1. 氟离子选择电极法测定氟离子的浓度范围一般为
水中氟含量的高低对人体健康有一定影响,饮用水含氟为 0.5mg/L左右为宜.氟含量过高易患专氟斑属牙或发生氟中毒,而过低又会引起龋齿病.通常超过1.4mg/L的水禁止使用.
氟的测定通常采用比色和直接电位法(即氟离子选择性电位法).前者的测定范围较宽,但干扰因素多,往往需对试样进行预处理.后者的测量范围虽不如前者宽,但可满足水质分析要求,且操作简单,干扰因素少,不需要对水进行预处理.因此,直接电位法已广泛用于水中氟的测定.
2. 测定氟化物和ph时水样有颜色或浑浊为什么不影响测定
原因:
1、氟化物的含量,不是比色分析和浊度分析,所以颜色或浑浊没有关系,就不影响其测定;
2、测定pH时,不是比色分析和浊度分析,所以颜色或浑浊没有关系,就不影响其测定;
3、测定氟化物和pH,都是电化学法,都采用能斯特方程式测定的是电位值。
水样有颜色或浑浊,都不影响其测定;
3. 离子选择性电极法测定水中氟离子中,测定的是氟的活度还是浓度
一.目的
1.掌握直接电位法测定的原理及实验方法.
2.掌握用标准加入法和Gran作图法测定水中微量氟离子方法.
3.学会正确使用氟离子选择性电极和酸度计或离子计.
二.原理
水中氟含量的高低对人体健康有一定影响,饮用水含氟为 0.5mg/L左右为宜.氟含量过高易患氟斑牙或发生氟中毒,而过低又会引起龋齿病.通常超过1.4mg/L的水禁止使用.
氟的测定通常采用比色和直接电位法(即氟离子选择性电位法).前者的测定范围较宽,但干扰因素多,往往需对试样进行预处理.后者的测量范围虽不如前者宽,但可满足水质分析要求,且操作简单,干扰因素少,不需要对水进行预处理.因此,直接电位法已广泛用于水中氟的测定.
本实验中,应用氟离子选择性电极与饱和甘汞电极(S.C.E接正极),待测试液组成原电池.若在待测试液加入TISAB,使离子强度保持恒定,那么测量得到的电池电动势E与氟离子浓度关系式为:
2.303RT
E=K'+ ─────logCF-
F
=K'+SlogCF-
据此,当氟离子浓度在1--10-6mol·L-1范围内电池电动势E 与氟离子浓度的对数logCF-呈直接关系.这就是直接电位测定氟离子的理论基础.
1.标准加入法:
当试样成份复杂,组成变化较大时采用此法.先测体积为VX的未知试液的电动势EX,然后向未知试液加入体积为VS(约为VX/100),浓度为CS的标准溶液,测得电动势为EX+S,即可用下式求出待测试液中F-的浓度:
CSVS
CF- = ────×[10△E/S-1]-1
VX
式中△E=EX+S-EX,S为电极的实际斜率.
2.Gran作图法:
本法属多次等体积标准加入法.采用新的作图法求离子浓度的一种实验技术.当未知液加入的体积为Vs,浓度的Cs标准溶液后,其电池电动势
CF-VX+CSVJ
E=K'+Slog ━━━━━━━━
VX+VS
即
(Vx+Vs)10E/S=10K'/S(CF-VX+CSVS)
若以(VX+VS)10E/S对VS作图便一直线,外延直线,在轴上得交点Ve,此时
CF-VX+CSVE=0
故CF-=-CSVe/VX
实际作图时为省去纵坐标的烦杂数字计算,可利用10% 体积校正的格氐作图纸(见图1).此种作图纸纵坐标是反对数设计的,因此可直接标以E值,横坐标代表加入标准溶液体积,每大格代表体积数为待测的溶液体积百分之一.此种作图纸斜率S是固定的,对一价离子为58mv/px,二价离子为 29mv/px.若实际使用的电极斜率与此不符,可进行电位校正,也可作空白校正.
4. 用氟电极测定F-浓度的原理是什么
一.目的
1.掌握直接电位法测定的原理及实验方法。
2.掌握用标准加入法和Gran作图法测定水中微量氟离子方法。
3.学会正确使用氟离子选择性电极和酸度计或离子计。
二.原理
水中氟含量的高低对人体健康有一定影响, 饮用水含氟为 0.5mg/L左右为宜。氟含量过高易患氟斑牙或发生氟中毒, 而过低又会引起龋齿病。通常超过1.4mg/L的水禁止使用。
氟的测定通常采用比色和直接电位法(即氟离子选择性电位法)。前者的测定范围较宽,但干扰因素多,往往需对试样进行预处理。 后者的测量范围虽不如前者宽,但可满足水质分析要求,且操作简单,干扰因素少,不需要对水进行预处理。因此, 直接电位法已广泛用于水中氟的测定。
本实验中,应用氟离子选择性电极与饱和甘汞电极(S.C.E接正极),待测试液组成原电池。若在待测试液加入TISAB,使离子强度保持恒定,那么测量得到的电池电动势E与氟离子浓度关系式为:
2.303RT
E=K'+ ─────logCF-
F
=K'+SlogCF-
据此,当氟离子浓度在1--10-6mol·L-1范围内电池电动势E 与氟离子浓度的对数logCF-呈直接关系。 这就是直接电位测定氟离子的理论基础。
1. 标准加入法:
当试样成份复杂,组成变化较大时采用此法。先测体积为VX的未知试液的电动势EX,然后向未知试液加入体积为VS(约为VX/100), 浓度为CS的标准溶液,测得电动势为EX+S,即可用下式求出待测试液中F-的浓度:
CSVS
CF- = ────×[10△E/S-1]-1
VX
式中△E=EX+S-EX,S为电极的实际斜率。
2. Gran作图法:
本法属多次等体积标准加入法。 采用新的作图法求离子浓度的一种实验技术。当未知液加入的体积为Vs,浓度的Cs标准溶液后, 其电池电动势
CF-VX+CSVJ
E=K'+Slog ━━━━━━━━
VX+VS
即
(Vx+Vs)10E/S=10K'/S(CF-VX+CSVS)
若以(VX+VS)10E/S对VS作图便一直线,外延直线,在轴上得交点Ve,此时
CF-VX+CSVE=0
故CF-=-CSVe/VX
实际作图时为省去纵坐标的烦杂数字计算,可利用10% 体积校正的格氐作图纸(见图1)。此种作图纸纵坐标是反对数设计的, 因此可直接标以E值,横坐标代表加入标准溶液体积,每大格代表体积数为待测的溶液体积百分之一。此种作图纸斜率S是固定的, 对一价离子为58mv/px,二价离子为 29mv/px。若实际使用的电极斜率与此不符,可进行电位校正,也可作空白校正。
三.试剂
1. pHS-2或pHS-3C或专用离子计。
2. 232型甘汞电极,氟离子选择性电极。
3. 电磁搅拌器(附多个磁棒)。
4. 50ml容量瓶,100ml容量瓶。
5. 1ml、5ml、10ml移液管各一支
6. 0.1g/L 氟标准溶液: 准确称取于120℃ 干燥2h并冷却的A·RNaF0.2210g,溶于蒸馏水中,转入1L容量瓶,用水定容 。 贮于聚乙烯塑料瓶中,使用时逐级稀释至所需浓度。
7.总离子强度调节缓冲溶液(TISAB):58gNaCl,57ml冰乙酸,3g柠檬酸钠(Na3C6H5O7·2H2O)溶于500ml水中,以5mol·L-1NaOH溶液调pH
到5.0-5.5.冷至室温,转入1L容量瓶,用水定容。
四.步骤
1.清洗电极
将电极与仪器有关接线柱相连接(SCE接+,氟离子选择电极接-),并插入纯水中,按pHS-2型酸度计(或离子计 )使用规则校正好仪器(-mv档)。启动搅拌器,搅拌数min,读取稳定的电位值。若未达到氟电极的空白值(约为300mv左右),需更换纯水,继续清洗电极。如此反复,直至达到电极的空白值。
2.水样测定
移取25ml水样于干净的100ml烧杯中,加25mlTISAB,放入搅拌棒,插入清洗合格的电极(应用滤纸吸去水滴),在电磁搅拌下(3min)读取稳定的电位值E。然后每加入0.5ml50mg/L氟标准溶液,再读出稳定的电位值。如此连续5次记录各累积体积及其相对应的电位值 (E1, E2, E3,E4,E5)
3.空白试验:移取25ml纯水代替水样,其余测定手续同水样测定。
五. 数据处理
1.用标准加入公式计算水样中氟含量.
C'F-=VSCS(10ΔE/S-1)/(2VX)
C'F-=2CF-'
式中CS为氟标准溶液浓度(mg/L)。
VX为水样体积(ml)。
C'F-为水样中氟浓度
2.用Gran作图法求水样中氟含量.
在Gran作图纸上按水样和空白试验所得电位值(Ei),以Ei对VS作图。所作两条直线外推至与横轴相交,得到Ve和Vo, 试样中氟浓度可按下式计算:
C'F-=-CS(VE-VO)/VX
5. 用氟离子选择性电极测得的是氟离子的 浓度还是活度如要测得氟离子的浓度,应该怎么办
任何时候氟离子选择性电极测得的信号都是氟离子活度的,而不是浓度的信号,可以通过已知系列浓度氟离子在相同离子强度条件下的对应的活度信号曲线推算位置溶液的氟离子浓度。
氟的测定通常采用比色和直接电位法(即氟离子选择性电位法),前者的测定范围较宽,但干扰因素多,往往需对试样进行预处理,后者的测量范围虽不如前者宽,但可满足水质分析要求,且操作简单,干扰因素少,不需要对水进行预处理,因此,直接电位法已广泛用于水中氟的测定。
(5)电位法测定污水中氟化物扩展阅读:
当氟离子存在时,与络合物中的锆离子作用生成更稳定的无色氟氧化锆络合物,在一定浓度范围内,溶液色度的减退符合比尔定律。后者是根据氟离子选择电极的氧化镧单晶膜在外部溶液存在氟时,产生膜电势的特点,可用参比电极(饱和的甘汞电极)组成的原电池,用毫伏计直接测得的电池电动势与氟离子浓度成正比。测定茶叶中氟含量高精密方法,是用19F、16O瞬发核反应测定反应产生的高能γ射线,与氟的标准样比较定量,即可精确检出茶叶中的氟含量。
6. 水中氟含量测取方法及其局限性
在本文的研究过程中,我们对采集的水样进行水中氟含量测定时主要是按照国家卫生部公布的《生活饮用水卫生标准》(GB 5749-2006)检验方法中提出的离子选择电极法,其基本原理是利用氟化镧单晶对氟化物离子具有选择性,在氟化镧电极膜两侧的不同浓度氟溶液之间存在电位差,即膜电位,由于膜电位的大小与氟化物溶液的离子活度有关,因此用氟离子选择性电极为指示电极,饱和甘汞电极为参比电极,在离子计上测量溶液的电位值,最后根据标准氟溶液的电位值与氟浓度值的标准曲线,得出水样中氟离子浓度,具体实验步骤如下:
(1)标准曲线的绘制:分取0,0.2,0.4,0.6,1.0,2.0 和3.0mL 10 μg/mL的氟化物标准溶液于50mL烧杯中,各加纯水至10mL,再各加与水样相同的离子强度缓冲液,则此标准系列浓度分别为0,0.2,0.4,0.6,1.0,2.0 和 3.0mg/L(以F-计)。
(2)测定:吸取10mL水样于50mL烧杯中。若水样总离子强度过高时,应取少量水样稀释到10mL,加入10mL离子强度缓冲液,将烧杯放在电磁搅拌器上,放入搅拌子,插入氟离子电极和甘汞电极并开始搅拌水样溶液,待电位平衡后读取平衡电位值。以电位值(mV)为纵坐标,氟化物的活度(-lgC)为横坐标,在半对数坐标纸上绘制标准曲线。
(3)结果计算:水样中氟化物(F-,mg/L)可直接在标准曲线上查得:
河南省地下水中氟的分布及形成机理研究
式中:C为水样中氟化物(F-)的浓度,mg/L;M为从标准曲线上查得的水样中氟含量,μg;V为水样体积,mL。
对上述实验过程进行分析后得出,水中氟含量的测量结果其实是水中总氟含量,即不仅仅包括简单氟阴离子(F-)含量,还包含其他氟形态离子的含量。因为不管用氟电极法、间接比色法(茜素锆比色法、对磺基苯偶氮变色酸锆比色法)还是直接比色法(氟化剂比色法)测量水中氟含量时,由于常常存在Al3+,Fe3+,Be2+,Tn4+,Zr4+,Ca2+,Mg2+和Cu2+等多种干扰离子,尤其是Al3+能与F-生成极稳定的
由于受到现有氟形态测量试验水平的限制,本次研究将具有代表意义的配合离子态或有机态氟如氟铝配合离子与简单氟阴离子产生的人体负效应进行对比分析,以此推断某些配合离子态或有机态氟生物有效性的大小,为后续实验研究提出一种新思路,上述的前提是对地下水中不同形态氟的特征进行分析。