水质量。当出厂水游离氯在0.3毫克/升以上时,不仅对伤寒、痢疾等肠道致病菌有完全杀灭的效果,而且对传染性肝炎、小儿麻弊症等肠道病毒也有一定的灭活作用,故水质标准中规定游离性余氯,在接触30分钟后应不低于0.3毫克/升;管网末梢水应不低于0.05毫克/升。

四、放射性指标(决α、总β放射性各一项)

放射性射线能使人及生物组织由于电离而受到损伤,引起放射病。远期效应主要包括:
白血病和再生障碍性贫血、恶性肿瘤、白内障。放射性污染来自核工业及其它工业的废水、废气、废渣、核武器试验的沉降物,以及放射性同位素的生产和应用。

34、总α放射性不得大于0.1贝柯/升。(Bq/L)

35、总β放射性不得大于1贝柯/升。

『贰』 生物脱氮除磷处理化学工业污水有什么要求吗

SICOLAB整理采取生物脱氮除磷的污水应符合下列规定:

1 生物脱氮除磷时,系统中有毒害和抑制性物质的允许浓度宜通过试验或按有关资料确定;

2 生物脱氮除磷时,污水BOD5与总氮之比宜大于4,BOD5与总磷之比宜大于17;

3 进水BOD5不能满足脱氮除磷要求时,应外加碳源;

4 好氧段(池)剩余碱度宜大于70mg/L(以CaCO3计)。

二、采用缺氧/好氧(ANO)工艺脱氮时,反应池容积可采用下列方法计算:

1 采用污泥负荷法,好氧段(池)容积可按公式(3-1)计算,容积应满足按BOD5负荷和总氮负荷计算的结果,缺氧段(池)容积可按好氧段(池)容积的1/3~1/4取值。

2 采用硝化反硝化动力学法计算:

1)好氧段(池)容积可按下列公式计算:

式中:Vn——缺氧段(池)容积(m³);

N0——生物反应系统进水总氮浓度(mg/L);

Ne——生物反应系统出水总氮浓度(mg/L);

Kde——脱氮速率{kg[N]/(kg[MLSS]·d)};

Kde(20)——20℃的脱氮速率,无数据时可取0.03{kg[N]/(kg[MLSS]·d)}~0.06{kg[N]/(kg[MLSS]·d)};

X——生物反应池内混合液悬浮固体平均浓度(g[MLSS]/L);

△Xv——排出生物反应系统的挥发性悬浮固体量(kg[VSS]/d)。

三、缺氧/好氧工艺主要设计参数宜根据试验或相似污水运行数据确定,无数据时可按下列数据取值:

1 BOD5污泥负荷宜取0.05kg[BOD5]/(kg[MLSS]·d)~0.15kg[BOD5]/(kg[MLSS]·d);

2 总氮污泥负荷不宜大于0.05kg[TN]/(kg[MLSS]·d);

3 混合液悬浮固体平均浓度宜取2.5g[MLSS]/L~4.5g[MLSS]/L;

4 污泥龄宜取11d~23d;

5 污泥回流比宜取50%~100%;

6 混合液回流比宜取200%~400%;

7 污泥产率宜取0.3kg[VSS]/kg[BOD5]~0.6kg[VSS]/kg[BOD5]。

四、采用厌氧/缺氧/好氧工艺脱氮除磷时,反应池好氧段(池)、缺氧段(池)的容积可按本规范第2条的规定计算。厌氧段(池)的容积可按水力停留时间计算,水力停留时间宜为1h~2h。

五、厌氧/缺氧/好氧工艺主要设计参数宜根据试验或相似污水运行数据确定,无数据时宜按下列数据取值:

1 BOD5污泥负荷宜取0.1kg[BOD5]/(kg[MLSS]·d)~0.2kg[BOD5]/(kg[MLSS]·d);

2 混合液悬浮固体平均浓度宜取2.5[MLSS]/L~4.5g[MLSS]/L;

3 污泥龄宜取10d~20d;

4 污泥回流比宜取20%~100%;

5 混合液回流比宜大于或等于200%;

6 污泥产率宜取0.3kg[VSS]/kg[BOD5]~0.6kg[VSS]/kg[BOD5]。

六、厌氧/缺氧/好氧工艺脱氮除磷时,可根据进水水质和处理要求,经技术经济分析比较后,选择各种改进型的工艺。

七、生物除磷的剩余污泥宜采用机械浓缩。

『叁』 雨污水施工需要注意什么安全隐患

根据各来分部分项工作做好详源细的安全技术交底。
排水工程:沟槽开挖、管道吊装等,每道工序施工都应注意施工安全。(雨污水管道安装,钢筋混凝土安装) 施工过程、机械操作等安全
道路工程:机械配合人工施工。
桥梁工程:基础桩施工、桥墩桥台施工。注意模板支护、高空作业、砼浇筑。
临时设施安全用电、防汛等。施工现场与外界协调交通。
整体来说,市政工程安全系数低些。 没什么大型模板支护。没什么大难度施工,安全事项注意下,没什么问题。

『肆』 谁有污水处理厂的危险源识别啊,谢谢

这是说明书
第一章 设计资料
一、自然条件
1、 气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。
2、 水文:最高潮水位 6.48m(罗零高程,下同)
高潮常水位 5.28m
低潮常水位 2.72m
二、城市污水排放现状
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d;
(2)生产废水量按近期1.5万m3/d,远期2.4万m3/d;
(3)公用建筑废水量排放系数按近期0.15,远期0.20考虑;
(4)处理厂处理系数按近期0.80,远期0.90考虑。
2、污水水质
(1) 生活污水水质指标为
CODcr 60g/人.d
BOD5 30g/人.d
(2) 工业污染源参照沿海开发区指标,拟定为:
CODcr 300mg/L;
BOD5 170mg/L
(3) 氨氮根据经验确定为30md/L。
三、污水处理厂建设规模与处理目标
1、 建设规模
该污水处理厂服务面积为10.09km2, 近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。处理水量近期3.0万m3/d,远期6.0万m3/d。
2、 处理目标
根据该城镇环保规划,污水处理厂出水进入的水体水质按国家3类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为
CODcr≤100mg/L; BOD5≤30mg/L; SS≤30mg/L ; NH3-N≤10mg/L
四、建设原则
污水处理工程建设过程中应遵从下列原则:污水处理工艺技术方案,在达到治理要求的前提下应优先选择基建投资和运行费用少、运行管理简便的先进的工艺;所用污水、污泥处理技术和其他技术不仅要求先进,更要求成熟可靠;和污水处理厂配套的厂外工程应同时建设,以使污水处理厂尽快完全发挥效益;污水处理厂出水应尽可能回用,以缓解城市严重缺水问题;污泥及浮渣处理应尽量完善,消除二次污染;尽量减少工程占地。

第二章 污水处理工艺方案选择
一、工艺方案分析
本项目污水以有机污染为主,BOD/COD=0.54 可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标,针对这些特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。由于将来可能要求出水回用,处理工艺尚应硝化。
根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用“普通活性污泥法”或“氧化沟”法。
普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计运行经验,处理效果可靠,如设计合理,运行得当,出水BOD5可达10-20mg/L,它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理困难,运行费用高。
氧化沟处理技术是20世纪50年代有荷兰人首创。60年代以来,这项技术在国外已被广泛采用,工艺及构筑物有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点的逐步深入认识,目前已成为普遍采用的一项污水处理技术。
氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实行脱氮,成为A/O工艺,由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。
氧化沟污水处理技术已被公认为一种成功的革新的活性污泥法工艺,与传统活性污泥系统相比较,它在技术、经济等方面具有一系列独特的优点。
1、 工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气和空气扩散器,不建厌氧硝化系统,运行管理方便。
2、 处理效果稳定,出水水质好。
3、 基建投资省,运行费用低。
4、 污泥量少,污泥性质稳定。
5、 具有一定承受水量、水质冲击负荷的能力。
6、 占地面积少。
污水处理厂的基建投资和运行费用与各厂的污水浓度和建设条件有关,但在同等条件下的中、小型污水厂,氧化沟比其他方法低,据国内众多已建成的氧化沟污水处理厂的资料分析,当进水BOD5在120-180mg/L时,单方基建投资约为700-900元/(m3.d),运行成本为0.15-0.30元/m3污水。
由以上资料,经过简单的分析比较,氧化沟工艺具有明显优势,故采用氧化沟工艺。
二、工艺流程确定:(如图所示)
说明:由于不采用池底空气扩散器形成曝气,故格栅的截污主要对水泵起保护作用,拟采用中格栅,而提升水泵房选用螺旋泵,为敞开式提升泵。为减少栅渣量,格栅栅条间隙已拟定为25.00mm。
曝气沉砂池可以克服普通平流沉砂池的缺点:在其截流的沉砂中夹杂着一些有机物,对被有机物包裹的沙粒,截流效果也不高,沉砂易于腐化发臭,难于处置。故采用曝气沉砂池。
本设计不采用初沉池,原则上应根据进水的水质情况来确定是否采用初沉池。但考虑到后面的二级处理采用生物处理,即氧化沟工艺。初沉池会除去部分有机物,会影响到后面生物处理的营养成分,即造成C/N比不足。因此不予考虑。
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准,故污泥负荷和污泥泥龄分别低于0.15kgBOD/kgss*d和高于20.0d。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
为了使沉淀池内水流更稳定(如避免横向错流、异重流对沉淀的影响、出水束流等)、进出水更均匀、存泥更方便,常采用圆形辐流式二沉池。向心式辐流沉淀池采用中心进水,周边出水,多年来的实际和理论分析,认为此种形式的辐流沉淀池,容积利用率高,出水水质好。设计流量 Q=2.85万m3/d=1208.3 m3/h,回流比 R=0.7。

第三章 污水处理工艺设计计算
一、水质水量的确定
1. 水量的确定
近期水量:生活废水Q生活=6.0×104×300L/人•天=1.8×104m3/d
工业废水Q工业=1.5×104m3/d
公用建筑废水Q公用=1.8×104×0.15=0.27×104m3/d
所以近期产生的废水量为Q
Q=Q生活+Q工业+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d
近期的处理系数为0.8,故近期污水处理厂的处理量
Qp=3.57×104×0.8=2.856×104m3/d

远期水量:生活废水Q生活=10.0×104×300L/人•天=3.0×104m3/d
工业废水Q工业=2.4×104m3/d
公用建筑废水Q公用=3.0×104×0.2=0.6×104m3/d
所以远期产生的废水量为Q
Q=Q生活+Q工业+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d
远期的处理系数为0.9,故远期污水处理厂的处理量
Qp=6.0×104×0.9=5.4×104m3/d
通常设计污水处理厂时远期的设计处理量为近期的两倍,综合考虑近期和远期的处理水量,取近期的设计处理水量Qp=3.0×104m3/d,远期的设计处理水量Qp=6.0×104m3/d。
2. 水质的确定
近期COD:
COD = =242mg/L
近期BOD5:
BOD5= =129mg/L
远期COD:
COD= =240 mg/L
远期BOD5:
BOD5= =128mg/L
NH3-N按规定取为30 mg/L
所以处理厂的处理水质确定为COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝气沉砂池设计计算说明书
沉砂池的作用是从污水中去除砂子、煤渣等比重比较大的无机颗粒,以免这些杂质影响后续构筑物的正常运行。常用的沉砂池有平流式沉砂池、曝气沉砂池、竖流沉砂池和多尔沉砂池等。平流式沉砂池构造简单,处理效果较好,工作稳定,但沉砂中夹杂一些有机物,易于腐化散发臭味,难以处置,并且对有机物包裹的砂粒去除效果不好。曝气沉砂池在曝气的作用下颗粒之间产生摩擦,将包裹在颗粒表面的有机物除掉,产生洁净的沉砂,通常在沉砂中的有机物含量低于5%,同时提高颗粒的去除效率。多尔沉砂池设置了一个洗砂槽,可产生洁净的沉砂。涡流式沉砂池依靠电动机机械转盘和斜坡式叶片,利用离心力将砂粒甩向池壁去除,并将有机物脱除。后3种沉砂池在一定程度上克服了平流式沉砂池的缺点,但构造比平流式沉砂池复杂。
和其它形式的沉砂池相比,曝气沉砂池的特点是:一、可通过曝气来实现对水流的调节,而其它沉砂池池内流速是通过结构尺寸确定的,在实际运行中几乎不能进行调解;二、通过曝气可以有助于有机物和砂子的分离。如果沉砂的最终处置是填埋或者再利用(制作建筑材料),则要求得到较干净的沉砂,此时采用曝气沉砂池较好,而且最好在曝气沉砂池后同时设置沉砂分选设备。通过分选一方面可减少有机物产生的气味,另一方面有助于沉砂的脱水。同时,污水中的油脂类物质在空气的气浮作用下能形成浮渣从而得以被去除,还可起到预曝气的作用。只要旋流速度保持在0.25~0.35m/s范围内,即可获得良好的除砂效果。尽管水平流速因进水流量的波动差别很大,但只要上升流速保持不变,其旋流速度可维持在合适的范围之内。曝气沉砂池的这一特点,使得其具有良好的耐冲击性,对于流量波动较大的污水厂较为适用,其对0.2mm颗粒的截流效率为85%。
由于此次设计所处理的主要是生活污水水中的有机物含量较高,因此采用曝气沉砂池较为合适。
曝气沉砂池的设计参数:
(1)旋流速度应保持0.25—0.3m/s;
(2)水平流速为0.08—0.12 m/s;
(3)最大流量时停留时间为1—3min;
(4)有效水深为2—3m,宽深比一般采用1~1.5;
(5)长宽比可达5,当池长比池宽大得多时,应考虑设置横向挡板;
(6)1 污水的曝气量为0.2 空气;
(7)空气扩散装置设在池的一侧,距池底约0.6~0.9m,送气管应设置调节气量的阀门;
(8)池子的形状应尽可能不产生偏流或死角,在集砂槽附近可安装纵向挡板;
(9)池子的进口和出口布置,应防止发生短路,进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并考虑设置挡板;
(10)池内应考虑设置消泡装置。
一、 曝气沉砂池的设计与计算
1. 最大设计流量Qmax
Qmax=Kz×Qp
式中的Kz为变化系数,Kz=1.42
Qmax=1.42×0.347=0.493 m3/s

2. 池子的有效容积
V=60Qmaxt
式中 V——沉砂池有效容积,m3;
Qmax——最大设计流量,m3/s;
t——最大设计流量时的流动时间,min,设计时取1~3min。
所以 V=60×0.493×1.5=44.37m3
3. 水流断面面积
A=
式中 A——水流断面面积,m2
Qmax——最大设计流量,m3/s;
V——水流水平流速,m/s。
所以 A=4.11m2
取 A=4.2m2
4.池宽B
B=
h——沉砂池的有效水深,m。
取h=2m。所以B= =2.1m
B/h=1.05,满足要求。
5. 池长
L= = m,取L=10.5m
此时L/B=5满足要求
6.流速校核
Vmin= m/s,在0.8~1.2m/s之间,满足要求
7.曝气沉砂池所需空气量的确定
设每立方米污水所需空气量 d=0.2m3空气/m3污水
8.沉砂槽的设计
若设吸砂机工作周期为t=1d=24h,沉砂槽所需容积

式中Qp的单位为m3/h
设沉砂槽底宽0.5m,上口宽为0.7,沉砂槽斜壁与水平面夹角60°,
沉砂槽高度为 h1=
沉砂槽容积为
9.沉沙池总高
设池底坡度为0.3,坡向沉砂槽,池底斜坡部分的高度为
h2=0.3×0.7=0.21m
设超高 ,沉沙池水面离池底的高
m
10.曝气系统的设计
采用鼓风曝气系统,罗茨鼓风机供风,穿孔管曝气
(1)干管直径d1:由于设置两座曝气沉砂池,可将空气管供应两座的气量,即主管最大气量为q1=0.0694×2=0.1388m3/s,取干管气速v=12m/s,
干管截面积A= = =0.0116m2
d1= = m=120mm,
因为没有120mm的管径,所以采用接近的管径100mm。
回算气速v=17.7m/s 虽然超过15 m/s,但若取150的管气速又过小,所以还是选择管径100mm。
(2)支管直径d2:由于闸板阀控制的间距要在5m以内,而曝气的池长为10.5米,所以每个池子设置三根竖管,设支管气速为v=5m/s,
支管面积 A= m2
d2= = mm,
取整管径d2=80mm
校核气速v=4.6m/s (满足3—5m/s)
(3)穿孔管:采用管径为6mm的穿孔管,孔出口气速为设5m/s,孔口直径取为5mm(在2~6mm之间)
一个孔的平均出气量 q= =9.81×10-5m3/s
孔数:n= 个
孔间隔 为 ,在10~15mm之间,符合要求。
穿孔管布置:在每格曝气沉砂池池长一侧设置1根穿孔管曝气管,共两根。
二、细格栅的选型和计算
选用XG1000型细格栅,参数如下
设备宽B:1000mm 有效栅宽B1:850㎜ 有效栅隙:5㎜ 耙线速度:2 m/min 电机功率:1.1kw 安装角度:60° 渠宽B3:1050㎜ 栅前水深h2:1.0m/s 流体流速:0.5~1.0m/s
栅条宽度s=0.01m
1. 栅前后的水头损失
水流断面面积 m2
栅前流速
在0.4~0.9m/s范围内,复合要求
设过栅流速为v=0.6m/s
设栅条断面为锐边矩形断面,取k=3 ,则通过格栅的水头损失为:

3. 栅槽总长度
栅前的渠道超高设为0.45m,所以渠道高度为1.45m
因为安装高度是取60°,所以格栅所占的渠道长为1.45×ctg =1.45×ctg60°=0.84m
栅后长1米。
所以渠道的总长度
L=0.5+0.84+1=2.34m
三、水面标高
根据经验值污水每经过一个障碍物水面标高下降3~5cm,根据曝气沉砂池的有效水深以及砂斗的高度可推算出各个构筑物的水面标高,本次设计以经过一个障碍物水位下降5cm来计算,以曝气沉砂池的砂槽底为0米进行计算。
曝气沉砂池的水面标高:2.38m
细格栅与曝气沉砂池之间的配水井的水面标高: 2.43m
细格栅栅后水面标高: 2.48m
细格栅栅前水面标高:2.48+0.29=2.77m
配水井外套桶水面标高: 2.82m
配水井内套桶水面标高: 2.88
设配水井超高为0.35m
则整个曝气沉砂池系统的最高标高为3.23m
则曝气沉砂池的超高为h1=3.23-2.38=0.85m
四、配水井的计算
设配水井的平均停留时间为T=1.5min,Qp=0.347 m3/s,假设配水井水柱高为5.03米。
配水井面积为

配水井直径为

因为进水管径为1000,管离底为200mm。所以覆土厚度为1.28m。
五、砂水分离器和吸砂机的选择
(1)选用直径LSSF型螺旋式砂水分离器
(2)根据池宽选用LF-W-CS型沉砂池吸砂机,其主要参数为:
潜污泵型号:AV14-4(潜水无堵塞泵)
潜水泵特性 扬程:2m,流量:54m3/h,功率:1.4kw
行车速度为2-5m/min,提耙装置功率 0.55kw
驱动装置功率: 0.37×2kw
钢轨型号 15kg/mGB11264-89
轨道预埋件断面尺寸(mm) (b1-20) 60 10(b1:沉砂池墙体壁厚)
轨道预埋件间距 1000mm
四、氧化沟
1、设计说明
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准。采用卡式氧化沟的优点:立式表曝机单机功率大,调节性能好,节能效果显著;有极强的混合搅拌与耐冲击负荷能力;曝气功率密度大,平均传氧效率达到至少2.1kg/(kW*h);氧化沟沟深加大,可达到5.0以上,是氧化沟占地面积减小,土建费用降低。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
2、设计计算
(1).设计参数:
qv=30000m3/d(设计采用双池,则单池流量=15000 m3/d),
设计温度15℃,最高温度25℃,
进水水质:近期:CODCr=242mg/L,BOD5=129.4mg/L, NH3-N=30mg/L,
远期:CODCr=240mg/L,BOD5=128mg/L, NH3-N=30mg/L,
出水水质:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L
(2).确定采用的有关参数:
取MLSS=3500mg/L,假定其70%是挥发性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L
y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,
α=0.90,β=0.94,
剩余碱度:100mg/L(以CaCO3),所需碱度7.14mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原,硝化安全系数:3。
(3).设计泥龄:
确定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1
θcm=1/=1/0.22=4.5d,设计泥龄θc=3*4.5=13.5d
为了保证污泥稳定,应选择泥龄为30d
(4).设计池体体积:
①确定出水中溶解性BOD5的量:
出水中悬浮固体BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L
②好氧区容积计算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3
水力停留时间t1= V1/ qv =9278/30000=0.31d=7.4h

③脱氮计算:
产生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d
假设污泥中大约含12.4%的氮,这些氮用于细胞合成,
用于合成的氮=0.124*860=106.6kg/d,转化为:106.6*1000/30000=3.55mg/L
故脱氮量=30-10-3.55=16.45mg/L。
④碱度计算:
剩余碱度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)
大于100mg/L,可以满足pH>7.2
⑤缺氧区容积计算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d
V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3
水力停留时间t2=V2/qv=6295/30000=0.21d=5h
⑥总池容积计算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h
(5).曝气量计算
①计算需氧气量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px
=30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000
-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h
②实际需氧量
Ro’=1.2*R=1.2*211=253.2kg/d
校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h (在400-500之间 符合)
6.沟型尺寸设计及曝气设备选型
采用卡式氧化沟(两座并联):
取有效水深H=3.5m,单沟的宽度b=7.8m,进水量15000 m3/d,
则单沟长=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m,
单沟好氧区总长度=单沟长*4* V1 /V=126m
单沟厌氧区总长度=单沟长*4* V2 /V=76m
采用四沟道,两台55kW的立式表曝气机(单池)
曝气设备:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,

7.配水井设计
污水在配水井的停留时间最少不低于3min(不计回流污泥的量),
设截面中半圆的半径为r,矩形的宽度为r,长度为2r,设计的有效水深为4.0m
(2*r*r+0.5πr2)*4=30000*3/24/60
r=2.7m
8.其它附属构筑物的设计
工程设计中墙的厚度为250mm;氧化沟体表面设置走道板的宽度为800mm;;倒流墙的设计半径为3.9m;配水井的进水管道采用的规格为DN900,污泥回流管道采用的规格为DN500;出水井的设计尺寸为3000mm*1000mm*1000mm,出水堰高为100mm,堰孔直径为40mm,出水管采用的规格为DN700。
五、辐流式二沉池
1.设计说明
1.1二沉池的类型
二沉池的类型有:平流式二沉池、竖流式二沉池、辐流式二沉池、斜流式二沉池。其中,辐流式二沉池又分为:中进周出式、周进周出式、中进中出式。
1.2选择辐流式(中进周出)二沉池的原因
由于平流式二沉池占地面积大;竖流式二沉池多用于小型废水中絮凝性悬浮固体的分离;斜流式二沉池较多时候,在曝气池出口污泥浓度高,而且没有设置专门的排泥设备,容易造成阻塞。因此选择辐流式二沉池。从出水水质和排泥的方面考虑,理论上是周进周出效果最好。但是,实际上,考虑异重流,是中进周出的效果最好。因此,选择了选择辐流式(中进周出)二沉池。
2.设计计算
2.1污泥回流比:

2.2沉淀部分水面面积:
流量: ;
最大流量(设计流量):
单个池子的设计流量:
污泥负荷q取1.1m3/(m2.h), 池子数n为2 。
沉淀部分水面面积:
2.3校核固体负荷:

因为142<150,符合要求。
2.4池子直径
池子直径: 根据选型取池子直径为35.0m。
2.5沉淀部分的有效水深
沉淀时间t为2.5s 有效水深:
2.6沉淀池总高

2.7校核径深比:
径深比为 符合要求。
2.8进水管的设计
单体设计污水流量:
进水管设计流量:
取管径D=700mm ,流速为
因为,0.697>0.6符合要求,所以进水管直径为D=700mm。
2.9稳流筒
进水井的流速为0.8m/s ,则过水面积为
过水面积和泥管面积的总和:
由过水面积和泥管面积的总和求出直径为
筒壁厚为250mm, 取管径为900mm。
进行校核:过水面积为
流速为 。
筒上有8个小孔 ,孔面积为S2= ,所以 。
二沉池采用的是ZBX型周边传动吸泥机,稳流筒的直径为3880mm。
取稳流筒出流速度为0.1m/s, 则过水面积为
稳流筒下部与池底距离为
所以稳流筒下部与池底距离大于0.2m,即符合要求。
2.10配水井
配水井设计为马蹄形,在外围加宽700mm为污泥井。
时间取3分钟 流量为
取配水井直径为D=3000mm 则配水井高度
其中,设计水深为7.0m,超高为0.6m。
2.11出水部分单池设计流量:
出水溢流堰设计
(1) 堰上水头 H=0.05mH2O
(2) 每个三角堰的流量0.783L/s
(3) 三角堰个数 因此取n=223(个)
2.12排泥部分
回流污泥量为
剩余污泥量为
因为剩余污泥量小,所以忽略不计,即总污泥量为0.188m3/s。
取流速为0.8(m/s) 直径为 取直径为D=400mm
校核:流速为 0.6<0.75<0.9 因此符合要求。
综上, 二沉池采用的是ZBX型周边传动吸泥机 池径为35000mm.

希望能够帮助你!

『伍』 我国排水管道为什么都是非满流

排水管道均属自流,如果满流阻力增大,较低的地方可能就溢流了。

『陆』 污水处理用的罗茨风机怎么用水深推压力我是外行,说详细点。最好是个比例公式

虽然管道有压力损失,但压力损失一般很小,而且通常曝气头不是在池底,而是略高于池底,可以认为多少米水深就是多大压力,基本上销售风机的都明白,你直接说多深的水就行。公式的话,1米水深就是9.8KPa,也可以说是0.1kgf/cm²,两米水深就是这些数值乘以二,相应的六米水深就乘以六,58.8KPa, 也就是0.60kgf/cm²

『柒』 好氧活性污泥处理生活废水

活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
你是想问好氧活性污泥处理生活废水的工艺流程呢?还是想问出水的具体数据呢?
活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。
1 污泥负荷法
这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。
污泥负荷法的计算式为〔1〕:
V=24LjQ/1000FwNw=24LjQ/1000Fr (1)
污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为:
Fw=0.2~0.4 kgBOD/(kgMLSS·d)
Fr=0.4~0.9 kgBOD/(m3池容·d)
可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。
污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/(kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)〔2〕,其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢?
污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和BOD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。
综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)〔3〕,1995年又推出了活性污泥二号模型(简称ASM2)〔4、5〕。
2 数学模型法
数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。
数学模型法的主要问题是模型中有很多系数和常数,ASM1中有13个,ASM2中有19个,它们都需要设计人员根据实际污水水质和处理工艺的要求确定具体数值,其中多数要经过大量监测分析后才能得出,而且不同的污水有不同的数值。由于污水水质多变,确定这些参数很困难,如果这些参数有误,就直接影响到计算结果的精确性和可靠性。国外已经提出了这些参数的数值,但我国的污水成分与国外有很大差别,特别是污水中的有机物成分差别很大,盲目套用国外的参数值肯定是不行的。因此,要将数学模型法应用于我国的污水处理设计,必须组织力量监测分析各种污水水质,确定有关参数,才有可能把数学模型实用化。然而,从我国目前情况看,数据分析和积累恰恰是最大的薄弱环节之一,我国已运转的城市污水处理厂有上百座,至今连一些最基本的数据都难以确定,更不用说数学模型法所需的各种数据了,显然,要在我国应用数学模型法还需做大量的工作,还需要相当长的时间。
3 泥龄法
3.1泥龄法的计算式
设计规范中提出了按泥龄计算曝气池容积的计算公式〔1〕:
V=〔24QθcY(Lj-Lch)/1 000Nwv(1+Kdθc) (2)
设计规范对式中几个关键参数提出了推荐值:
Y=0.4~0.8(20℃,有初沉池)
Kd=0.04~0.075(20℃)
当水温变化时,按下式修正:
Kdt=Kd20(θt)t-20 (3)
式中 θt——温度系数,θt=1.02~1.06
θc——高负荷取0.2~2.5,中负荷取5~15,低负荷取20~30
可以看出,它们的取值范围都很宽,Y值的变化幅度达100%,Kd值的变化幅度达87.5%,θc值的变化幅度从50%到几倍,实际计算时很难取值,这也是泥龄法在我国难以推广的原因之一。
为了使泥龄计算法实用化,笔者根据自己的设计体会,建议采用德国目前使用的ATV标准中的计算公式,并对式中的关键参数取值结合我国具体情况适当修改。实践证明,按该公式计算概念清晰,特别便于操作,计算结果都能满足我国规范的要求,不失为一种简单、可信而又十分有效的设计计算方法。其基本计算公式为:
V=24QθcY(Lj-Lch)/1000Nw (4)
式中 Y——污泥产率系数(kgSS/kgBOD)
Q、Lj、Lch值是设计初始条件,是反映原水水量、水质和处理要求的,在设计计算前已经确定。
泥龄θc是指污泥在曝气池中的平均停留时间,其数值为:
θc=VNw/W (5)
式中 W——剩余污泥量,kgSS/d
W=24QY(Lj-Lch)/1000 (6)
根据以上计算式,采用泥龄法设计计算活性污泥工艺时,只需确定泥龄θc、剩余污泥量W(或污泥产率系数Y)和曝气池混合液悬浮固体平均浓度Nw(MLSS)即可求出曝气池容积V。与污泥负荷法相比,它用泥龄θc取代Fw或Fr作为设计计算的最基本参数,与数学模型法相比,它只需测定一个污泥产率系数Y,而不需测定13或19个参数数据。
3.2泥龄的确定
泥龄是根据理论同时又参照经验的累积确定的,按照处理要求和处理厂规模的不同而采用不同的泥龄,德国ATV标准中单级活性污泥工艺污水处理厂的最小泥龄数值见表1。
表1 德国标准中活性污泥工艺的最小泥龄
d处理目标处理厂规模
≤5 000 m3/d≥25 000 m3/d
无硝化54
有硝化(设计温度:10 ℃)108
有硝化、反硝化(10 ℃)
VD/V=0.2
VD/V=0.3
VD/V=0.4
VD/V=0.512
13
15
1810
11
13
16
有硝化、反硝化、污泥稳定25不推荐
注 VD/V为反硝化池容与总池容之比。

表中对规模小的污水厂取大值,是考虑到小厂的进水水质变化幅度大,运行工况变化幅度大,因而选用较大的安全系数。
泥龄反映了微生物在曝气池中的平均停留时间,泥龄的长短与污水处理效果有两方面的关系:一方面是泥龄越长,微生物在曝气池中停留时间越长,微生物降解有机污染物的时间越长,对有机污染物降解越彻底,处理效果越好;另一方面是泥龄长短对微生物种群有选择性,因为不同种群的微生物有不同的世代周期,如果泥龄小于某种微生物的世代周期,这种微生物还来不及繁殖就排出池外,不可能在池中生存,为了培养繁殖所需要的某种微生物,选定的泥龄必须大于该种微生物的世代周期。最明显的例子是硝化菌,它是产生硝化作用的微生物,它的世代周期较长,并要求好氧环境,所以在污水进行硝化时须有较长的好氧泥龄。当污水反硝化时,是反硝化菌在工作,反硝化菌需要缺氧环境,为了进行反硝化,就必须有缺氧段(区段或时段),随着反硝化氮量的增大,需要的反硝化菌越多,也就是缺氧段和缺氧泥龄要加长。上述关系的量化已体现在表1中。
无硝化污水处理厂的最小泥龄选择4~5 d,是针对生活污水的水质并使处理出水达到BOD=30 mg/L和SS=30 mg/L确定的,这是多年实践经验的积累,就像污泥负荷的取值一样。
有硝化的污水处理厂,泥龄必须大于硝化菌的世代周期,设计通常采用一个安全系数,以确保硝化作用的进行,其计算式为:
θc=F(1/μo) (7)
式中θ c——满足硝化要求的设计泥龄,d
F——安全系数,取值范围2.0~3.0,通常取2.3
1/μo——硝化菌世代周期,d
μo——硝化菌比生长速率,d-1
μo=0.47×1.103(T-15) (8)
式中 T——设计污水温度,北方地区通常取10 ℃,南方地区可取11~12 ℃
代入式(8)得:
μo=0.47×1.103(10-15)=0.288/d
再代入式(7)得:
θc=2.3×1/0.288=7.99 d
计算所得数值与表1中的数值相符。
表1是德国标准,但它的理论依据和经验积累具有普遍意义,并不随水质变化而改变,因此笔者认为可以在我国设计中应用。
在污泥负荷法中,污泥负荷是最基本的设计参数,泥龄是导出参数。而在泥龄法中,泥龄是最基本的设计参数,污泥负荷是导出参数,两者呈近似反比关系:
θcFw=Lj/Y(Lj-Lch) (9)
式中污泥产率系数Y是泥龄θc的函数。

3.3污泥产率系数的确定
采用泥龄法进行活性污泥工艺设计计算时,准确确定污泥产率系数Y是十分重要的,从式(4)中看出,曝气池容积与Y值成正比,Y值直接影响曝气池容积的大小。
式(6)给出了Y值和剩余污泥量W的关系,剩余污泥量是每天从生物处理系统中排出的污泥量,它包括两部分:一部分随出水排除,一部分排至污泥处理系统,其计算式为:
W=24QNch/1000+QsNs (10)
式中 Nch——出水悬浮固体浓度,mg/L
Qs——排至污泥处理系统的剩余污泥量,m3/d
Ns——排至污泥处理系统的剩余污泥浓度,kg/m3
剩余污泥量最好是实测求得。从式(10)可以看出,对于正常运行的污水处理厂,Q、Nch、Qs及Ns值都不难测定,这样就能求出W和Y值。问题在于设计时还没有污水处理厂,只有参照其他类似污水处理厂的数值。由于污水水质不同,处理程度及环境条件不同,各地得出的Y值不可能一样,特别是很多城市污水处理厂由于资金短缺等原因,运行往往不正常,剩余污泥量W的数值也测不准确,这势必影响设计的精确性和可靠性。
从理论上分析,污泥产率系数与原水水质、处理程度和污水温度等因素有关。首先,污泥产率系数本来的含义是一定量BOD降解后产生的SS。由于是有机物降解产物,这里的SS应该是VSS,即挥发性悬浮固体,但污水中还有相当数量的无机悬浮固体和难降解有机悬浮固体,它们并未被微生物降解,而是原封不动地沉积到污泥中,结果产生的SS将大于真正由BOD降解产生的VSS,因此在确定污泥产率系数时,必须考虑原水中
无机悬浮固体和难降解有机悬浮固体的含量。其次,随着处理程度的提高,污泥泥龄的增长,有机物降解越彻底,微生物的衰减也越多,这导致剩余污泥量的减少。至于水温,是影响生化过程的重要因素,水温增高,生化过程加快,将使剩余污泥量减少。对于各种因素的影响,可根据理论分析通过实验建立数学方程式,其计算结果如经受住实践的检验,就可用于实际工程。德国已经提出了这样的方程式,按这个方程式计算出的Y值已正式写进ATV标准中。
Y=0.6(Nj/Lj+1)-0.072×0.6θc×FT/1+0.08θc×FT (11)
F=1.072(T-15) (12)
式中 Nj ——进水悬浮固体浓度,mg/L
FT——温度修正系数
T——设计水温,与前面的计算取相同数值
可以看出,Nj/Lj值反映了污水中无机悬浮固体和难降解悬浮固体所占比重的大小,如果它们占的比重增大,剩余污泥量自然要增加,Y值也就增大了。θc值影响污泥的衰减,θc值增长,污泥衰减得多,Y值相应减少。温度的影响体现在FT值上,水温增高,FT值增大,Y值减小,也就是剩余污泥量减少。
这个方程式对我国具有参考价值。由于我国的生活习惯与西方国家差异很大,污水中有机物比重低,有机物中脂肪比例低,碳水化合物比例高,因而产泥量也不会完全相同。根据国内已公布的数据和笔者的经验,我国活性污泥工艺污水处理厂的剩余污泥产量比西方国家要少,因此,式(11)中须乘上一个修正系数K:
Y=K×0.6(NjLj+1)-〔(0.072×0.6θc×FT)/(1+0.08θc×FT) (13)
一般取K=0.8~0.9。
在目前缺乏我国自己的Y值计算式的情况下,笔者认为采用式(13)计算Y值是可行的。
3.4 MLSS的确定
不管采用哪种设计计算方法,都需要合理确定MLSS。在其他条件不变的情况下,MLSS增大一倍,曝气池容就减小一倍;MLSS减小一倍,曝气池容就增大一倍。它直接影响基建投资,因此需要慎重确定。
在设计规范和手册中,对MLSS值推荐了一个选用范围,如普通曝气是1.5~2.5 kg/m3,延时曝气是2.5~5.0 kg/m3,变化幅度都比较大,设计时不好操作。为了选定合适的MLSS值,有必要弄清影响它的因素。
MLSS不能选得过低,主要有三个原因:
①MLSS过低,曝气池容积V就要相应增大,在经济上不利。
②MLSS过低,曝气池中容易产生泡沫,为了防止泡沫,一般需保持2 kg/m3以上的污泥浓度。
③当污泥浓度很低时,所需氧量较少,如MLSS过低,池容增大,单位池容的供气量就很小,有可能满足不了池内混合的要求,势必额外增加搅拌设备。MLSS也不能选得过高,主要是因为:
①要提高MLSS,必须相应增加污泥回流比,降低二沉池表面负荷,加长二沉池停留时间,这就要求增大二沉池体积和回流污泥能耗。把曝气池、二沉池和回流污泥泵房作为一个整体来考虑,为使造价和运行费用总价最低,污泥回流比通常限制在150%以内。对于一般城市污水,二沉池的回流污泥浓度通常为4~8 kg/m3,若按最高值约8 kg/m3计,回流比为150%时的曝气池内MLSS为4.8kg/m3,实际设计中MLSS最高一般不超过4.5kg/m3。
②污水的性质和曝气池运行工况对MLSS有巨大影响,如果污水中的成分或曝气池的工况有利于污泥膨胀,污泥指数SVI值居高不下(如SVI>180 mL/g),回流污泥浓度就会大大降低,MLSS就必须选择低值。
根据以上分析,在选定MLSS时要照顾到各个方面:
①泥龄长、污泥负荷低,选较高值;泥龄短、污泥负荷高,选较低值;同步污泥好氧稳定时,选高值。
②有初沉池时选较低值,无初沉池时选较高值。
③SVI值低时选较高值,高时选较低值。
④污水浓度高时选较高值,低时选较低值。
⑤合建反应池(如SBR)不存在污泥回流问题,选较高值或高值。
⑥核算搅拌功率是否满足要求,如不满足时要进行适当调整。
德国ATV标准对MLSS值规定了选用范围,有硝化和无硝化时其MLSS值是一样的,这不完全符合我国具体情况。我国城市污水污染物浓度通常较低,在无硝化(泥龄短)时如果MLSS值过高,有可能停留时间过短,不利于生化处理,故将无硝化时的MLSS值降低0.5kg/m3,推荐的MLSS值列于表2。
表2 推荐曝气池MLSS取值范围
kg/m3处理目标MLSS
有初沉池无初沉池
无硝化2.0~3.03.0~4.0
有硝化(和反硝化)2.5~3.53.5~4.5
污泥稳定 4.5

3.5泥龄法的优缺点
①泥龄法是经验和理论相结合的设计计算方法,泥龄θc和污泥产率系数Y值的确定都有充分的理论依据,又有经验的积累,因而更加准确可靠。
②泥龄法很直观,根据泥龄大小对所选工艺能否实现硝化、反硝化和污泥稳定一目了然。
③泥龄法的计算中只使用MLSS值,不使用MLVSS值,污泥中无机物所占比重的不同在参数Y值中体现,因而不会引起两者的混淆。
④泥龄法中最基本的参数——泥龄θc和污泥产率系数Y都有变化幅度很小的推荐值和计算值,操作起来比选定污泥负荷值更方便容易。
⑤泥龄法不像数学模型法那样需要确定很多参数,使操作大大简化。
⑥计算污泥产率系数Y值的方程式是根据德国的污水水质和实验得出的,结合我国情况在应用时需乘以一个修正系数。
4 结论
①活性污泥工艺的设计计算方法有必要从污泥负荷法逐步向泥龄法过渡,最终过渡到数学模型法。在数学模型法实用化之前,泥龄法将发挥重要作用。
②按泥龄法计算用式(4),该式与设计规范中的计算式相比,Nw与Nwv的转换和污泥衰减的影响在Y值的计算中考虑,这样理论意义更加清晰,使用起来更加方便。
③德国ATV标准中推荐的泥龄选用数据(见表1)是根据有机物降解和微生物生长规律结合实
际经验产生的,不涉及污水的具体水质变化,在我国有实用价值。
④污泥产率系数Y值的计算式(11)有充分的理论依据,但它是用德国污水实验得出的,为了适用于我国,须乘以修正系数,修正后的计算式(13)可用于实际设计计算。
⑤MLSS的取值在设计规范中有规定,但范围较大,不太好操作,建议参照表2中的数据选用,相互对比检验。
⑥建议对我国有一定代表性的城市污水进行实验研究,推出自己的Y值计算方程式,使泥龄法的实用基础更加扎实可靠。
活性污泥法处理城市生活污水主要运行方式:
1、推流式活性污泥法
2、完全混合活性污泥法
3、分段曝气活性污泥法
4、吸附-再生活性污泥法
5、延时曝气活性污泥法
6、高负荷活性污泥法
7、浅层、深水、深井曝气活性污泥法
8、纯氧曝气活性污泥法
9、氧化沟工艺
10、序批式活性污泥法

『捌』 污水处理厂建设中应注意哪些问题

(1)污水厂的设计和其他工程设计一样,应符合适用的要求,首先必须确保污水厂处理后达到排放要求。考虑现实的经济和技术条件,以及当地的具体情况(如施工条件)。在可能的基础上,选择的处理工艺流程、构(建)筑物形式、主要设备设计标准和数据等。

(2)污水处理厂采用的各项设计参数必须可靠。设计时必须充分掌握和认真研究各项自然条件,如水质水量资料、同类工程资料。按照工程的处理要求,全面地分析各种因素,选择好各项设计数据,在设计中一定要遵守现行的设计规范,保证必要的安全系数。对新工艺、新技术、新结构和新材料的采用积极慎重的态度。

(3)污水处理厂(站)设计必须符合经济的要求。污水处理工程方案设计完成后,总体布置、单体设计及药剂选用等尽可能采用合理措施降低工程造价和运行管理费用,

(4)污水厂设计应当力求技术合理。在经济合理的原则下,必须根据需要,尽可能采用先进的工艺、机械和自控技术,但要确保安全可靠。

(5)污水厂设计必须注意近远期的结合,不宜分期建设的部分,如配水井、泵房及加药间等,其土建部分应一次建成;在无远期规划的情况下,设计时应为今后发展留有挖潜和扩建的条件。

(6)污水厂设计必须考虑安全运行的条件,如适当设置分流设施、超越管线、甲烷气的安全储存等。

(7)污水厂的设计在经济条件允许情况下,场内布局、构(建)筑物外观、环境及卫生等可以适当注意美观和绿化。

『玖』 污染物危害性的资料

水污染--全球性重大课题
随着工业进步和社会发展,水污染亦日趋严重,成了世界性的头号环境治理难题。
早在18世纪,英国由于只注重工业发展,而忽视了水资源保护,大量的工业废水废渣倾入江河,造成泰晤士河污染,基本丧失了利用价值,从而制约了经济的发展,同时也影响到人们的健康、生存。之后经过百余年治理,投资5亿多英镑,直到20世纪70年代,泰晤士河水质才得到改善。
19世纪初,德国莱茵河也发生严重污染,德国政府为此运用严格的法律和投入大量资金致力于水资源保护,经过数十年不懈努力,在莱茵河流经的国家及欧盟共同合作治理下,才使莱茵河碧水畅流,达到饮用水标准。
近些年,水质恶化也困扰着美国人。一直以来,纽约市民以自来水质纯美而自豪,其他州的面包商甚至特地使用纽约市自来水以生产货真价实的纽约圈饼。7年前寄生虫侵入密尔沃基供水系统,造成100人死亡,40万人致病后,水质问题备受关注,如今纽约市民每天生活在饮水不净的威胁下。1998年[1],美国总统克林顿宣布了一项投资23亿美元的清洁水行动计划,治理美国已受污染40%的水域。
虽然人们已经认识到污染江河湖泊等天然水资源的恶果,并着手进行治理,但毕竟已经遭受了巨大的损失,虽已醒悟但为时较晚。
水质三大污染源
水污染主要由人类活动产生的污染物而造成的,它包括工业污染源,农业污染源和生活污染源三大部分。
工业废水为水域的重要污染源,具有量大、面广、成分复杂、毒性大、不易净化、难处理等特点。据1998年中国水资源公报资料显示:这一年,全国废水排放总量共539亿吨(不包括火直电流冷却水),其中,工业废水排放量409亿吨,占69%。实际上,排污水量远远超过这个数,因为许多乡镇企业工业污水排放量难以统计。
农业污染源包括牲畜粪便、农药、化肥等。农药污水中,一是有机质、植物营养物及病原微生物含量高,二是农药、化肥含量高。我国目前没开展农业面上的监测,据有关资料显示,在1亿公顷耕地和220万公顷草原上,每年使用农药110.49万吨。我国是世界上水土流失最严惩的国家之一,每年表土流失量约50亿吨,致使大量农药、化肥随表土流入江、河、湖、库,随之流失的氮、磷、钾营养元素,使2/3的湖泊受到不同程度富营养化污染的危害,造成藻类以及其他生物异常繁殖,引起水体透明度和溶解氧的变化,从而致使水质恶化。
生活污染源主要是城市生活中使用的各种洗涤剂和污水、垃圾、粪便等,多为无毒的无机盐类,生活污水中含氮、磷、硫多,致病细菌多。据调查,1998年我国生活污水排放量184亿吨。
我国每年约有1/3的工业废水和90%以上的生活污水未经处理就排入水域,全国有监测的1200多条河流中,目前850多条受到污染,90%以上的城市水域也遭到污染,致使许多河段鱼虾绝迹,符合国家一级和二级水质标准的河流仅占32.2%。污染正由浅层向深层发展,地下水和近海域海水也正在受到污染,我们能够饮用和使用的水正在不知不觉地减少。
[编辑本段]危害
日趋加剧的水污染,已对人类的生存安全构成重大威胁,成为人类健康、经济和社会可持续发展的重大障碍。据世界权威机构调查,在发展中国家,各类疾病有8%是因为饮用了不卫生的水而传播的,每年因饮用不卫生水至少造成全球2000万人死亡,因此,水污染被称作"世界头号杀手"。
我国的水污染
我国有82%的人饮用浅井和江河水,其中水质污染严惩细菌超过卫生标准的占75%,受到有机物污染的饮用水人口约1.6亿。长期以来,人们一直认为自来水是安全卫生的。但是,因为水污染,如今的自来水已不能算是卫生的了。一项调查显示,在全世界自来水中,测出的化学污染物有2221种之多,其中有些确认为致癌物或促癌物。从自来水的饮用标准看,我国尚处于较低水平,自来水目前仅能采用沉淀、过滤、加氯消毒等方法,将江河水或地下水简单加工成可饮用水。自来水加氯可有效杀除病菌,同时也会产生较多的卤代烃化合物,这些含氯有机物的含量成倍增加,是引起人类患各种胃肠癌的最大根源。目前,城市污染的成分十分复杂,受污染的水域中除重金属外,还含有甚多农药、化肥、洗涤剂等有害残留物,即使是把自来水煮沸了,上述残留物仍驱之不去,而煮沸水中增加了有害物的浓度,降低了有益于人体健康的溶解氧的含量,而且也使亚硝酸盐与三氯甲烷等致癌物增加,因此,饮用开水的安全系数也是不高的。据最新资料透露,目前我国主要大城市只有23%的居民饮用水符合卫生标准,小城镇和农村饮用水合格率更低。水污染防治当务之急,应确保饮用水合格。为此应加大水污染监控力度,设立供水水源地保护区。
危害
水体污染影响工业生产、增大设备腐蚀、影响产品质量,甚至使生产不能进行下去。水的污染,又影响人民生活,破坏生态,直接危害人的健康,损害很大。
(1)危害人的健康水污染后,通过饮水或食物链,污染物进入人体,使人急性或慢性中毒。砷、铬、铵类、笨并(a)芘等,还可诱发癌症。被寄生虫、病毒或其它致病菌污染的水,会引起多种传染病和寄生虫病。重金属污染的水,对人的健康均有危害。被镉污染的水、食物,人饮食后,会造成肾、骨骼病变,摄入硫酸镉20毫克,就会造成死亡。铅造成的中毒,引起贫血,神经错乱。六价铬有很大毒性,引起皮肤溃疡,还有致癌作用。饮用含砷的水,会发生急性或慢性中毒。砷使许多酶受到抑制或失去活性,造成机体代谢障碍,皮肤角质化,引发皮肤癌。有机磷农药会造成神经中毒,有机氯农药会在脂肪中蓄积,对人和动物的内分泌、免疫功能、生殖机能均造成危害。稠环芳烃多数具有致癌作用。氰化物也是剧毒物质,进入血液后,与细胞的色素氧化酶结合,使呼吸中断,造成呼吸衰竭窒息死亡。我们知道,世界上80%的疾病与水有关。伤寒、霍乱、胃肠炎、痢疾、传染性肝类是人类五大疾病,均由水的不洁引起。
(2)对工农业生产的危害水质污染后,工业用水必须投入更多的处理费用,造成资源、能源的浪费,食品工业用水要求更为严格,水质不合格,会使生产停顿。这也是工业企业效益不高,质量不好的因素。农业使用污水,使作物减产,品质降低,甚至使人畜受害,大片农田遭受污染,降低土壤质量。海洋污染的后果也十分严重,如石油污染,造成海鸟和海洋生物死亡。
(3)水的富营养化的危害在正常情况下,氧在水中有一定溶解度。溶解氧不仅是水生生物得以生存的条件,而且氧参加水中的各种氧化-还原反应,促进污染物转化降解,是天然水体具有自净能力的重要原因。含有大量氮、磷、钾的生活污水的排放,大量有机物在水中降解放出营养元素,促进水中藻类丛生,植物疯长,使水体通气不良,溶解氧下降,甚至出现无氧层。以致使水生植物大量死亡,水面发黑,水体发臭形成“死湖”、“死河”、“死海”,进而变成沼泽。这种现象称为水的富营养化。富营养化的水臭味大、颜色深、细菌多,这种水的水质差,不能直接利用,水中断鱼大量死亡。

阅读全文

与污水安全系数相关的资料

热点内容
蕊园滤芯怎么样 浏览:475
米家空气净化器滤网怎么清理 浏览:712
污水泵站运行安全 浏览:32
ro膜和超滤膜的tds 浏览:414
生活用水过滤器 浏览:974
家里什么位置适合放饮水机 浏览:953
钢结构屋面防水处理办法 浏览:953
丰田奕泽cHr空气滤芯怎么换 浏览:982
空气过滤棉海关编码 浏览:318
污水处理项目属于什么项目工程 浏览:1
蚯蚓加工的污水怎么处理 浏览:268
湖北公共场所用净水机哪个好 浏览:492
高分子吸水树脂如何展示 浏览:65
污水管道测量报告 浏览:483
饮水机的水为什么不停 浏览:440
离子交换树脂洗不到中性 浏览:438
1万吨污水厂是什么规模 浏览:429
大货车空气滤芯灯亮怎么回事 浏览:41
滤芯ro膜上错了型号 浏览:732
花伞除垢小妙招 浏览:186