导航:首页 > 污水知识 > 半焦废水

半焦废水

发布时间:2022-07-08 07:11:18

Ⅰ 若要使我国煤炭行业变得更环保,需要解决哪些技术问题

需要解决的技术问题:

根据《煤炭清洁高效利用技术创新》
一、战略方向
1.煤炭分级分质转化。
2.重要能源化工产品生产。
3.煤化工与重要能源系统耦合集成。
4.煤化工废水安全高效处理。
5.先进煤电技术。
三、创新行动
1.先进煤气化技术。
2.先进低阶煤热解技术。
3.中低温煤焦油深加工技术。
4.半焦综合利用技术。
5.超清洁油品和特种油品技术。
6.煤制清洁燃气关键技术。
7.新一代煤制化学品技术。
8.煤油共炼技术。
9.煤化工耦合集成技术。
10.高有机、高盐煤化工废水近零排放技术。
11.700℃等级镍基合金耐热材料生产和关键高温部件制造技术,以及主机和关键辅机制造技术。
12.新型煤基发电技术。
13.多污染物(SO2、NOx、Hg等)一体化脱除技术。
14.煤电技术探索。
参考资料:www.gepresearch.com/100/view-362330-1.html

Ⅱ 国内外油页岩开发利用前景及对策

张家强王德杰

(中国地质调查局发展研究中心,北京,100037)

一、油页岩特征

油页岩(oil shale)是一种富含有机质、具有微细层理、可以燃烧的细粒沉积岩。油页岩中有机质的绝大部分是不溶于普通有机溶剂的成油物质,俗称“油母”。因此,油页岩又称“油母页岩”。

油页岩是一种能源矿产,属于低热值固态化石燃料。一般地,国际上常以每吨能产出0.25桶(即0.034吨)以上页岩油的油页岩称为“油页岩矿”,或者将产油率高于4%的油页岩称为矿。过去,我国将含油率在5%以上的油页岩定为富矿,并计算储量;含油率在5%以下的油页岩定为贫矿,不计算储量;也有将油页岩产油率低于6%者定为贫矿,高于10%者定为富矿。

(一)油页岩地质特征

油页岩外观呈浅灰至深褐色,多呈褐色;具微细层理;相对密度为1.4~2.7吨/立方米。

油页岩主要成分是有机质、矿物质和水分。油页岩中油母含量约10%~50%。油母是由复杂的高分子有机化合物组成,富含脂肪烃结构,而较少芳烃结构。有机化合物主要由碳、氢及少量的氧、氮、硫元素组成;其氢碳原子比(H:C)为1.25~1.75,要高于煤炭的有机物质H:C比。油母含量高,氢碳原子比大,则油页岩产油率高。油页岩中矿物质有石英、高岭土、粘土、云母、碳酸盐岩以及硫铁矿等,但主要是粘土矿物。油页岩中矿物质常与有机质均匀细密地混合,而且矿物质含量通常高于有机质。当油页岩含有大量粘土矿物时,往往形成明显的片理。水分含量与矿物质颗粒间的微孔结构有关,油页岩中含有4%~25%不等的水分。

用于商业开采的油页岩其有机质:矿物质之比约为0.75:5~1.5:5,低于煤炭中的有机质:矿物质比值。煤炭中该比值常大于4.75:5。

(二)油页岩成因类型

根据沉积环境,油页岩可分成陆相、湖相和海相3种基本成因类型。陆相油页岩中的有机质是由富含脂质的有机物组成,主要有树脂、孢子、蜡质表皮和那些常见于成煤湿地或沼泽的陆源植物根茎的软组织,它们埋藏后经过煤化作用,形成油页岩中的有机质,因此,这种油页岩也是一种含有较高矿物质的腐泥煤。湖相油页岩中的有机质母质主要是指生活于淡水、咸水和盐湖的低等浮游生物藻类,藻类埋藏后经腐化和煤化作用后形成油页岩中的有机质。海相油页岩中的有机质母质主要是海藻、未知单细胞微生物和海生鞭毛虫。油页岩的沉积环境范围很广,因此,油页岩具有多种有机质和矿物质。

二、油页岩用途

油页岩不但可提炼出各种燃料油类,而且还可炼制出各种合成燃料气体及化工原料,副产品还可用于制砖、水泥等建筑材料。归纳起来,油页岩有3种主要用途。

1.干馏制取页岩油及相关产品

若将油页岩打碎并加热至500℃左右,就可以得到页岩油。我国常称页岩油为人造石油。一般来说,1吨油页岩可提炼出38~378升(相当于0.3~3.2桶)页岩油。页岩油加氢裂解精制后,可获得汽油、煤油、柴油、石蜡、石焦油等多种化工产品。

2.作为燃料用来发电、取暖和运输

首先是用来发电。利用油页岩发电的形式有两种,一是直接把油页岩用作锅炉燃料,产生蒸汽发电;另一种是把油页岩低温干馏,产生气体燃料,然后输送到内燃机燃烧发电。目前普遍采用前一种形式。其次,可以利用油页岩燃烧供暖。在2001~2002年度,爱沙尼亚利用油页岩发电和向居民、工业供暖所创造的效益分别占国家税收的76%和14%,对其国民经济具有重要意义。再次,可以利用油页岩燃烧带动发动机,用于长途运输。

3.生产建筑材料、水泥和化肥

作为副产品,油页岩干馏和燃烧后的页岩灰主要用于生产水泥、砖等建筑材料。在德国,每年有30万吨油页岩用于水泥的生产。在我国,油页岩干馏和燃烧后的半焦灰渣用来制造砌块、砖、水泥、陶粒等建材产品。

此外,油页岩还可以直接用于有机肥料的生产。如我国陕西铜川市汇源实业开发总公司就拟投资1000万元,利用印台地区现有的油页岩资源,在原有5万吨磷肥生产线的基础上进行技术改造,建设年产5万吨油页岩有机复合肥的生产线。

不同国家对油页岩的用途不同。在爱沙尼亚,油页岩主要用来发电和提炼页岩油;在巴西,油页岩主要用作运输燃料;在德国,油页岩主要用于制造水泥和建筑材料;在中国和澳大利亚,油页岩主要用于提炼页岩油和用作燃料;在俄罗斯和以色列,油页岩主要用于发电。

三、全球油页岩分布及开发利用现状

(一)全球油页岩分布

不完全统计表明,全球油页岩蕴藏资源量巨大,估计有10万亿吨,比煤资源量7万亿吨还多40%。表1统计了世界各国主要油页岩矿床所蕴藏的页岩油资源量。从中可以看出,全球油页岩产于寒武系至第三系,主要分布于美国、扎伊尔、巴西、意大利、摩洛哥、约旦、澳大利亚、中国和加拿大等9个国家。目前,只有美国、澳洲、瑞典、爱沙尼亚、约旦、法国、德国、巴西和俄罗斯等国的部分油页岩矿床做了详细勘探和评价工作。其他很多矿床的资源潜力有待进一步探明。如果考虑到有些国家的数据没有收集全,有些矿床的资源量没有做充分的调查和评价,那么全世界油页岩蕴藏的页岩油资源总量大体有2.6万亿桶或3662亿吨。也有估计为4110亿吨或4225亿吨。无论如何,全球油页岩含油量约比传统石油资源量2710亿吨(IEA,2002年《世界能源展望》)多50%以上。

表1世界油页岩中的页岩油资源(Matthews 1983)

续表

注:表中中国的数据是探明储量,探明和预测储量有205800百万桶。

需要指出的是,全球油页岩可采资源量中页岩油总量可能要比估计小得多。有人估计只有282亿吨。这是因为,实际可以获得的资源量要受一些因素影响。例如,一些矿床埋藏太深以至于不能经济开采;地面上的土地利用也在很大程度上限制了有些油页岩矿床的开发,尤其是那些工业化程度高的城市。

(二)全球油页岩开发利用现状

油页岩的开发利用可以追溯到17世纪。到19世纪时,油页岩的年产规模达百万吨,已经可以从油页岩中生产一些诸如煤油、灯油、石蜡、燃料油、润滑油、油脂、石脑油、照明气和化学肥料、硫酸氨等产品。到20世纪早期,由于汽车、卡车的出现,油页岩作为运输燃料被大量开采。直到1966年,由于原油的大量开采利用,油页岩作为主要矿物能源才退出历史舞台。但是,现在油页岩的利用更加广泛,爱沙尼亚、巴西、中国、以色列、澳大利亚、德国等国对油页岩的利用已经扩展到发电、取暖、提炼页岩油、制造水泥、生产化学药品、合成建筑材料以及研制土壤增肥剂等各个方面。

油页岩产量高的国家主要有爱沙尼亚、俄罗斯、巴西、中国和德国。有数据表明,世界油页岩的产量经历了两个高峰期(见图1)。第二个高峰期是在1980年,产量达到4540万吨的历史高峰。此后产量基本上一路下滑,到2000年,产量只有1600万吨。

目前,全球油页岩主要用于发电和供暖。据统计,2000年全球开采的油页岩中有69%用于发电和供暖,25%用于提炼高收益的页岩油及相关产品,6%用于生产水泥以及其他用途。

爱沙尼亚是世界油页岩开发利用程度最高的国家。2002年,爱沙尼亚油页岩的产量达1230万吨,约占世界产量的75%。2000年,全球页岩油年产量约50万吨,爱沙尼亚就生产了23.8万吨,约占世界产量的47%。爱沙尼亚有4个装机容量为2967MW的油页岩发电厂,它们也是世界上装机容量最大的油页岩发电厂。

图11888~2000年爱沙尼亚、俄罗斯、巴西、中国和德国的油页岩产量(百万吨)

利用油页岩生产页岩油的国家还有巴西、中国和澳大利亚。巴西1999年生产了19.5万吨页岩油;中国2001年生产了8万吨页岩油;澳大利亚2001年生产了2.8万吨页岩油,2002年上升到6万吨。

利用油页岩发电的国家还有中国、以色列和德国。中国的油页岩发电厂装机总容量为24百万瓦;以色列的油页岩发电厂规模为12.5MW;德国的油页岩发电厂规模为9.9MW。

随着开发利用技术的进步和环保意识的增强,全球趋向于充分利用油页岩资源。目前,油页岩的利用已经更趋复合化、多元化。例如,在德国一个名叫DRZ的工厂中,油页岩既用来发电作为工厂的动力,又用作炼渣砖的燃料和原材料,生产水泥、土壤或岩石的稳固剂、填充剂和密封材料。多余的电能还可以卖给公众电网。

四、我国油页岩分布及开发利用现状

(一)我国油页岩分布

我国油页岩资源较丰富,石炭系—第三系都有产出,但主要产于第三系。我国油页岩资源未进行全面调查,还没有能反映资源全貌的较为准确的数据,各种数据差别悬殊。从表2的数据看,地质部1980年公布的截至1979年底含油率大于5%的表内油页岩储量311.7亿吨是可信的,抚顺石油研究所的预测油页岩储量4520亿吨的依据较充分,两项合计为4831.7亿吨,居世界第4位。

表2中国油页岩资源预测总表

我国油页岩矿的含油率一般大于5%,多在6%左右。若按含油率6%折算,我国页岩油的远景地质储量达289.9亿吨。已探明的储量折算成页岩油,至少有18.7亿吨。若按抚顺石油一厂、二厂的经验数据,每33~35吨油页岩生产1吨页岩油折算,探明的油页岩储量311.7亿吨,可生产9.17亿吨油;预测储量4520亿吨,可生产132.9亿吨油,两项合计为142亿吨。我国油页岩的分布比较广泛,但分布不均匀,主要分布于内蒙古、山东、山西、吉林、黑龙江、陕西、辽宁、广东、新疆等9省。由于勘探程度较低,目前仅在14个省(区)计算了探明储量,其中吉林、辽宁和广东的储量较多,合计约占全国探明储量的90%以上。有21个省(区)做了储量预测,内蒙古、山东、山西、吉林和黑龙江等省的预测储量大(见表3)。

表3我国部分省油页岩资源量单位:亿吨

1.吉林省

吉林省油页岩资源量丰富,相当于100亿吨石油,分布于二叠系—第三系。其中第三系、白垩系油页岩远景资源量就达209.05亿吨。

吉林省油页岩总地质储量有499亿吨。已列入储量表的有7处矿床,总保有储量174.5亿吨,占全国油页岩储量的55%,居第一位。油页岩产地比较集中,主要分布在农安、桦甸、罗子沟3个地区。

农安油页岩资源十分丰富。从农安至登娄库7000余平方公里范围的普查获知,5个矿床的保有储量就有168.9亿吨,占全省储量的97%,占全国探明储量的一半以上,具有较大的资源优势。桦甸市油页岩保有储量30.6亿吨。汪清县罗子沟油页岩储量范围为60平方公里,远景储量4.5亿吨;已经探明储量面积为19平方公里,储量1.5亿吨,平均含油品位大于或等于8%。

2.广东省

广东省的油页岩资源也相当丰富,总地质储量约132亿吨。探明储量75.7亿吨,位居全国第二。油页岩主要集中在茂名,探明储量51亿吨。

3.辽宁省

辽宁省油页岩分布较广,主要分布于抚顺、锦州、阜新、葫芦岛、秦皇岛等市,总地质储量有109亿吨。探明储量有37亿吨。锦州凌源市五家子矿区按含油率4%以上或4%~25%计算,油页岩储量为1098万吨。

4.山西省

山西省有工业价值的油页岩,主要形成于石炭纪和二叠纪,分布于蒲县东河至洪洞三交河、保德县腰庄一带的古生代煤系地层中。山西省油页岩推测储量有430亿吨,探明储量有1.47亿吨。蒲县东河矿区D级油页岩储量为270.1万吨,含油率6%~8%;底部伴有0.4~0.6米固体石油的腐泥煤,含油率为18%~24%。洪洞县三交河矿区油页岩和含油煤的储量共有8462万吨,含油率在6%左右。此外,大同、浑源等地,也探明有腐煤泥的储藏。

5.陕西省

陕西省油页岩分布较广,铜川市宜君县、咸阳市永寿县、延河流域都有分布。其中以铜川居多,位居全省首位。

(二)我国油页岩开发利用现状

我国油页岩综合开发利用时间比较早,主要有吉林省、辽宁省和广东省。早在20世纪50年代初,我国就在广东茂名建造了油页岩制油厂,我国石油主要以人造页岩油为主。由于石油短缺,当时还出现了“是发展人造油还是发展石油”的争论,后来“发展石油”,发现了大庆油田,“人造油”才渐渐退出主要地位。

广东省茂名市石油公司油页岩矿业公司经历了半个世纪后,目前已经具备750立方米/年的采掘能力,有着丰富的干馏技术,并在油页岩综合利用方面取得可喜成果。例如,利用页岩灰渣制砖和生产水泥;从排弃沙土中回收生产优质高岭土,形成了年产高岭土精粉3万吨能力;利用页岩灰渣做陶粒、陶织、塑胶制品掺和料、填充料。1996年,广东省进行了油页岩开发利用科技攻关,对油页岩发电燃烧技术进行了应用研究,对茂名地区的油页岩开发利用做了总体规划。2001年,广东省开始重视茂名地区油页岩开发与环境保护,由环保局资助了项目《油页岩废渣场退化生态系统的生态恢复研究》。

吉林省油页岩开发利用始于1958年,在国家支持下,由延边州石油公司筹建了汪清县罗子沟炼油厂,总投资约300万元,生产页岩油40吨,由于当时设备落后及其他原因,于1960年停产。1993年,辽宁省葫芦岛龙腾投资咨询有限公司计划投资8亿元人民币,在罗子沟建设油页岩综合开发利用工程。该项工程分三期建设完成,时间跨度为2004~2007年,工程完成后可形成年产300万吨矿石、20万吨页岩油、5000公斤稀贵金属的生产规模,并建成一个5000千瓦/时余热发电厂、油页岩综合开发利用研究所、水泥厂、砖厂和稀贵金属提炼厂等相关工程。

1993~1996年,在国家、省和地方政府的共同努力下,吉林省桦甸市建立了油页岩示范电厂。1999年实现了年发电量9500万千瓦/时,供热面积达到53万平方米。目前又在筹建二期工程,总体目标是:生产能力达到年耗油页岩36万吨,年发电量18000千瓦/时,年供电14400千瓦/时,年供热310万吉焦,年产建材30万立方米。到2005年,总装机达到4.3万千瓦,年发电2.75亿千瓦/时,年供热310万吉焦,总供热面积达到150万平方米,灰渣砖达到30万立方米(据吉林政府网)。

此外,桦甸热电厂也在积极招商引资,筹划项目总经费达42169万美元的工程。工程预计建设年产250万吨油页岩的矿区;利用采出的油页岩建设年产20万吨原油的炼油厂;利用炼油残渣建设10万千瓦的半焦发电厂;利用电厂半焦灰渣建设砌块、水泥、陶粒等建材产品项目。

辽宁省油页岩综合开发利用也较早。目前,抚顺是我国以油页岩为原料的大型石油加工基地之一。2003年,辽宁省科技基金资助了《油页岩高效合理利用研究》项目,目的是针对油页岩制油新方法、页岩油性质与深加工、油页岩与废旧高分子材料共炼等进行研究。

五、全球油页岩开发利用前景

(一)目前油页岩开发利用的局限性

全球油页岩资源丰富,用途广,开发利用时间也较早,但并不被大多数国家所重视。这主要有两个方面的原因。

1.生产页岩油和油页岩发电成本高

油页岩的最大使用潜力是提炼页岩油。在传统石油供给不足时,页岩油可望成为石油的替代品;或者是在那些缺少石油资源或石油资源量不足的国家,为了降低对外依存度,可以用页岩油替代石油,满足本国建设的需要。然而,就目前技术看,油页岩提炼页岩油的成本要比生产或购买石油和其他燃料产品要高。爱沙尼亚2000年的经验显示,只有当原油的进口价高于25美元/桶、重油的进口价高于95美元/吨时,生产页岩油才有经济意义,页岩油才有可能替代传统的石油,满足世界对化石能源的需求。

油页岩的第二大使用潜力是发电。爱沙尼亚2000年的经验显示,只有当煤的进口价高于40美元/吨、天然气的进口价高于3.5美元/兆英国热单位(MBTU)时,用油页岩发电才是经济的。

2.对环境的污染较大

油页岩的开采方式分地下开采和露天开采两种。无论是地下采矿还是露天采矿,都需要把地下水位降低到含油页岩层的层位以下,这样做会危害到矿山附近的耕地和森林。根据粗略估算,为了得到1立方米油页岩,一般需要抽出25立方米的地下水。抽出的地下水在沉淀水中的固体颗粒后才能排到河里。系统监测显示,采矿水在很大程度上增加了地面、地下水和湖泊中硫酸盐的含量。在巴西,地下水水位和质量就长期被油页岩采矿所扰乱。

用油页岩发电,除了采用燃烧较充分的沸腾炉外(德国、以色列掌握这种技术),还有一些采用研磨后燃烧的传统方式。研磨燃烧具有利用率低、高污染和高健康危害等不利特点,排除的气体中还有细的、可吸入的扬尘。这些扬尘中含有有毒物质,它们不仅危及电厂附近的环境,而且也影响到远离电厂的地区。另外,页岩油生产过程中放出的热、废水和半焦炭物质也可能引起环境问题。

总而言之,在目前技术条件下,对油页岩的利用存在很大的阻力。在未来若干年内,页岩油还不能代替原油、煤炭在化石燃料市场上的地位。

(二)全球油页岩开发利用前景

虽然目前油页岩的开发利用还有局限性,但是,倘若今后技术能跟上环境的要求,能满足经济条件,那么油页岩开发利用前景将是十分光明。澳大利亚、爱沙尼亚对油页岩开发利用前景十分看好,都制定出了宏伟计划。德国、以色列对充分利用油页岩资源和保护环境非常重视,开展了大量有关油页岩综合利用的研究,并掌握了先进技术。

在2002年11月爱沙尼亚首都塔林召开的《全球油页岩的利用与展望》会议上,来自13个国家的230位专家讨论认为,自1980年油页岩的产量开始减少以后,油页岩的开发利用前景在目前看来一片大好。当传统油资源变得紧缺时,当污染小和效率更高的技术得到广泛应用后,短期(2006年)、中期(2020年)及2020年以后,油页岩的产量会逐渐增大。

1.2006年

在爱沙尼亚,由于社会对电的需求量有所增大,政府决定启动“重建油页岩地区计划”。在2006年,爱沙尼亚发电厂和炼油厂将分别需要994万吨和644万吨的油页岩,其他方面的用途可能持平,稳定在74万吨左右。因此,爱沙尼亚的油页岩产量将从1230万吨增加到1700万吨。在澳大利亚,2002年页岩油的产量快速上升至6万吨,耗油页岩79万吨;预计在2006年,这两个数字将分别为55.6万吨和700万吨。受两国产量增长影响,世界油页岩的产量将由2000年的1600万吨增加到2006年的2300万吨。

2.2020年

各国政府出台的政策和相关条例是影响油页岩竞争力的关键因素。在爱沙尼亚,规划新建一座400万吨规模的油页岩工厂。倘若爱沙尼亚发电能采用沸腾炉技术,这些项目将能够实施。届时,油页岩产量将达到2100万吨以上。在澳大利亚,先进的ATP流程(Alberta Taciuk Processor)将成功商业化,可以使页岩油的产量由2006年的55.6万吨增加到2010~2013年的717万吨/年,届时需要年开采约1.14亿吨油页岩。因此,估计到2020年,世界油页岩的消费量会有1.3亿吨。

3.2020年以后

国际能源机构在“2002年世界能源展望”中预言,2020年以后,非传统来源的石油供应量会有很大的增加,约占世界石油需求总量的8%。这部分增量很可能由部分页岩油来满足。

六、建议

我国石油供需缺口逐年加大,石油供不应求的矛盾将长期存在。幸运的是,我国还有丰富的油页岩资源。建议我国及早做好准备,迎接世界油页岩大开发的到来。通过油页岩大开发,接替部分常规油气,缓解我国能源压力。根据我国具体情况,提出以下建议。

1.开展全国新一轮油页岩资源调查和评价

自1962年抚顺石油研究所完成《中国油母页岩资源调查报告》以来,我国已多年没有对全国油页岩资源进行调查评价。现有的评价资料都比较陈旧,而且零星,计算标准也不统一。至今,我国油页岩资源家底不清,这将严重制约我国油页岩资源的开发和宏观管理。2003年启动的第三轮全国油气资源评价中,包括了油页岩评价。但是,这次评价并不投入调查工作,评价结果很难有说服力。因此,建议结合全国油气普查工作,开展我国新一轮油页岩资源调查和评价。

2.为东北危机矿山资源接替服务

油页岩矿多与煤矿共生。我国东北地区的多数煤矿及其附近存在丰富的油页岩资源。由于几十年甚至上百年的开采,东北地区的一些重要煤矿,如辽宁抚顺煤矿和阜新煤矿已经成为危机矿山和矿城;黑龙江的鹤岗、双鸭山、鸡西、七台河都存在“四矿”问题,其中鹤岗煤矿已经成为可供性危机矿山。建议加强东北危机矿山和准危机矿山及其外围油页岩资源勘查,促进油页岩资源开发利用,为东北危机矿山资源接替和转型服务。

3.在能源短缺的边缘地区开展油页岩资源勘查

在能源短缺的边缘地区,例如西藏地区,在开展油气勘查的同时,应兼顾油页岩资源勘查和开发。西藏地区多年来能源严重缺乏,已经成为阻碍社会发展的重要因素之一。西藏地区常规油气资源取得战略突破尚需10年甚至20年,在此期间能源短缺矛盾仍将存在。西藏地区有丰富的油页岩资源,在双湖东南比洛错一带、老双湖(热觉查卡)北边一带有10米厚的油页岩,丁青盆地、伦坡拉盆地有第三系油页岩。加强西藏地区油页岩资源勘查和开发,利用油页岩发电和生产页岩油,对缓解西藏能源压力和促进西藏经济、社会发展具有重要意义。

4.国家支持和护持油页岩开发利用技术研究

油页岩开发利用能否走向大规模生产,关键取决于降低成本技术和环保技术。目前,我国油页岩开发利用技术研究多是由公司、地方政府支持,研究周期和规模不大。建议国家加大油页岩综合利用技术研究的支持和扶持力度,使技术不断更新。例如,研发新的燃烧炉,让油页岩的燃烧更充分、更环保;研发更先进的页岩油提炼系统,让油页岩得到更全面、更充分的利用;研究如何做到在得到优质主产品的同时,得到附加值更大的副产品。支持和鼓励我国科学家积极参与国际合作与交流,尽快掌握先进的油页岩开发利用技术。

5.做好油页岩开发后环境修复工作

严格执行国家有关矿山开采污染及环境修复费收取制度,力争在矿山开采过程中和关闭时,破坏的生态环境能够及时修复。建立相应的监督管理体系,做到在促生产的同时,保护好环境。

6.制定油页岩勘探、开发国家标准及规范

我国各省油页岩资源勘查缺乏规范,资源评价的标准和计算方法不统一;油页岩开发的经济指标、环保指标和管理有待规范。建议参考国外经验,组织制定出油页岩勘探、开发国家标准及规范。

作者简介

[1]张家强,中国地质调查局发展研究中心,研究员。

[2]王德杰,中国地质调查局发展研究中心,实习研究员。

Ⅲ 请大家能给我讲解一下,焦化厂工艺流程

焦化厂工艺流程
焦化厂的生产工艺
焦化厂有9个生产车间,分别为备煤车间、一号炼焦车间、二号炼焦车间、运焦车间、一回收车间、二回收车间、热力车间、维修车间和精制车间。焦化厂主要生产车间:备煤车间、炼焦车间、煤气净化车间及其公辅设施等,各车间主要生产设施如下表所示:
序号
系统名称
主要生产设施
1
备煤车间
煤仓、配煤室、粉碎机室、皮带机运输系统、煤制样室
2
炼焦车间
煤塔、焦炉、装煤设施、推焦设施、拦焦设施、熄焦塔、筛运焦工段(包括焦台、筛焦楼)
3
煤气净化车间
冷鼓工段(包括风机房、初冷器、电捕焦油器等设施);脱氨工段(包括洗氨塔、蒸氨塔、氨分解炉等设施);粗苯工段(包括终冷器、洗苯塔、脱苯塔等设施)
4
公辅设施
水处理站、供配电系统、给排水系统、综合水泵房、备煤除尘系统、筛运焦除尘系统、化验室等设施、制冷站等
3、炼焦的重要意义
由高温炼焦得到的焦炭可供高炉冶炼、铸造、气化和化工等工业部门作为燃料和原料;炼焦过程中得到的干馏煤气经回收、精制可得到各种芳香烃和杂环混合物,供合成纤维、医药、染料、涂料和国防等工业做原料;经净化后的焦炉煤气既是高热值燃料,也是合成氨、合成燃料和一系列有机合成工业的原料。因此,高温炼焦不仅是煤综合利用的重要途径,也是冶金工业的重要组成成分。
政策性风险煤炭是我国最重要的能源之一在国民经济运行中处于举足轻重的地位焦化行业属于国家重点扶持的行业。为建立大型钢铁循环结构,在钢铁的重要生产基地和炼焦煤生产基地建设并经营现代化大型焦化厂符合我国产业政策和经济结构调整方向也是焦化工业发展的一个前景。
五、原料煤的准备
备煤车间的生产任务是给炼焦车间提供数量充足、质量合乎要求的配合煤。其工艺流程为:原料煤→受煤坑→煤场→斗槽→配煤盘→粉碎机→煤塔。
1、煤的接收与储存
原料煤一般以汽车火车的方式从各地运输过来,邯钢焦化厂的原料煤主要来自邢台的康庄、官庄,峰峰和山西等地。当汽车、火车到达后,与受煤坑定位后,用螺旋卸煤机把煤卸到料仓里,当送料小车开启料仓开口后,用皮带把煤料运到规定位置。注意:每个料仓一次只能盛放同一种类别的煤。
为了保证焦炉的连续生产和稳定焦炉煤的质量,应根据煤质的类别用堆取料机把运来的煤卸放在煤场的各规定位置。邯钢焦化厂的备煤车间用的气煤、肥煤、焦煤和瘦煤四种,按规定分别堆放在煤场的五个区。
2、煤原料的特性及配煤原则
①气煤 气煤的煤化程度比长焰煤高,煤的分子结构中侧链多且长,含氧量高。在热解过程中,不仅侧链从缩合芳环上断裂,而且侧链本身又在氧键处断裂,所以生成了较多的胶质体,但黏度小,流动性大,其热稳定性差,容易分解。在生成半焦时,分解出大量的挥发性气体,能够固化的部分较少。当半焦转化成焦炭时,收缩性大,产生了很多裂纹,大部分为纵裂纹,所以焦炭细长易碎。
在配煤中,气煤含量多,将使焦炭块度降低,强度低。但配以适当的气煤,可以增加焦炭的收缩性,便于推焦,又保护了炉体,同时可以得到较多的化学产品。由于中国气煤储存量大,为了合理的利用炼焦煤的资源,在炼焦时应尽量多配气煤。
②肥煤 肥煤的煤化程度比气煤高,属于中等变质程度的煤。从分子结构看,肥煤所含的侧链较多,但含氧量少,隔绝空气加热时能产生大量的相对分子质量较大的液态产物,因此,肥煤产生的胶质体数量最多,其最大胶质体厚度可达25mm以上,并具有良好的流动性,且热稳定性也好。肥煤胶质体生成温度为320℃,固化温度为460℃,处于胶质体状态的温度间隔为140℃。如果升温速度为3℃/min,胶质体的存在时间可达50min,因此决定了肥煤黏结性最强,是中国炼焦煤的基础煤种之一。由于挥发性高,半焦的热分解和热缩聚都比较剧烈,最终收缩量很大,所以生成焦炭的类问较多,又深又宽,且多以横裂纹出现,故易碎成小块,耐磨性差,高挥发性的肥煤炼出的焦炭的耐磨强度更差一些。肥煤单独炼焦时,由于胶质体数量多,又有一定的黏结性,膨胀性较大,导致推焦困难。
在配煤中,加入肥煤后,可起到提高黏结性的作用,所以肥煤是炼焦配煤中的重要组分,并为多配入黏结性较差的煤提供了条件。
③焦煤 焦煤的变质程度比肥煤稍高,挥发性比肥煤低,分子结构中大分子侧链比肥煤少,含氧量较低。热分解时产生的液态产物比肥煤少,但热稳定性更高,胶质体数量多,黏性大,固化温度较高,半焦收缩量和收缩速度均较小,所以炼焦出的焦炭不仅耐磨强度高、焦块大、裂纹少,而且抗碎强度也好。就结焦性而言,焦煤是最好的能炼制出高质量焦炭的煤。
配煤时,焦煤的配入量可在较宽的范围内波动,且能获得强度较高的焦炭。所以配入焦煤的目的是增加焦炭的强度。
④瘦煤 瘦煤的煤化程度较高,是低挥发性的中等变质程度的黏结性煤,加热时生成的胶质体少,黏度大。单独炼焦时,能得到块度大、裂纹少、抗碎强度高的焦炭,但焦炭的熔融性很差,焦炭的耐磨性也差。在配煤时配入瘦煤可以提高焦炭的块度,作为炼焦配煤效果较好。
为了保证焦炭的质量,利于生产操作,配煤应遵循以下原则:
①配合煤的性质与本厂的煤料预处理工艺以及炼焦条件相适应,保证炼出的焦炭质量符合规定的技术质量指标,满足用户的需求。
②焦炉生产中,注意不要产生过大的膨胀压力,在结焦末期要有足够的收缩度,避免推焦困难和损坏炉体。
③充分利用本地区的资源,做到运输合理,尽量缩短煤源的平均距离,便于车辆的调配,降低生产成本。
④在尽可能的情况下,适当多配一些高挥发性的煤,以增加化学产品的产率。
⑤在保证煤炭质量的前提下,应多配气煤等弱黏结性煤,尽量少用优质焦煤,努力做到合理利用中国的煤炭资源。
3、配煤过程
当需要哪种煤时,用堆取料机通过皮带把煤输送到斗槽里,斗槽里的煤再次通过皮带送向配煤盘按要求进行配煤。邯钢焦化厂配煤比一般为:气煤28%,焦煤45%,肥煤18%,瘦煤9%。在进行配煤时,邯钢焦化厂采用的是利用核子秤进行衰减,通过信号的转换传到电脑上进行控制的。信号控制流程为:Cs-137→煤料→(衰减)电离室→(惰性气体)电流→放大器、变送单元→称重频率信号、变速信号→电脑系统。
4、煤的粉碎
邯钢焦化厂备煤车间的原料煤的精细度为70%~80%,含义为<3mm的煤料占总重量的百分数。在进入粉碎机之前,一部分达到原料煤细度的煤直接由皮带运往煤塔,另一部分未达标的由配煤工段运来的配合煤则先经除铁装置将煤料中的铁件吸净后进入粉碎机,再由皮带运往煤塔。在邯钢焦化厂的配煤车间用的是可逆锤式粉碎机,在粉碎机旁还设有除尘装置。
5、备煤车间设备简介
螺旋卸煤机:旋转机构、提升机构、走行机构、机架。
堆取料机:取料机构、回转机构、变幅机构、悬臂皮带机、尾车、走行机构。
斗槽;南斗槽供1#-4#焦炉 有8个仓库 每个仓库500吨;北斗槽供5#-6#焦炉,有8个仓库 每个仓库500吨。
配煤盘:圆盘、刮料机、加减套筒、减速机、电机。
粉碎机:转子、锤头。
六、炼焦
所谓高温炼焦,就是煤在隔绝空气加热到950-1050℃,经过干燥、热解、熔融、黏结、固化、收缩等过程最终得到焦炭。
1、炼焦生产工艺流程
由备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。
炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。
煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约700℃左右的荒煤气在桥管内被氨水喷洒冷却至90℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。
焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。
2、焦炉结构分析
焦炉结构的变化与发展主要是为了更好的解决焦饼高向与长向的加热均匀性,节能降耗、降低投资成本,提高经济效益。为了保证焦炭、煤气的质量和产量,不仅需要有合适的配煤比,而且要有良好的外部条件,而合理的焦炉结构就是用来保证外部条件的手段。为此,需从焦炉结构的各个部位加以分析。邯钢焦化厂采用的是JN43-58-Ⅱ型焦炉和JN43-80型焦炉。
现代焦炉炉体最上部是炉顶,炉顶之下为相间配置的燃烧室和炭化室,炉体下部有蓄热室和连接蓄热室和燃烧室的斜道区,每个蓄热室下部的小烟道通过交换开闭器与烟道连接。烟道设在焦炉基础内或基础两侧,烟道末端通向烟囱。因此焦炉由三室两区组成,即炭化室、燃烧室、蓄热室、斜道区、炉顶区和基础部分。因为JN43-80型焦炉是在JN43-58-Ⅱ型焦炉的基础上,通过多年的生产实践,进一步完善改进而来的,所以下面以JN43-58-Ⅱ型焦炉为例将焦炉的以上部分做下分析。
1)炭化室
炭化室是接受煤料并对装炉煤料隔绝空气进行干馏焦碳的炉室,一般由硅质耐火材料砌筑而成。炭化室位于两侧燃烧室之间,顶部由3-4个加煤孔,并有1-2个导出干馏煤气的上升管,它的两端为内衬耐火材料的铸铁炉门。JN43-58-Ⅱ型焦炉的炭化室尺寸分为两种宽度,即平均宽为407mm和450mm两种形式,炭化室全高为4300mm,全长为14080mm,有效长为13350mm,炭化室的有效面积为21.7m3加热水平高度为800mm。
2)燃烧室
燃烧室位于炭化室两侧,是煤气燃烧的地方,煤气与空气在其中混合燃烧,产生的热量传给炉墙,间接加热炭化室中煤料,对其进行高温干馏。燃烧室一般用硅砖砌筑。JN43-58-Ⅱ型焦炉燃烧室宽度为736mm和693mm(包括炉墙),炉墙为厚度为100mm的带舌槽的硅砖砌筑。燃烧室属于双联火道带废气循环式结构,它有28个立火道组成,相邻火道的中心距为480mm,立火道隔墙厚度为130 mm。其中成对的隔墙上部有跨越孔,下部取消了边火道的循环孔,防止了短路。立火道底部的两个斜道区出口设置在燃烧室中心线的两侧,在JN43-58-Ⅱ型焦炉基础上加大边斜道口的断面积,保证了两端炉头的供气量。
3)蓄热室
蓄热室作用就是利用蓄积废气的热量来预热燃烧所需的空气和贫煤气。JN43-58-Ⅱ型焦炉每个炭化室底部有两个蓄热室,一个为煤气蓄热室,另一个为空气蓄热室。它们同时和其侧上放的两个燃烧室相连。燃烧室正下方为主墙,主墙内有垂直砖煤气道,焦炉煤气由地下室煤气与主管经此道送入立火道底部与空气混合燃烧。由于主墙两侧气流导向,中间又有砖煤气道,压差大容易串漏。故砖煤气道系用内径为50mm的管砖,管砖外用带舌槽的异型砖交错砌成厚为270mm的主墙。蓄热室洞宽为321.5mm,内放17层九孔薄壁式格子砖。为使蓄热室长向气流均匀分布,采用扩散式箅子砖,配置不同孔径的扩散或收缩孔型,蓄热室隔墙均用硅砖砌筑,且其内表面衬有黏土砖。
4)斜道区
连接蓄热室和燃烧室的通道为斜道区,它位于蓄热室顶部和燃烧室底部之间,用于导入空气和煤气,并将其分配到每个立火道中,同时排除废气。燃烧室的每个立火道与其相应的斜道相连,当用焦炉煤气加热时,由两个斜道送入空气和导出废气,而焦炉煤气由垂直砖煤气道进入。当用贫煤气加热时,一个斜道送入煤气,另一个斜道送入空气,换向后两个斜道均导出废气。斜道口布置调节砖,在确定斜道断面尺寸时,一般应使斜道口阻力占上升气流斜道总阻力的2/3-3/4;为了保持炉头温度,应使炉头斜道出口断面比中部大50%-60%;斜道口的倾斜角一般不应低于30 ,斜道断面逐渐缩小的夹角一般小于7 等等。
5)基础平台
基础平台位于炉体底部,它支撑整个炉体,炉体设施和机械的质量,并把它传到地基上。JN43-58-Ⅱ型焦炉基础为下喷式,又底板、顶板和支柱组成,用钢筋混凝土浇铸而成。为了减轻温度对基础的影响,焦炉砌体的下部与基础平台之间有4-6层红砖。
6)炉顶区
JN43-58-Ⅱ型焦炉炉顶区砌有装煤孔、上升管孔、看火孔、洪炉孔和拉条钩等。炉顶的实心部分由砌炉过程中的废耐火砖砌筑,炉顶表面用耐磨性好、能抵抗雨水侵蚀的缸砖砌筑。
总之,JN43-58-Ⅱ型焦炉的结构特点是:双联火道带废气循环,焦炉煤气下喷,两格蓄热室的复热式焦炉,具有结构严密、炉头不易开裂、高向加热均匀、热工效率高、砖型少、挥发性低等优点。
3、护炉机械设备
焦炉四大车有:装煤车、推焦车、拦焦车和熄焦车。其中装煤车是在焦炉炉顶上由煤塔取煤并往炭化室装煤的焦炉机械,推焦车的作用是完成启闭机械炉门、推焦、平煤等操作,拦焦车的作用是启闭焦侧炉门将炭化室推出的炉饼通过导焦槽导入熄焦车中以完成出焦操作,熄焦车的作用是用以接受炭化室推出的弘叫,并送往熄焦塔通过水喷洒而将其熄灭,然后再把焦炭卸至凉焦台上。
护炉设备是包括炉柱、保护板、纵横拉条、弹簧、炉门框、抵抗墙及机侧、焦侧操作台等。主要作用是利用可调节的弹簧的势能连续不断的向砌体施加足够的、分布均匀合理的保护性压力,使砌体在自身膨胀和外力作用下仍能保持完整性和严密性,并有足够的强度从而保证焦炉的正常生产。
加热煤气供入设备,大型焦炉一般为复热式,可用两种煤气加热,作用是向焦炉输送和调节加压煤气。
荒煤气导出设备包括:上升管、桥管、水封阀、集气管、吸气管、焦油盒以及相应的喷洒氨水系统。其作用为:一是将出炉荒煤气顺利导出,不致因炉门刀边附近煤气压力过高而引起冒烟冒火,但又要保持和控制炭化室在整个结焦过程中为正压;二是将出炉荒煤气适度冷却,不致因温度过高而引起设备变形,阻力声高和鼓风、冷凝的负荷增大,但又要保持焦油和氨水良好的流动性。
4、熄焦、筛焦过程和设备
邯钢焦化厂采用的是湿法熄焦,其熄焦系统包括熄焦塔、喷洒装置、水泵、粉焦沉淀池及粉焦抓钩等。熄焦过程为:熄焦车开进熄焦塔时,利用红外线感受器,接收红焦本身社出的红外线而发出讯号电流,经电流放大触发电路启动熄焦水泵,并借助电子定时装置控制熄焦时间。熄焦时大约有20%的水蒸发,未蒸发的水流入粉焦沉淀池,澄清后的水流入清水池循环利用。熄焦后的焦炭卸至凉焦台上,停放30-40min使其水分蒸发和冷却,个别尚未全部熄灭的红焦,再人工用水补充熄灭。
筛焦按粒度大小将焦炭分为60-80mm、40-60mm、25-40mm、10-25mm、<10mm等级别,主要设备有辊轴筛和共振筛。一般大型焦化厂均设有焦仓和筛焦楼,将大于40mm的焦炭用辊轴筛筛出,经胶带机送往块焦仓。辊轴筛下的焦炭经双层振动筛分成其他三级,分别进入仓库。
七、炼焦化学产品的回收
1、煤气的初冷和焦油的回收
1)荒煤气的主要成分有净焦炉煤气、水蒸气、煤焦油气、苯族烃、氨、萘、硫化氢、其他硫化物、氰化氢等氰化物、吡啶盐等。
回收生产工艺的组成为:焦炉炭化室生成的荒煤气在化学产品回收车间进行冷却、输送、回收煤焦油、氨、硫、苯族烃等化学产品,同时净化煤气。煤气净化车间由冷凝鼓风工段、HPF脱硫工段、硫铵工段、终冷洗苯工段、粗苯蒸馏工段等工段组成,其煤气流程如下:荒煤气→初冷器→电捕焦油器→鼓风机→预冷塔→脱硫塔→喷淋式饱和器→洗终冷塔→洗苯塔→净煤气。
回收炼焦化学产品具有重要的意义。煤在炼焦时,除有75%左右变成焦炭外,还有25%左右生成多种化学产品及煤气。来自焦炉的荒煤气,经冷却和用各种吸收剂处理后,可以提取出煤焦油、氨、萘、硫化氢、氰化氢及粗苯等化学产品,并得到净焦炉煤气,氨可以用于制取硫酸铵和无水氨;煤气中所含的氢可用于制造合成氨、合成甲醇、双氧水、环己烷等,合成氨可进一步制成尿素、硝酸铵和碳酸氢铵等化肥;所含的乙烯可用于制取乙醇和三氯乙烷的原料,硫化氢是生产单斜硫和元素硫的原料,氰化氢可用于制取黄血盐钠或黄血盐钾;粗苯和煤焦油都是很复杂的半成品,经精制加工后,可得到的产品有:二硫化碳、苯、甲苯、三甲苯、古马隆、酚、甲酚和吡啶盐及沥青等,这些产品有广泛的用途,是合成纤维、塑料、染料、合成橡胶、医药、农药、耐辐射材料、耐高温材料以及国防工业的重要原料。
来自焦炉82℃的荒煤气,与焦油和氨水沿吸煤气管道至气夜分离器,气夜分离后荒煤气由上部出来,进入横管式初冷器分两段冷却。上段用循环水,下段用低温水将煤气冷却到21-22℃。由横管式初冷器下部排出的煤气,进入电捕焦油器,除掉煤气中夹带的焦油,再由鼓风机压送至脱硫工段。
由气夜分离器分离下来的焦油和氨水首先进入机械化氨水澄清槽,在此进行氨水、焦油和焦油渣的分离。上部的氨水流入循环氨水中间槽,再由循环氨水泵送到焦炉集气管喷洒冷却煤气,剩余氨水送至剩余氨水槽。澄清槽下部的焦油靠静压流入焦油分离器,进一步进行焦油和焦油渣的沉降分解,焦油用焦油泵送往油库工段焦油贮槽。机械化氨水澄清槽和焦油分离器底部沉降的焦油渣刮至焦油渣车,定期送往煤场,人工掺入炼焦煤中。
进入剩余氨水槽的剩余氨水用剩余氨水泵送入除焦油器,脱除焦油后自流到剩余氨水中间槽,再用剩余氨水中间泵送至硫铵工段剩余蒸氨装置,脱除的焦油自流到地下放空槽。
3)主要设备的构造及工作原理
①离心式鼓风机
离心式鼓风机由导叶轮、外壳和安装在轴上的工作叶轮所组成。煤气由鼓风机吸入后做高速旋转于转子的第一个工作叶轮中心,煤气在离心力的作用下被甩到壳体的环形空隙中心处即产生减压,煤气就不断的被吸入,离开叶轮时煤气速度很高,当进入环形空隙中,其动压头一部分转变为静压头,煤气的运动速度减小,并通过导管进入第二个叶轮,产生与第一叶轮相同的作用,煤气的静压头再次被提高。从最后一个叶轮出来的煤气由壳体的环形空隙流入出口连接管被送入压出管路中。
焦化厂所采用的离心式鼓风机按输送量大小分为150m3/min、300 m3/min、750 m3/min 、1200m3/min等多种规格,产生的总压头为30-35kpa。
②横管式初冷器
焦化系统生产中煤气横管式初冷器主要结构是包括初冷器壳体、冷却管管束。横管式初冷器壳体是由钢板焊制而成的直立的长方形器体,壳体的前后两侧是初冷器的管板,管板外装有封头。在壳体侧面上、中部有喷洒液接管,顶部为煤气入口,底部有煤气出口。在横管式初冷器的操作中,除了冷却焦炉煤气外,在冷却器顶部及中部喷洒冷凝液,来吸收焦炉煤气中的萘,并冲刷掉冷却管上沉积的萘,从而有效的提高了传热效率。
③电捕焦油器
电捕焦油器器体是由钢板卷制而成的筒体与器顶封头、器底拱形底组合而成。
电捕焦油器的电场有正电极、负电极组合而成。其正极是又钢管制成,其钢管固定在上下管板上,管板与电捕焦油器筒体焊接而成。电场的负极,装在由绝缘箱垂下杆悬拉的吊架上,其吊杆吊架均有不锈钢制成,吊杆上装着阻力帽以阻止气体冲击绝缘箱。电场负极由不锈钢制成,电晕极板下悬吊着铅坠,以拉直电晕极,电晕极下部由不锈钢制成的下吊架固定位置,电晕极线分别穿入电场沉淀焦油饿正极钢管中心。
2、脱硫工段(HPF脱硫法)
煤气→预冷器→脱硫塔→液封槽→(脱硫液)反应槽→再生塔→泡沫塔→(清夜)反应槽
鼓风机后的煤气进入预冷塔与塔顶喷洒的循环冷却水逆向接触,被冷至30℃,预冷后的煤气进入脱硫塔,与塔顶喷淋下来的脱硫液逆流接触以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气被送入硫铵工段。
吸收了H2S、HCN的脱硫液自流至反应槽,然后用脱硫液泵送入再生塔,同时自再生塔底部通入压缩空气,使溶液在塔内得到氧化再生。再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。
浮于再生塔顶部的硫磺泡沫,利用液位差自流入泡沫槽,硫泡沫经泡沫泵送入熔硫釜中,用中压整齐熔硫,清夜流入反应槽,硫磺装袋外销。
为避免脱硫液盐类积累影响脱硫效果,排出少量废液送往配煤。
3、硫铵工段(喷淋式饱和器生产硫铵)
由脱硫及硫回收工段送来的煤气经预热器进入喷淋式硫铵饱和器上段的喷淋室,在此煤气与循环母液充分接触,使其中氨被母液吸收,然后经硫铵饱和器内的除酸器分离酸雾后送至洗脱苯工段。
在饱和器下部的母液,用母液循环泵连续抽出送至上段进行喷洒,吸收煤气中的氨,并循环搅动母液以改善硫铵的结晶过程。饱和器母液中不断有硫铵结晶生成,用结晶泵将其连同一部分母液送入结晶槽沉降,排放到离心机进行离心分离,滤除母液,得到结晶硫铵。离心分离出来的母液与结晶槽溢流出来的母液一同自流回饱和器。从离心机卸出来的硫铵洁净,由螺旋输送机送至沸腾干燥器。沸腾干燥器所需要的热空气是由送风机将空气送入热风器经蒸汽加热后进行沸腾干燥,干燥后的硫铵进入硫铵储槽,然后由包装磅秤称量、包装送入硫铵仓库。
4、终冷洗苯工段
自硫铵工段来的煤气,进入终冷塔分二段用循环冷却水与煤气逆向接触冷却煤气,将煤气冷到一定温度送至洗苯塔。同时,在终冷塔上段加入一定碱液,进一步脱除煤气中的H2S。下段排出的冷凝液送至氰污水处理工段,上段排出的含碱冷凝液送至硫铵工段蒸氨塔顶。
从终冷塔出来的煤气进入洗苯塔,经贫油洗涤脱除煤气中的粗苯后送往各煤气用户。由粗苯蒸馏工段送来的贫油从洗苯塔的顶部喷洒,与煤气逆向接触吸收煤气中的苯,塔底富油经富油泵送至粗苯蒸馏工段脱苯后循环使用。
5、粗苯蒸馏工段
从终冷洗苯装置送来的富油进入富油槽,然后用富油泵依次送经油汽换热器、贫富油换热器,再经管式炉加热后进入脱苯塔,在此用再生器来的直接蒸汽进行汽提和蒸馏。塔顶逸出的粗苯蒸汽经油汽换热器、粗苯冷凝冷却器后,进入油水分离器。分出的粗苯进入粗苯回流槽,部分用粗苯回流泵送至塔顶作为回流液,其余进入粗苯中间槽,再用粗苯产品泵送至油库。
洗煤厂工艺流程
煤炭加工、矸石处理、材料和设备输送等构成了矿井地面系统。其中地面煤炭加工系统由受煤、筛分、破碎、选美、储存、装车等主要环节构成。是矿井地面生产的主体。
受煤是在井口附近设有一定容量的煤仓,接受井下提升到地面的煤炭,保证井口上下均衡连续生产。
筛分
用带孔的筛面把颗粒大小不同的混合物料分成各种粒极的作业叫筛分。晒分所用的机器叫筛分机或者筛子。
在选煤厂中,筛分作业广泛地用于原煤准备和处理上。按照筛分方式不同,分为干法筛分和湿法筛分。
破碎
把大块物料粉碎成小颗粒的过程叫做破碎。用于破碎的机器叫做破碎机。在选煤厂中破碎作业主要有以下要求:
1)适应入选颗粒的要求;精选机械所能处理的煤炭颗粒有一定的范围度,超过这个范围的大块要经过破碎才能洗选。
2)有些煤快是煤与矸石夹杂而生的夹矸煤,为了从中选出精煤,需要破碎成更小的颗粒,使煤和矸煤分离
3)满足用户的颗粒要求,把选后的产品或煤快粉碎到一定的粒度
物料粉碎主要用机械方法,有压碎、劈碎、折断、击碎、磨碎等几种主要方式。
选煤
是利用与其它物质的不同物理、物理-化学性质,在选煤厂内用机械方法去处混在原煤中的杂质,把它分成不同质量、规格的产品,以适应不同有户的需求。
按照选煤厂的位置与煤矿的关选煤厂可以分为:矿井选煤厂、群矿选煤厂、中心选煤厂和用户选煤厂;我国现有的洗煤厂大多是矿井洗煤厂。现代化的洗煤厂是一个由许多作业组成的连续机械加工过程。
跳汰选煤
在垂直脉动的介质中按颗粒密度差别进行选煤过程。跳汰选煤的介质是水或空气,个别的也用悬浮液。选煤中以水力跳汰的最多。
跳汰机是利用跳汰分选原理将入选原料按密度大小分选为精煤、中煤和矸煤等产品设备。
重介选煤
在密度大于1g/cm的介质中,按颗粒密度的的大小差异进行选煤,叫做重介质选煤或重介选煤。选煤所用的重介质有重液和重选浮液两类。重介选煤的主要优点是分选效率高与其它选煤方法;入选力度范围宽,分选机入料粒为1000-6mm,漩流器为80-0.15mm生产控制易于自动化。重介选煤的缺点是生产工艺复杂,生产费用高,设备磨损快,维修量大。
重介选煤一般都分级入选。分选块煤一般在重力作用下用重介质分选机进行;分选沫煤在离心力作用下用重介质漩流器进行。
存储
储煤仓:为调节产、运、销之间产生的不平衡,保证矿井和运输部门正常和均衡生产而设定的有一定容量的煤仓,接受生产成品煤炭,保证能顺利出厂,进入最后的装车阶段。
装车:包括装车(船)、吊车和计量。

Ⅳ 农林废物的热解技术有哪些

在无氧或者缺氧的条件下,对固体废物中的有机物进行加热,使其发生不可逆的化学变化,主要是使高分子的化合物分解为低分子化合物的处理技术,称为热分解技术,简称热解。热解处理的主要产物包括气体部分(如氢气、甲烷、一氧化碳、二氧化碳等)、液体部分(如甲醇、丙酮、醋酸、焦油、溶剂油、水溶液等)和固体部分(主要是炭黑)。不同于仅有热能可以回收的焚烧处理,热解技术可产生便于贮存运输的燃气、燃油等。适合于热解技术应用的固体废物主要包括废塑料(含氯废物除外)、废橡胶、废轮胎、废油和油泥、有机污泥等。城市生活垃圾、农林废弃物(如纤维素类物质)的热解技术也在蓬勃发展之中 。
1. 生物质是植物光合作用直接或间接转化的产物。生物质能是指利用生物质生产的能源。目前,作为能源的生物质主要是农林废弃物、城市和工业有机废弃物以及动物粪便等。本文所指的生物质具体指农林废弃物,即农林作物收获和加工过程中所产生的废弃物质和垃圾,如秸秆(玉米秆、花生秆、棉花秆、高梁秆、豆类秆等)、糠皮、山茅草、灌木枝、枯树叶、藤蔓、木屑、皮壳、刨花、锯末等,以及食品加工业排出的残渣,如饼粕、酒糟、甜菜渣、废糖蜜、蔗渣、食品工业下脚料等。
我国每年产生的各种农林废弃物有15亿,其中农业废物资源分布广泛,仅农作物秸杆年产量就7亿吨,可作为能源用途的秸杆约3.5亿吨,折合标准煤1.8亿吨;薪炭林和林业及木材加工废物的资源量约折合3亿吨标准煤,相当于我国石化能源消耗量的1/10还要多。另外,一些油料作物还是制取液体燃料的优质原料,如麻疯树、油菜籽、蓖麻、漆树、黄连木和甜高粱等。预计到2020年,农林废弃物约合11.65亿吨标准煤,可开发量约合8.3亿吨标准煤。另外,目前全国还有5700~公顷宜林地和荒沙荒地,l亿公顷不适宜发展农业的边际土地资源,发展林木生物质能源潜力巨大。

虽然目前新开发的生物质资源的综合利用途径相当多,并且有些途径生物质资源利用率和经济效益都很高,但消耗量小,不能从根本上解决农林废弃物资源的处理和利用问题。生物质作为能源能够最大量地回收利用农林废弃物资源,其产物不但不存在销路问题,还能替代传统燃料,缓解日趋严重的能源危机,能够产生良好的社会经济效益和环境效益。

2生物质能转化机理和技术途径

生物质均由纤维素、半纤维素和木质素等高聚物组成,其基本液化反应分别如下:根据热重分析,纤维素在325 K时,开始降解,随着温度升高,降解加剧,到623~643 K时,降解为低分子碎片。其降解过程如下:

而半纤维素结构上带有支链,比纤维素更易降解,其降解机制与纤维素相似。木质素结构单元通过醚键和c—c键相联,结构比纤维素、半纤维素要复杂得多,木质素的热化学液化反应首先是烷基醚键的断裂反应。木质素大分子在高温、供氢溶剂存在下,通过自由基反应,首先断裂成低分子碎片,其基本反应如下:

通过以上过程,形成小分子碎片,这些碎片进一步通过侧链C—O键、C—C键及芳环C—O键断裂形成低分子量化合物。以上是生物质降解为低分子的基本断裂反应。

快速热解是一个加热速率极快,而滞留时间极短且快速冷却的过程,是一个瞬间完成的过程。上述过程对生物质的降解仍然适用,然而时间极短,可近似等温过程。从反应物与生成物来看有如下过程:

Larfldt J等进行大量研究后,根据反应动力学提出4种热解模式:

模式2、3中炭的馏分通过计算预测,模式 l、4中有竞争反应,因而炭产量有变化。生产过程中,即使用最佳工艺参数,也不能生成单一产物,但通过调整参数可使反应尽可能向所需产物方向发展。如模式1中温度在500℃左右时,极高的加热速率、很短的滞留时间和快速冷却,能提高其K2值,主要产物为焦油,故模式1更适合快速热解。

目前生物质能的转化技术主要有3种:(1)生物质经生物化学处理转化为富含能量的燃料。如将生物质(农作物秸秆、粪便、有机废水等)发酵制得沼气,糖和淀粉原料发酵制酒精。我国在这方面的技术比较成熟,但在大规模处理生物质中将会受到生物质种类和生物技术的限制。(2)生物质经化学处理转化为高价值的化工产品。如利用生物质中的半纤维素在酸性介质下加热获得糠醛,利用稻壳生产白炭黑等。(3)生物质经热化学处理,即生物质在隔绝或少量氧气的条件下,热解反应获得可燃气体、固体木炭和液体生物油3类产品,又称生物质热裂解(生物质热解)。一般地说,生物质热解分低温慢速热解(<400℃),产物以木炭为主;高温闪速热解(700~1000℃),产物以可燃气体为主;中温快速热解(400~650℃),产物以生物油为主。快速热解技术,即生物质瞬间热解制取液体燃料油,是20世纪70年代末国外研究人员研究开发的。其收率高达70%以上,并有文献报道液体生物油的产率最高可达85%,是一种很有开发前景的生物质应用技术。

液体产物收率相对较高的快速热解技术,最大的优点在于其产物生物油易存贮、运输,为工农业大宗消耗品,不存在产品规模和消费的地域限制问题。生物油不但可以简单替代传统燃料,而且还可以从中提取出许多较高附加值的化学品。通过分散热解、集中发电的方式,热解生物油通过内燃机、燃气涡轮机、蒸汽涡轮机完成发电,这些系统可产生热和能,能够达到更高的系统效率,一般为35%~45%,从而解决了发电要求的规模效益,并大大降低了农林废弃物的运输和贮存费用高、占用场地大的问题。

3国内外生物质快速热解技术的研究现状

该技术始于20世纪70年代末,迄今为止,为降低快速热解法的生产成本(按等热值粗略折算,2 t生物原油可折合1 t石化燃料,则目前生产l石油当量吨的生物原油的成本远比生产1 t石化燃料的成本要高),各国已经对多种反应器和工艺进行了研究,特别是欧、美等发达国家,在进行全面的理论研究的基础上,已建立了相应的实验装置。快速热解法生产的液体燃料可以替代许多锅炉、发动机及透平机所用的燃油,而且还可以从中萃取或衍生出一系列化学物质,如食品添加剂、树脂、药剂等。正因为这些优势,快速热解技术越来越受到关注,工艺发展有了长足的进步。

在美国,采用循环流化床反应器和输送床反应器生产食品添加剂已投入商业运营,生产能力达l~2 t/h。欧洲各国多采用鼓泡流化床反应器,现在西班牙、英国分别建成了200 kg/h的试验厂,意大利建成了500 kg/h的示范装置。为了方便热解液化方面的学术交流和技术合作,欧洲在1995年专门成立了一个PyNE组织(Pyrolysis Net. work for Europe),拥有18个成员国;2001年成立了GasNet(Europe Biomass Gasification Network),现已拥有20个成员国以及8家工业单位成员。这些组织成立以来,在快速热解液化技术的开发以及生物油的利用方面做了大量富有成效的工作。

我国关于生物质快速热解研究较为薄弱,但近几年也有不少科研院所在这方面开展了工作。沈阳农业大学开展了国家科委“八五”重点攻关项目“生物质热裂解液化技术”的研究工作,他们在生物质热裂解过程的实验和理论分析方面做了很有成效的工作。浙江大学、中科院化工冶金研究所和广州能源所、河北省环境科学院等单位近年来也进行了生物质流化床或循环流化床液化实验。山东工程学院开发了等离子体快速加热生物质液化技术,利用实验室设备液化玉米秸粉,制出了生物油,并进行了成分分析。

国外的生物质能工作者偏重于不同类型的快速热解反应器的开发,以期提高生物油的产率。因为反应器能极大地影响化学反应体系的热量、动量、质量传递过程,设计合理的反应器可改善物料和温度在反应体系中的分布,从而提高化学反应的速度和进行程度。从实践中看,国外研制的某些反应器具有非常高的生物油产率。国内工作者着眼于通过控制温度、使用催化剂、寻找适宜的物料来探索提高生物油产量和质量的途径。

在生物质快速热解生产液体燃料的工艺中,反应器都是其核心部分,反应器的类型及加热方式的选择在很大程度上决定了产物的最终分布。因此,反应器类型和加热方式的选择是各种技术路线的关键环节。作为一种只有30多年发展历史的新工艺,在技术、产品和应用方面还存在许多不足,至今未实现大规模工业化应用。目前,亟待解决的问题有:(1)鼓励开发、改进工艺和设备;(2)工业放大;(3)降低成本;(4)改善生物油使用性能;(5)开发有价值的生物油副产品;(6)处理输送和使用过程的环境卫生与安全。

4生物质自混合下行循环流化床快速热解技术

山东科技大学化工学院清洁能源研究中心提出生物质自混合下行循环流化床快速热解技术,正处于实验研究阶段,并有一套处理量为200~300 kg/h的示范装置在建设中。

农林废弃物被锤片式粉碎机粉碎成合适的生物质颗粒,经烟气提升管干燥和提升,生物质颗粒被旋分器气固分离进入上部料仓。经螺旋进料器在专有热解反应器顶端,与通过蝶阀控制下落的高温循环热载体迅速实现自混合、升温、热解。在反应器立管下部油气与半焦和热载体快速分离。热解油气经冷凝器获得液体产品和煤气。半焦和循环热载体通过热空气输送的返料阀进入烧焦提升管燃烧加热,加热后的热载体经旋分器

与烟气分离后进入专有热解反应器顶部,实现热载体循环供热,烟气预热空气后被引到烟气提升管底部,提升和干燥生物质颗粒。

生物质自混合下行循环流化床快速热解工艺流程见图l。

其技术优点:

(1)专有热解反应器为静态混合结构,无机械运动部件,可解决机械设备存在的高温时焦渣磨损设备、设备的运动部件容易出现故障以及难以工业化放大的难题。

(2)专有热解反应器利用重力、无需载气即可实现生物质颗粒和高温循环热载体的快速混合、快速升温和热解,提高液体收率和系统热效率。

(3)利用烟气余热干燥生物质颗粒,降低了生物油的水含量,提高了系统热效率。

(4)反应器立管下部油气与半焦和热载体通过专有快速分离装置,减少了高温热解油气的二次反应,提高了液体收率。

生物质自混合下行循环流化床快速热解新技术是根据我国农村农林废弃物集散难度较大的国情,利用先进技术研制开发的一种热效率高、投资低、操作方便的快速热解工艺。

该热解工艺为彻底实现农林作物资源的最大化利用、实现农业循环经济、提高农民收入、改善农村产业结构、改善农村缺能现状,解决剩余秸秆就地焚烧或随意堆弃造成大气污染、土壤矿化势加剧、火灾和交通事故等大量的社会经济和生态问题提供了技术支撑和指导方向,对农业和农村发展以及化石能源危机的缓解,都有重要的现实意义。

Ⅳ 兰炭怎么样

清洁取暖不妨试试兰炭

一年一度的北方地区冬季清洁取暖燃料准备工作即将开始。同时,打赢大气污染防控三年攻坚战也到了即将交卷的时刻。经过几年的不断努力和探索,业内对如何既能保证百姓温暖过冬,又能确保大气污染防控效果多了一些认识和选择。

散煤取暖造成的大气污染还历历在目,但为什么老百姓就是放不下散煤?因为散煤来源广、供应有保障,且价格便宜,供暖舒适性较高。如何既能保留散煤的优点,又能避免其污染的不足?一种新型的清洁燃料——兰炭逐渐进入人们视野。

近期,由于部分地区在“限煤双控”刚性政策的约束下,适当放松了对兰炭的限制,引起一些地区争抢兰炭,尤其是一些燃煤电厂为完成压煤任务,也加入了争抢大军。其实,兰炭只适用于那些无法进行烟气超低排放治理的家庭民用和中小型工农业、养殖业等分散用户,并不很适合煤粉炉燃煤发电厂使用。

传统炉灶结构不合理致散煤直烧产生大量污染

自古人发现煤炭并将其作为燃料用于取暖和炊事以来,直到2017前,家庭散煤的燃烧方式并无太大变化,祖祖辈辈都是采用直立式底部自然进风短炉膛燃煤正烧小炉灶,即使后来的家用封闭式取暖炉,炉膛结构也没有变化。此种炉灶由于结构简单,制作成本极低而被长期广泛使用。

但此种炉灶结构燃用烟煤,会产生大量煤烟污染,能效也很低。因为这种结构的炉灶没有二次供风,引燃煤炭和后续加煤都在炉膛火焰中心上部,煤炭被加热到320℃左右就发生热解,产生的热解煤气在炉膛上部很难点燃和完全燃烧,使60%-70%的热解煤气顺着烟道排空;热解过程中煤炭不断爆裂产生的大量细煤粉也随着烟气被带出;煤中的硫不断被氧化生成的二氧化硫烟气,因不能和灰渣中的碱性物质接触固硫,所以多数二氧化硫也都一并进入大气中,造成严重空气污染;同时,这些排出的干馏气和带出的煤粉没有得到燃烧使用,白白浪费,使整体热效率低于60%。这就是散煤燃烧造成严重污染和能效低下的根本原因。无论是用块煤、粉煤,还是型煤都是如此。

如果向炉灶中直接加入细颗粒煤,飞扬出去的煤粉更多、浪费更大;如果做成型煤或煤饼再烧,飞出的煤粉会少得多,但挥发分逃逸问题仍无法解决;工业锅炉炉膛较长,但如果没有二次风补燃,挥发分逃逸问题就不可避免;一般锅炉都是强制鼓风,煤粉带出问题更为严重。

煤烟中含有大量焦油蒸汽、甲烷和少量其它烃类气体,以及氢气,这些都是大气光化学污染的重要构成物质,是VOCs治理的重点;焦油蒸汽含有大量苯、酚、萘、蒽、苯并芘等数十种知名和尚不知名的多环芳烃类有毒有害物质,有的还是强致癌物,它们会加重雾霾和酸雨,对人体健康产生不良影响。

中低温热解技术让散煤变身污染极小的兰炭,成为散煤替代首选

兰炭是烟煤热解后的半焦,是通过热解技术去除烟煤的大部分挥发分后的固体产物,这种技术在陕北、鄂尔多斯地区已有20多年的发展历史。起初用当地盛产的长焰煤进行土法烧焦,污染严重。近十多年来,随着技术的不断改进和环保政策的倒逼,兰炭的生产工艺、装备以及污染控制水平都有了革命性进步,已进入清洁生产和超低排放的现代化大工业阶段。目前,兰炭产业已扩展到整个陕北、蒙西、甘肃、新疆等拥有长焰煤资源的地区,全国产能近1亿吨。兰炭的用途也从最初的铁合金和电石行业,扩展到高炉喷吹、球团烧结、工业造气等行业,近两年逐步进入家庭民用和冬季取暖领域。

兰炭生产和散煤直烧的化学反应过程十分相似,只不过兰炭是把原煤集中热解,散煤是分散到千家万户的炉灶中热解。通过烟煤的集中热解,把散煤变成兰炭,不仅可把燃料清洁化,而且可将煤炭中的挥发分物质全部回收,生产高附加值产品。不但能减少环境污染,而且能大大提高原煤经济效益。

兰炭虽属煤炭,但其性能已发生根本改变,其挥发分和硫分残余已很少,热值大幅提高:挥发分一般降至5%-10%、残余硫分降低50%以上,热值提至6000大卡/千克以上。挥发分大幅降低,散烧时产生的煤烟就大幅减少;同时,经过热解形成的兰炭热稳定性有所提升,产生的煤粉和飞灰大幅减少,大大缓解了粉尘污染。即使还用原来的正烧小炉灶,也不会产生太大污染。

监测数据表明,烧兰炭比烧散煤可节能30%以上,产生的粉尘和其它烟气污染物下降80%-90%,二氧化硫下降50%以上。

对用户而言,燃料用量小了,运费可节省1/3,所以兰炭的综合消费成本增加并不多。虽然表面看兰炭比散煤价格高,但只要厂家把原煤热解减重部分,即煤焦油和热解煤气高值高效利用起来,完全可抵消加工成本,甚至还会有盈余,兰炭成本还有一定的下降空间。

兰炭虽以散煤为原料,但已不是散煤,而是转变成了非常优质的煤基清洁固体燃料,既保持了散煤使用的便捷性和廉价性,又减少了污染,且资源丰富有保障,是替代工业和民用散煤的首选。石油需要“炼化”才能清洁化和分品种使用,原煤低温热解也是一种“炼化”,“炼油”和“炼煤”有异曲同工之妙。

在不具备气代煤、电代煤的地区,以兰炭全面替代散煤切实可行

党中央、国务院非常重视大气污染防治工作,同时也要求确保北方地区清洁取暖、温暖过冬。近年来部分地区采取了大量限煤、禁煤和煤改气、煤改电的行政措施,配合大气污染防控整体措施综合施策,中东部地区空气质量得到明显改善。

但在此过程中,工业和民用散煤替代也出现了一些问题。改电、改气后的保供难度大、消费成本高、舒适性偏低等问题极易导致散煤复烧。

如果采用兰炭,上述问题或可基本得到解决。虽然散烧兰炭还达不到超低排放和改气、改电的清洁效果,但相比过去原煤散烧已有极大改善,特别是随着兰炭专用炉具的推广使用,能效和清洁性提升明显。

今年是“十三五”收官和“十四五”筹划之年,认真总结“十三五”期间散煤治理的经验教训,使“十四五”和未来更长时期内散煤污染治理更有力、更科学、更可承受十分重要。在不具备气代煤、电代煤的地区,以兰炭全面替代散煤是切实可行的办法。

一是针对家庭分散民用取暖和农业大棚、养殖场所、农村乡镇街道小企业等,大力推广兰炭替代,在基本不改变原有使用习惯的前提下,可全面替代。如果同时采用专用炉具,效果更好。初期投资和运行费用完全可承受,完全有潜力不依赖财政补贴。

二是对于10蒸吨/时及以下小工厂的供热供暖,如果实在无法改气、改电,也可采用兰炭专用锅炉,配合简易的烟气脱硫脱硝、除尘装置,完全可做到达标排放,且投资和运行费用低、设备可自动运行、供应有保障。但对于吨位较大的兰炭锅炉,必须配套建设烟气污染物超低排放治理系统。

三是对于必须使用燃气的玻璃、陶瓷等行业,推荐采用新型无排放固定床兰炭连续气化炉,就地生产廉价燃气。这种兰炭气化炉完全无焦油和酚氨废水,在窑尾烟气排放总管配套建设超低排放系统,即可获得良好的减排效果。

当然,兰炭终归是碳基燃料,虽然污染问题可解决,但碳排放问题尚不能解决。因此,在减排温室气体、发展低碳经济的大趋势下,兰炭也不能任性和无节制地使用,虽然控制温室效应和碳减排是一个长期过程,但在有清洁能源和可再生能源的地方必须尽量优先使用这些能源,不足

Ⅵ 兰炭不合格怎么处理

摘要 2.吸附法

Ⅶ 海南蓝碳哪些股受益

如下。兰炭概念报跌,天顺股份(-6%)领跌,中泰化学(-1.42%)、君正集团(-0.22%)、北元集团(-0.14%)等跟跌。以下是相关上市公司:
1、英力特:英力特(000635)10日内股价上涨15.96%,最新报10.65元/股,涨4.11%,今年来涨幅下跌-12.02%。在营业总收入方面,从2018年到2020年,分别为19.87亿元、20.87亿元、19.55亿元。公司2×30000KVA电石炉生产每吨电石消耗兰炭约为0.8吨。
2、万邦达:3月25日收盘消息,万邦达开盘报价11.08元,收盘于11.14元。7日内股价下跌1.17%,总市值为96.38亿元。在营业总收入方面,从2018年到2020年,分别为13.24亿元、8.4亿元、6.31亿元。签订《北京万邦达环保技术股份有限公司神木高新区产业园项目投资框架协议》,公司项目的建设地位于神木高新区,预估投资约6.72亿元。项目主要建设内容为220m/h兰炭废水预处理装置和配套生化处理装置及配套辅助生产设施。
3、北元集团:3月25日讯息,北元集团3日内股价下跌1.1%,市值为262.53亿元,跌0.14%,最新报7.27元。在营业总收入方面,从2018年到2020年,分别为96.04亿元、100.46亿元、98.54亿元。产业链中,公司以当地煤炭为基础原料,生产兰炭并发电;以兰炭为原料,电为热能生产电石;以电石和原盐为原料生产聚氯乙烯树脂和烧碱;以化工生产产生的电石泥废渣与热电锅炉排出的炉渣及粉煤灰为原料生产水泥。
4、君正集团:3月25日收盘消息,君正集团开盘报价4.53元,收盘于4.53元。5日内股价下跌1.99%,总市值为382.24亿元。在营业总收入方面,从2018年到2020年,分别为84.73亿元、98.05亿元、148.04亿元。煤炭供应集中在距园区20-50公里以内,生产电石和硅铁所需兰炭就近向陕西省神木县采购,生产烧碱所需原盐主要从吉兰泰,阿拉善左旗和屯池等地采购。
5、中泰化学:3月25日收盘消息,中泰化学开盘报价9.19元,收盘于9.02元,成交额4.21亿元。在营业总收入方面,从2018年到2021年,分别为702.23亿元、831.44亿元、842.15亿元、624.63亿元。公司拥有氯碱化工和粘胶纺织产业两大主业的优势企业,主营聚氯乙烯树脂(PVC)、离子膜烧碱、粘胶纤维、粘胶纱四大产品,配套热电、兰炭、电石、电石渣制水泥、棉浆粕等循环经济产业链。
6、天顺股份:3月25日消息,天顺股份最新报价18.17元,3日内股价下跌5.39%;今年来涨幅上涨15.63%,市盈率为46.59。在营业总收入方面,从2018年到2020年,分别为9.49亿元、12亿元、11.31亿元。道路普通货物运输;销售汽车用品、水泥、粉煤灰、石膏、脱硫石膏、炉渣、石灰石、废石灰石沫、建材、煤炭、焦炭、兰炭、钢材、生铁、PVC;货物装卸;搬运服务;汽车租赁;建筑工程机械与设备租赁。

Ⅷ 焦化行业标准

焦化行业准入条件(2008年修订)总 则为促进焦化行业产业结构优化升级,规范市场竞争秩序,依据国家有关法律法规和产业政策要求,按照“总量控制、调整结构、节约能(资)源、保护环境、合理布局”的可持续发展原则,特制定本准入条件。本准入条件适用于常规机焦炉、半焦(兰炭)焦炉和现有热回收焦炉生产企业及炼焦煤化工副产品加工生产企业。常规机焦炉系指炭化室、燃烧室分设,炼焦煤隔绝空气间接加热干馏成焦炭,并设有煤气净化、化学产品回收利用的生产装置。装煤方式分顶装和捣固侧装。半焦(兰炭)炭化炉是以不粘煤、弱粘煤、长焰煤等为原料,在炭化温度750℃以下进行中低温干馏,以生产半焦(兰炭)为主的生产装置。加热方式分内热式和外热式。热回收焦炉系指焦炉炭化室微负压操作、机械化捣固、装煤、出焦、回收利用炼焦燃烧废气余热的焦炭生产装置。以生产铸造焦为主。一、生产企业布局新建和改扩建焦化生产企业厂址应靠近用户或炼焦煤原料基地。必须符合各省(自治区、直辖市)地区焦化行业发展规划、城市建设发展规划、土地利用规划、环境保护和污染防治规划、矿产资源规划和国家焦化行业结构调整规划要求。在城市规划区边界外2公里(城市居民供气项目、现有钢铁生产企业厂区内配套项目除外)以内,主要河流两岸、公路干道两旁和其他严防污染的食品、药品等企业周边1公里以内,居民聚集区《焦化厂卫生防护距离标准》(GB11661-89)范围内,依法设立的自然保护区、风景名胜区、文化遗产保护区、世界文化自然遗产和森林公园、地质公园、湿地公园等保护地以及饮用水水源保护区内,不得建设焦化生产企业。已在上述区域内投产运营的焦化生产企业要根据该区域规划要求,在一定期限内,通过“搬迁、转产”等方式逐步退出。二、工艺与装备新建和改扩建焦化生产企业应满足节能、环保和资源综合利用的要求,实现合理规模经济。1.焦炉常规机焦炉:新建顶装焦炉炭化室高度必须≥6.0米、容积≥38.5m3;新建捣固焦炉炭化室高度必须≥5.5米、捣固煤饼体积≥35m3,企业生产能力100万吨/年及以上。半焦(兰炭)炭化炉:新建直立炭化炉单炉生产能力≥7.5万吨/年,每组生产能力≥30万吨/年,企业生产能力60万吨/年及以上。热回收焦炉:企业生产能力40万吨/年及以上。应继续提升热回收炼焦技术。禁止新建热回收焦炉项目。钢铁企业新建焦炉要同步配套建设干熄焦装置并配套建设相应除尘装置。2.煤气净化和化学产品回收焦化生产企业应同步配套建设煤气净化(含脱硫、脱氰、脱氨工艺)、化学产品回收装置与煤气利用设施。热回收焦炉应同步配套建设热能回收和烟气脱硫、除尘装置。3.化学产品加工与生产新建煤焦油单套加工装置应达到处理无水煤焦油15万吨/年及以上;新建的粗(轻)苯精制装置应采用苯加氢等先进生产工艺,单套装置要达到5万吨/年及以上;已有的单套加工规模10万吨/年以下的煤焦油加工装置、酸洗法粗(轻)苯精制装置应逐步淘汰。新建焦炉煤气制甲醇单套装置应达到10万吨/年及以上。4.环境保护、事故防范与安全焦化企业应严格执行国家环境保护、节能减排、劳动安全、职业卫生、消防等相关法律法规。应同步建设煤场、粉碎、装煤、推焦、熄焦、筛运焦等抑尘、除尘设施,以及熄焦水闭路循环、废气脱硫除尘及污水处理装置,并正常运行。具体有:(1)常规机焦炉企业应按照设计规范配套建设含酚氰生产污水二级生化处理设施、回用系统及生产污水事故储槽(池)。(2)半焦(兰炭)生产的企业氨水循环水池、焦油分离池应建在地面以上。生产污水应配套建设污水焚烧处理或蒸氨、脱酚、脱氰生化等有效处理设施,并按照设计规范配套建设生产污水事故储槽(池),生产废水严禁外排。(3)热回收焦炉企业应配置烟气脱硫、除尘设施和二氧化硫在线监测、监控装置。(4)焦化生产企业应采用可靠的双回路供电;焦炉煤气事故放散应设有自动点火装置。(5)焦化生产企业的化学产品生产装置区及储存罐区和生产污水槽池等应做规范的防渗漏处理,油库区四周设置围堰,杜绝外溢和渗漏。(6)规范排污口的建设,焦炉烟囱、地面除尘站排气烟囱和废水总排口安装连续自动监测和自动监控系统,并与环保部门联网。(7)焦化生产企业应建设足够容积事故水池、消防事故水池。三、主要产品质量1.焦炭冶金焦应达到GB/T1996-2003标准;铸造焦应达到GB/T8729-1988标准;半焦(兰炭)应参照YB/T034-92标准。2.焦炉煤气城市民用煤气应达到GB13612-92标准;工业或其它用煤气H2S含量应≤250mg/m3。

Ⅸ 油页岩开发利用约束因素分析

油页岩开发利用约束条件主要有资源、经济、技术、环保和政策等。

(一)油页岩开发利用资源约束

资源约束包括储量基础、资源禀赋、地质条件、地理环境等各方面。

1.探明储量不足

有开采价值的油页岩探明储量是页岩油产业发展的基础。从全国宏观角度来看,我国油页岩开发利用最主要的约束因素是有一定品位(如含油率≥5%)的油页岩的储量不足问题。截至2008年底,全国评价的油页岩地质资源量高达7391×108t,然而探明的油页岩储量只有85×108t,其中含油率大于5%的剩余可回收页岩油储量只有2.78×108t,只有石油剩余探明经济可采储量的13%,如按生产周期计算至多只能形成800×104t/a的产能。这表明我国油页岩资源丰富,但勘查程度低,能开发利用的储量不足。

当前已知的较大规模的探明储量有辽宁抚顺油页岩矿、广东茂名油页岩矿和海南儋州油页岩矿,油页岩探明储量分别有二三十亿吨,合计占全国油页岩探明储量的89%,而且可露天开采。抚顺、茂名油页岩矿含油率约6%~7%,其中含油率≥5%的油页岩占到90%以上;儋州油页岩矿含油率约5%,其中含油率≥5%的油页岩占到73%。抚顺矿务局每年开采抚顺西露天矿油页岩数百万吨,数年后将转为东露天矿油页岩。抚顺、茂名页岩油生产有很好的经济和社会效益,有扩大生产的良好发展前景。

我国还有十余处探明的值得开发的油页岩矿,例如吉林省桦甸、汪清罗子沟、山东黄县(龙口)有小型页岩油厂已投入生产,利用抚顺炉干馏炼油;还有甘肃窑街也有公司正建气燃式干馏炼油方炉,大庆油田在柳树河盆地正建颗粒页岩干馏炼油装置,龙江哈尔滨煤化工公司在达连河正建油页岩流化干馏炼油装置,年产页岩油仅数万吨。这些油页岩矿由于探明储量不大,不可能有很大的发展。

2.资源禀赋较差

经验表明,在我国当前经济技术条件下,就页岩炼油而言,露天开采的油页岩矿要求含油率≥5%,地下开采的油页岩要求含油率≥8%。只有这样,页岩炼油才是经济的。德国页岩发电厂用的油页岩含油率在4%~4.5%,据此推测我国含油率3.5%~5%的油页岩资源可考虑用于页岩燃烧发电。发电用油页岩还要考虑其发热值的大小。

统计表明,我国油页岩资源禀赋较差。全国油页岩资源平均含油率只有6.59%,比国外大部分国家的油页岩平均含油率8%~13%要低许多;全国含油率≥5%的油页岩资源只占54%。在全国81个油页岩含矿区中,平均含油率≥5%的油页岩含矿区只占75%,平均含油率≥8%的油页岩含矿区只占17%。有36%的含矿区其油页岩含油率≥5%的资源不足70%,其中又有25%的含矿区其油页岩含油率≥5%的资源不足50%。

我国资源量排在前十位的油页岩含矿区依次有吉林松南、陕西铜川—子长、黑龙江松北、西藏伦坡拉盆地和比洛错、新疆博格达山北麓、青海鱼卡、河南吴城、广东茂名盆地和内蒙古巴格毛德,油页岩地质资源量之和占到全国的93.6%。但是,油页岩资源量占到全国64.7%的松南、铜川—子长、松北、巴格毛德等4个含矿区的油页岩平均含油率<5%,而含油率≥5%的资源也不足35%。平均含油率较高的矿区有伦坡拉盆地(11.28%)、博格达山北麓(10.02%)、鱼卡(9.72%)和比洛错(9.18%),其次为吴城(6.22%)和茂名盆地6.01%等。

我国查明资源储量规模最大的油页岩含矿区是在吉林松南(原农安、松南、登娄库、长岭等几个含矿区),查明资源储量高达766×108t。但据所掌握的有限分析资料,松南含矿区油页岩虽然埋深浅,但矿层薄,且平均含油率只有4.8%,含油率≥5%的油页岩资源仅占34%左右。松南含矿区的油页岩资源至今未能开发利用。

因此,对我国来说,油页岩资源禀赋(或资源品位,主要是指含油率和发热值)是十分重要的不利因素。品位过低,就失去开发利用价值。

只有品位高的油页岩资源,才有开发利用价值。例如,已探明的吉林桦甸和山东黄县(龙口)油页岩含油率高达10%以上,尽管埋藏深,需地下开采,开采成本较高,但由于品位好,仍有开采价值,已经有企业着手开发。但探明储量不大,仅数亿吨。

3.地质条件不理想

对油页岩开发利用有影响作用的地质条件主要有油页岩矿层厚度、埋深、资源丰度、地质复杂程度。

矿层少、厚度大的油页岩有利于开采。我国大中型油页岩矿具有层数多、矿层薄等特点。油页岩矿层数多于5层的含矿区占25%,多于2层的含矿区占60%。河南吴城油页岩矿层数达到32层。开发条件较好的抚顺油页岩矿有2层,茂名油页岩矿有2层,桦甸油页岩矿有13层,罗子沟油页岩矿有27层。我国油页岩矿矿层累计厚度最薄只有0.72m,最厚达到160m(新疆博格达山北麓);厚度大于10m的含矿区占55%,厚度大于20m的含矿区只占31%。我国资源量排在前十位的油页岩含矿区,除新疆博格达山北麓油页岩矿较厚外,其他9个含矿区油页岩矿层厚度基本在10~35m范围内,一般在15~25m范围内。

埋藏浅的油页岩矿有利于开采。对地面干馏而言,油页岩开采深度一般要求小于500m。其中,埋深小于100m的油页岩矿适合于露采,埋深在100~500m的油页岩矿适合于井工开采。我国埋深在500m以浅的油页岩资源占65%,埋深在500~1000m的油页岩资源占到35%。适合于露采开采的油页岩矿主要有广东茂名、电白和高州,辽宁抚顺和凌源,海南儋州,吉林罗子沟,黑龙江阿荣旗和林口,内蒙古的巴格毛德、敖汉旗和奈曼旗,陕西的铜川和彬县,新疆的博格达山北麓、妖魔山、芦草沟和水磨沟,西藏伦坡拉盆地和比洛错等20余个含矿区。

资源丰度较高的油页岩矿有利于集中开发利用。由于我国油页岩矿厚度普遍较薄,含油率普遍不高,导致我国油页岩资源丰度总体较低。资源丰度≥6000×104t/km2的含矿区主要有辽宁抚顺、海南儋州、新疆准噶尔盆地的博格达山北麓和妖魔山、吉林罗子沟、内蒙古奈曼旗等含矿区;资源丰度处于(6000~2000)×104t/km2的含矿区主要有广东茂名、电白和高州,吉林桦甸,甘肃窑街和炭山岭,陕西铜川,山东昌乐五图,河北丰宁四岔口和大阁等含矿区。

地质复杂程度简单的油页岩矿有利于开采。我国油页岩矿地质复杂程度中等—简单。对油页岩矿地质复杂程度的认识,取决于地质勘查工作程度。

4.地理环境多样

一般来说,平原、丘陵、黄土塬环境的油页岩矿交通便利、人口密集、市场条件好,有利于开发利用;高原、山地、戈壁、沙漠环境的油页岩矿交通不便、人口稀少、市场条件差,不利于开发利用。

我国油页岩矿分布的地理环境复杂多样(图5-1)。在全国油页岩资源分布中,平原环境占44.0%,丘陵环境占7.5%,黄土塬环境占21.2%,高原环境占16.4%、山地环境占7.9%、戈壁环境占3.0%。平原、丘陵、黄土塬环境的油页岩资源占到72.7%,总体来说有利于我国油页岩资源的勘探开发。但是,在我国油页岩资源量排名前十位的含矿区中,有一半矿区分布在高原、山地、戈壁环境,如西藏伦坡拉盆地和比洛错处在高原环境,新疆博格达山北麓处于山地环境,青海鱼卡和内蒙古巴格毛德处于戈壁环境,这些地区的油页岩资源不利于开发利用。

图5-1 全国油页岩资源在不同地理环境中的分布

(二)油页岩开发利用经济约束

原油价格对油页岩的开发利用起到决定性的制约作用。如果国际原油油价太低,页岩油生产成本无法与原油竞争,则油页岩炼油产业就无法生存。例如,20世纪90年代初国际原油价格下降到10美元/桶左右,有近30a生产历史的茂名页岩炼油厂因严重亏损不得不在1992年停产。

当前国际上一般认为当原油价格高于40~50美元/桶时,油页岩炼油就可以盈利(Dammer,2007)。美国能源部于2007年9月公布的美国发展非常规能源规划的研究报告认为,在美国,当油价达到35美元/桶时,地下干馏生产页岩油已经有利;当油价达到54美元/桶时,地上干馏生产页岩油成为有利。

最近几年国际原油价格高涨,至2008年7月高达147美元/桶(张抗,2009),促进了世界和我国的页岩油产业的发展;之后,油价跌至2008年12月34美元/桶,但至2009年6月以来又有所回升,至80美元/桶左右波动。

近年我国主要有辽宁抚顺、吉林桦甸和罗子沟三处生产页岩油。抚顺用的油页岩是煤炭副产品,采矿成本不计于页岩油成本中,每吨生产成本约1000元人民币(折合21美元/桶)左右;桦甸油页岩矿采取井工开采,页岩油每吨生产成本不到2500元人民币(折合52.5美元/桶);罗子沟油页岩矿采取露天开采,页岩油每吨生产成本约1800元人民币(折合38美元/桶)。2007年我国页岩油的平均价格在3000元人民币/t(折合63美元/桶),2008年则达到5000元人民币/t(折合105美元/桶),2009年10月以来页岩油售价约4500元人民币/t(折合95美元/桶)。这表明当前情况下我国页岩油生产是有利的。

但是,在金融危机的冲击下,2008年年底左右国际原油价格下降到40美元/桶以下,国内页岩油价格“跳水”,降到2000元人民币/t(折合42美元/桶),不少企业利润下滑,甚至亏损,而且页岩油销路不畅。有的企业刚建成投产页岩炼油装置,产品无销路,陷入了进退两难的尴尬局面。吉林几家民营页岩炼油厂由于页岩油库存爆满,不得不暂时停产或半停产。抚顺页岩炼油厂有油品储备罐,没有停产。这说明,低原油价格对我国页岩炼油产业有较大冲击。

以上说明,页岩油的售价对于发展页岩油产业起到了关键的作用。经济因素,尤其是原油的价格,是页岩油产业发展的决定性因素。在我国,页岩油通常作为燃料油出售,燃料油的价格和世界原油价格是密切相关的。经验表明,在我国当前的条件下,一般而言,对于可露天开采的油页岩,含油率下限定在5%以上,对于地下开采的油页岩,含油率下限定在8%以上,才是值得开发利用的。

国际业内专家普遍估计,世界经济恢复以后,到2010年底,国际原油价格将会重新升到80美元/桶以上(胡国松学,2009)。这对页岩油产业的发展是非常有利的。

如果油页岩矿有其他价值较高的伴生矿产资源,将有利于矿产资源综合利用和降低成本。

此外,融资困难也对油页岩产业发展形成制约。油页岩产业投资大,生产规模达到10×104t以上的油页岩炼油项目需要投资2~3亿元人民币以上,小企业没有这样的经济能力,银行贷款也困难。油页岩综合利用项目在建设资金上得不到保证。

(三)开发利用的技术约束条件

油页岩主要用于干馏炼油,也可用于直接燃烧产汽发电,以及页岩灰制取水泥等建材。

油页岩干馏炼油分为地下干馏和地上干馏。

地下干馏是指油页岩不经开采,直接设法在地下加热,使页岩分解生成页岩油气导出地面。地下干馏工艺适用于埋藏很深(位于地下500m、600m以下)、且油页岩层厚达数十米的油页岩矿藏。美国绿河油页岩矿藏有相当一部分适用于此类工艺;我国油页岩矿普遍较薄,基本没有适合地下干馏工艺的油页岩矿区。尽管个别地区如新疆博格达山油页岩含油率高,矿层厚达160m,但地层产状陡,也不适合地下干馏工艺。而且地下干馏工艺尚不成熟,在美国也正处于现场中试阶段,在我国也未起步试验。

地上干馏是指油页岩经露天或井下开采,再经破碎筛分至所需的粒度,在所选用的合适的干馏炉内,加热至500℃左右干馏炼油。

当前,我国的抚顺块状页岩干馏炉是成熟的炉型,但处理量小,每台炉每天加工100t油页岩,油收率也低,只有实验室铝甑油收率的65%,而且开采出来经破碎筛分后留下来的小颗粒页岩大约占到15%~20%,这部分资源不能用于抚顺炉内加工而舍弃,因此不是理想的炉型。我国还有一种气燃式块状页岩方炉,每台炉每天加工可达300t油页岩,油收率较抚顺炉要高,但产出的页岩半焦的热量没有充分利用,也是缺点。再者,这两种炉型环保较差,三废较多,需要认真处理。

国外的干馏炉型,如巴西Petrosix块状页岩干馏炉,每台炉每天加工6000t油页岩,较抚顺炉的处理规模大60倍,油收率可达实验室铝甑油收率的90%,也是成熟的炉型,但其缺点是产出的半焦污染较大,需加以填埋、植被处理。

爱沙尼亚Galoter颗粒页岩干馏炉,采用热页岩灰做固体热载体,在回转炉中加热页岩干馏炼油,每台炉每天加工3000t油页岩,较抚顺炉的处理规模大30倍,油收率可达实验室铝甑油收率的85%,而且可将自矿藏开采出来的经破碎筛分的全部的颗粒油页岩用于炉子的干馏,且三废处理较易,污水量少,可直接送至电站锅炉烧掉,可以认为此种炉型是环境友好的炉型,是比较理想的,其缺点是工艺复杂,设备较多,操作较难。从工艺技术来看,选用Galoter炉有利于扩大生产规模,有利于提高生产效益,但是如选用Galoter装置,需要和生产或设计单位进行商务谈判,花费大量外汇才能加以引进。

当前抚顺矿务局引进了Taciuk颗粒页岩干馏炉(ATP)。Taciuk干馏炉系加拿大开发、澳大利亚放大、德国制造。由澳大利亚SPP/CPM在澳大利亚建设一台日加工6000t油页岩的示范型干馏炉,经几年的试运,开工率达60%,后SPP公司将该装置售予美国一能源公司,该公司认为Taciuk工艺不太成熟而停产。抚顺矿务局引进的Taciuk炉,规模也是6000t油页岩每天,可以将抚顺炉不能加工的颗粒页岩进行处理,该装置将于2010年年底以前试运。估计需要花费一定的时间才能达到正常运转。

除了引进先进的干馏工艺技术以外,中国当前还自主开发新的较先进的干馏炉型。中石油支持大庆油田采用大连理工大学开发的颗粒页岩干馏新工艺,拟建设一套日加工2000t油页岩的工业试验装置,年产5×104t页岩油。还有中煤集团支持黑龙江龙化公司在上海博申公司开发的粉末页岩流化干馏工艺的基础上、开展中试研究(50t油页岩/d),拟建设一套日加工2000t油页岩的工业试验装置,年产5×104t页岩油。这两项都是中国当前自主开发的干馏炼油项目,自中试放大到工业试验规模,是属于风险投资,但是值得鼓励的。

以上说明,我国现有油页岩干馏工艺成熟,但不适合发展大规模页岩油产业;我国自主开发出的较先进干馏工艺处于中试阶段,需要相当长时间才能进入成熟技术。国外先进的油页岩地下干馏工艺尚不成熟,也不适合我国油页岩矿;国外先进的油页岩地上干馏工艺比较成熟,适合发展大规模页岩油产业,但工艺复杂,技术引进需要花费大量外汇、资本投资回收期长,中小规模的企业承受不了。也就是说,目前的油页岩干馏工艺技术水平不支持页岩油产业大规模发展,未来几年油页岩干馏工艺技术水平有待提高,才能支持页岩油产业大规模发展。

(四)环境保护约束条件

油页岩的开采方式分地下开采和露天开采两种。无论是地下采矿还是露天采矿,都需要把地下水位降低到含油页岩层的层位以下,这样做会危害到矿山附近的耕地和森林。根据粗略估算,为了得到1m3油页岩,一般需要抽出25m3的地下水。抽出的地下水在沉淀固体颗粒后才能排到河里。国外系统监测显示,采矿水在很大程度上增加了地面、地下水和湖泊中硫酸盐的含量。在巴西,地下水水位和质量就长期被油页岩采矿所扰乱。

用油页岩发电,除了采用燃烧较充分的沸腾炉外(德国、以色列掌握这种技术),还有一些采用研磨后燃烧的传统方式。研磨燃烧具有利用率低、高污染和高健康危害等不利特点,排除的气体中还有细的、可吸入的扬尘。这些扬尘中含有有毒物质,它们不仅危及电厂附近的环境,而且也影响到远离电厂的地区。另外,页岩油生产过程中放出的热、废水和半焦物质也可能引起环境问题。

环境保护是政府环保部门约束油页岩产业的主要条件。凡是页岩油生产的新建项目,其可研报告在各级发改委审批前,首先要通过环保部门的评审,对页岩油生产中废水、废料和废气所含的污染物及其处理和排放,都有严格的规定。

对于已存在的页岩油厂和油页岩电站,对环保的要求则较宽松。抚顺矿业集团有两座页岩油厂,其环保几年来虽有改进,厂区绿化较好,但抚顺式炉加料斗未设中间缶,每隔一定时间进料时,炉内油气会外泄,污染大气;此外,生产中发生的污水加入炉底水盆,经页岩灰吸收自水盆排出,从而避免了污水直接排入水系,工厂称为污水的“零排放”,实际上这是污水污染的转移,使得排放至舍场的页岩灰含有了更多的污染物。抚顺矿业集团现正采取措施,在露天矿坑口的页岩油厂增设污水处理装置,参照一般炼油厂的污水隔油、浮选和生化处理三道工序处理污水,将净化后的污水加入水盆,以便出水盆的页岩灰不致被污染。吉林汪清页岩炼油厂的三废污染非常严重,臭气熏天,是环保较差的典型。

近年来,我国节能减排任务相当艰巨,政府对节能减排的要求越来越严格。2009年以来,国家还积极研究制订应对全球气候变化战略措施,把控制温室气体排放和适应气候变化目标作为制订中长期发展战略和规划的重要依据,纳入国民经济和社会发展规划中。这对油页岩产业发展是重大挑战。

此外,平原地区油页岩资源多分布有基本农田或耕地。例如,吉林扶余、前郭、农安、长春岭等地的油页岩资源分布区,多是国家生态粮食基地,老百姓吃水主要依靠地下水,油页岩开发可能破坏地下水和粮食基地生态环境。因此,吉林省国土资源厅建议把这些地区的油页岩资源作为战略资源储备起来。海南省把建设生态环境、发展旅游业作为本省的发展战略,儋州油页岩矿的开发将受到重大挑战。

以上表明,环保对油页岩产业的发展越来越严格了。油页岩开发利用的环境保护问题将对未来油页岩产业的发展起很大制约作用。

(五)政策约束条件

对油页岩开发利用来说,尽管重大影响因素主要是石油价格,但适宜的政策对其发展亦十分重要。油页岩产业发展主要涉及财税优惠政策、环境保护政策和资源政策。

有合理的财税优惠政策护持,可以保障页岩油产业可持续发展,在低油价下保证页岩油生产可以赢利或减少损失。我国曾有针对油页岩作为煤矿副产综合利用的财税优惠政策。国家发改委、财政部、国家税务总局于2004年在关于印发《资源综合利用目录》(2003年修订)的通知中,将煤的伴生油页岩及所生产的页岩油列为综合利用的产品给予税收优惠的政策。历年来优惠政策包括增值税即征即退,及对企业所得税实行税收优惠。这对煤矿充分利用其副产———油页岩资源、促进我国页岩油产业的发展起了很好的促进作用。但在《资源综合利用企业所得税优惠目录》(2008年版)中,却未明确列入煤系伴生矿油页岩及其所生产的页岩油产品。经抚顺矿业集团询问,国家发改委有关人士说遗漏了。抚顺矿业集团希望考虑如2004年那样将页岩油列入综合利用产品给予税收优惠的政策。

但是,我国没有针对独立油页岩矿、油页岩主矿开发利用的财税优惠政策。尽管国家发改委于2007年提出的产业结构调整指导目录中,将油页岩列为第一类鼓励类的项目(“六、石油、天然气”中的“2.油页岩等新能源勘探及开发”),这应该会对我国油页岩产业的发展起到鼓励和促进作用,但效果不如力度大的财税优惠政策。

我国没有针对油页岩产业的专门环保政策。制定油页岩开发利用环境保护的规范和合适政策,既可以促进油页岩产业可持续发展,也可以避免油页岩开发利用造成环境破坏。

我国现行资源政策对油页岩资源没有特殊规定,对油页岩资源的管理重视不够。一些地区和单位存在地方保护主义,影响了油页岩资源的开发利用。例如,有雄厚经济、技术实力的能源公司,可能无法得到好的油页岩矿;有油页岩资源的地方或单位,可能不具备油页岩开发的经济和技术实力,或不准备进行开发利用。因此,需要研究资源管理政策对油页岩开发利用的约束。

综上表明,未来有关优惠政策、环保政策、资源管理政策等方面的合理制定将促进我国油页岩产业健康发展。

Ⅹ 兰炭和烟煤可以在一起烧吗

兰炭是什么煤?

兰炭是利用优质侏罗纪不粘煤和弱粘煤煤块烧制而成,在机器化炉窑里烧的叫机制兰炭;当然也可以自己来烧制,用明火点燃,等烧透后用水熄灭后制成兰炭,这叫土炼兰炭,感兴趣的读者可以自己烧烧。七十年代末咱们国家科技和工业都不不发达,土炼兰炭大行其道。不过到了九十年代,由于污染和节能、科技进步等原因土炼兰炭被机制兰炭代替了。机制兰炭要比土炼兰炭质量好多了。在焦化行业里,兰炭被成为半焦。适合生产兰炭的煤只在陕北、新疆和内蒙古少数地区有,因此兰炭成了地域性产品。“

神木兰炭好在哪里?

据中科院地球环境研究所《榆林兰炭与原煤民用燃烧排放因子对比分析报告》,显示在pm2.5排放上,传统兰炭比洗块煤降低75%,升级版兰炭降低90%以上;在对人体健康影响最大的多环芳烃排放上,传统兰炭较洗块煤排放降低80%以上,升级版兰炭降低97%以上。兰炭是与优质无烟煤排放接近的最清洁民用煤。因此,推广兰炭利用,可大幅减少散烧煤的污染物排放,同时并不比使用煤炭增加太多成本,是解决雾霾污染环境问题的一个途径,京津冀地区散煤都改用兰炭,会减少好多污染。

2012年,“神木兰炭”成功注册国家地理标志证明商标。

中国能源研究会副理事长、国家能源局原副局长吴吟认为,兰炭的利用是用比较少的能耗,提取其中的焦油和煤气,其工艺流程比煤直接液化、间接液化的效率更高,所以兰炭的分级分质利用是有前景的,“我们要抓住大气污染防治的机遇,在推行时应该宜电则电、宜气则气、宜炭则炭。”

兰炭用在哪里?

兰炭目前仍以工业用为主,民用刚刚起步,但日子越来越好过去。由于兰炭比普通原煤贵不少,因此没有政府的推动和补贴(清洁煤补贴),普通老百姓很难放弃原煤使用兰炭。加上政策的影响,如北京郊区煤改电,也堵死了首都老百姓使用兰炭的路,兰炭再清洁净也不能用。

但北京之外的津冀及山东等地的民用市场,冬季取暖开始使用兰炭了,这与当地的补贴政策有关,使用兰炭每吨兰炭补贴500多元、型煤补贴200元。

随着,国家环境保护部正式发布了《民用煤燃烧污染综合治理技术指南(试行)》(2016年10月22日),标志着兰炭替代燃煤治理大气污染的显著效果得到了国家层面的认可和支持,兰炭的市场前景大好。

一般意义的焦炭产品多用于高炉炼铁和铸造等冶金行业,而由于强度和抗碎性相对较差,兰炭不能用于高炉生产。但在铁合金、电石、化肥、化工产业的原料和辅料等行业,目前,电石、铁合金厂家依然是最主要的买家。

兰炭完全可以代替一般焦炭,有时候被称为“冶金焦”。并且质量优于国家冶金焦、铸造焦和铁合金专用焦的多项标准,因而兰炭在提高下游产品质量档次、节约能源、降低生产成本、增加产量等方面,具有更高的应用价值;同时兰炭在高炉喷吹、生产炭化料、活性碳领域也存在发展潜力。兰炭的使用领域相当广泛,特别是在炭质还原剂方面具有独特的性能,经济优势十分明显。

此外,兰炭在还原剂、吸附材料、高炉喷吹等领域的应用也在不断拓展。“兰炭作为一种环保燃料,各项指标均优于烟煤和无烟煤。兰炭在中低温干馏过程中产生的废渣、废气、废水在当地企业已经得到循环利用,很有市场潜质,目前兰炭产业已实现了煤炭能源向固态、液态、气态三种能源的高效转化。”.

兰炭都卖到哪里?

目前,兰炭正在大量供应京津冀鲁民用燃料市场,并拓展海外市场,兰炭已出口到了日本、马来西亚等地。

兰炭和焦炭的区别?

焦炭是用来炼钢铁的,兰炭正如前文所说由于容易碎不能用来高炉炼钢铁。兰炭的市场价格一般远低于一般焦炭的价格。生产焦炭多以高温干馏为主,干馏温度通常需要达到1000℃左右,大型焦炭炉每座产量可达50-110万吨/年。兰炭生产多以低温干馏为主,干馏温度一般在在600℃左右,兰炭炉单炉年产量多数在3-5万吨/年。

兰炭与无烟煤的区别?

在pm2.5等指标的排放上,兰炭和无烟煤很接近,有的指标还优于无烟煤。兰炭和无烟煤是最清洁的两个煤种。但无烟煤价格比兰炭高,储量也相对少。

兰炭为啥不叫兰碳?

碳是元素名,即碳元素,元素周期表里排行老六。还记得元素周期表怎么背吗?氢氦锂铍硼碳氮氧氟氖……一般用于化学用语里,如碳酸钙。

而炭是一种实物,一种燃料,是由碳元素构成,即C。如活性炭、煤炭。

阅读全文

与半焦废水相关的资料

热点内容
液相用溶剂过滤器 浏览:674
纳滤水导电率 浏览:128
反渗透每小时2吨 浏览:162
做一个纯净水工厂需要多少钱 浏览:381
最终幻想4回忆技能有什么用 浏览:487
污水提升器采通 浏览:397
反渗透和不发渗透净水器有什么区别 浏览:757
提升泵的扬程 浏览:294
泽德提升泵合肥经销商 浏览:929
饮水机后盖漏水了怎么办 浏览:953
小型电动提升器 浏览:246
半透膜和细胞膜区别 浏览:187
废水拖把池 浏览:859
十四五期间城镇污水处理如何提质增效 浏览:915
怎么测试空气净化器的好坏 浏览:519
提升泵是干嘛的 浏览:744
布油做蒸馏起沫咋办 浏览:252
广州工业油烟净化器一般多少钱 浏览:204
喜哆哆空气净化器效果怎么样 浏览:424
油烟净化器油盒在什么位置 浏览:582