导航:首页 > 污水知识 > 含氟污水对土壤地下水的影响

含氟污水对土壤地下水的影响

发布时间:2022-06-16 00:14:28

❶ 求一些关于水污染对农业的危害的资料

可能有点多,自己慢慢看吧

当今,在淡水资源十分紧张的情况下,许多地方利用污水灌溉农田。未经处理的污水,既含有农作物生长所必需的养分,又含有有毒成分。盲目使用污水,不仅会污染土壤,而且还会影响农作物的生长和产品质量,损害人体健康。为了科学利用污水,妨患于未然,现将国家颁布的“农田灌溉水质标准”(GB 5084-92)中提到的水环境中的主要污染物的超标对农业环境的危害分述如下:
1、五日生化需氧量
五日生化需氧量是指在好氧的条件下,温度为20 培养水样5天水中微生物分解有机质的生物化学过程中所需要的溶解氧量。五日生化需氧量常作为水体有机物污染程度的指标。
灌溉水中的需氧有机污染物进入农田后,最终要被分解。在处于氧化条件的旱田土壤中,有机物质将被分解为二氧化碳和水等;在水田处于还原条件的土壤中,将生产氨气、沼气、有机酸、乙醇类等中间代谢产物。在分解过程中,由于消耗了水中的溶解氧及土壤中的氧化物的氧,从而使土壤的氧化还原电位下降,产生二价铁、硫化氢、二价锰等。
灌溉水中需氧有机物的含量不太高时,对作物生长一般无不良影响,在一定条件下甚至还有改良土壤,促进增产的作用。但是,需氧有机物的含量过高时,上述产生的过剩的二价铁、硫化氢等就要随同有机酸等一起被水稻吸收,阻碍植株体内的代谢活动,抑制根系生长,甚至引起烂根,以至影响地上部植株的发育。尤其是作物对氮、磷、钾等养分的吸收受到阻碍后,必然造成作物减产。
需氧有机物污染对水稻的危害一般在水田入水口附近较明显,这是由于水中不溶性的有机物多半沉积在这里,土壤发生还原性危害所致。国标要求灌溉水中五日生化需氧量的含量:水作应小于80 mg/l,旱作应小于150 mg/l,蔬菜应小于80 mg/l。
2、化学需氧量
化学需氧量是在一定的条件下用强氧化剂氧化水样时,所消耗该氧化剂量相当的氧的质量浓度,以氧的mg/l表示。它是指示水体被还原性物质污染的主要指标。其中包括大多数有机物和部分无机还原物质。
作为灌溉水的污染指标,化学需氧量与五日生化需氧量具有一定的类似性质,只是化学需氧量除了包括需氧有机生物氧化所耗之氧外,还包括无机还原性物质化学氧化所耗的氧。国标要求灌溉水中化学需氧量的含量:水作应小于200 mg/l,旱作应小于300mg/l,蔬菜应小于150mg/l。
3、悬浮物
悬浮物系指水样经过虑后,截留在虑片上并于103~105 烘至恒重的固体物质。
含有大量的悬浮物的污水灌入农田后,由于流速减缓或胶体被破坏而使悬浮物大量沉淀,如果这些沉淀是由金属粉末、泥沙组成,则会覆盖在农田表层而影响农田的肥力;悬浮物还是水中各种重金属污染物的吸附剂,这些重金属污染物随着悬浮物一起沉淀在农田,造成重金属污染物在土壤和作物中的积累。国标要求灌溉水中悬浮物的含量:水作应小于150 mg/l,旱作应小于200 mg/l,蔬菜应小于100 mg/l。
4、凯氏氮
凯氏氮是指以凯氏法测得的含氮量。它包含了氨氮和在此条件下能被转化为铵盐而被测定的有机氮化合物。
氮本是植物生长所必需的营养物质,但当其含量过高时会使土壤板结,影响作物的生长。国标要求灌溉水中凯氏氮的含量:水作应小于12 mg/l,旱作应小于30 mg/l,蔬菜应小于30mg/l。
5、总磷(以P计)
动物或植物内所含磷质,经过分解与氧化作用,最后生成硫酸盐。人每天从食物中得到的磷质,经过新陈代谢而排出硫酸盐。洗涤剂、磷肥及骨粉等工厂废水中也含有磷酸盐。天然水中磷酸盐含量一般较低,如果水中发现过量的磷酸盐存在可表明水被污染。若同时发现过量的硝酸盐和氯化物时,更可以进一步证实动物性物质曾经污染过水源。
天然水和废水中的磷以正磷酸盐、缩合磷酸盐以及与有机体相结合的磷酸盐3种形态存在。总磷量即水样中各种形态的磷经消解后转变成正磷酸盐的总磷浓度。
磷也是植物生长所必需的营养物质,但当其含量过高时会使土壤板结,影响作物的生长。国标要求灌溉水中总磷的含量:水作应小于5.0 mg/l,旱作应小于10 mg/l,蔬菜应小于10 mg/l。
6、水温
水温过低会减缓植物生长,水温过高会造成植物根系腐烂、死亡,农灌水水温要求小于35 。
7、pH值
pH值除直接影响植物生长外,还会使一些营养物质被淋失或被土壤固定,造成植物缺乏养分而致害;或吸收了有毒的元素,造成生理危害,这些都是导致植物死亡的原因。pH值小于4,大于9时,对农作物均会产生不良影响。用pH低于3,高于11的水灌溉作物,作物很快死亡。大部分栽培植物喜欢在弱酸性和弱碱性条件下生长。它们对pH的适应范围为4~9,最宜范围为5-8.5。不同作物对pH值的要求不同。小麦在弱酸性条件下比中性条件下生长的好。国标要求灌溉水的pH值允许范围是5.5~8.5。
8、全盐量
全盐,主要是钙、镁、钠、钾所形成的硫酸盐、盐酸盐和碳酸盐,它们对作物的影响主要是通过离子起作用。对作物危害最大的是钠盐,钙盐和镁盐对作物也有一定的影响,但并不占主导地位。
灌溉水含盐量在1000mg/l以上,对作物生长有抑制作用,有使土壤积盐的可能性。含盐2000mg/l以上,使土壤积盐明显,会导致作物产量下降。土壤盐分增加,使土壤溶液浓度提高,物质形态变化,造成植物吸收水分和养分的困难,植物因缺乏养料导致减产或最后死亡。因盐类对离子的拮抗作用和协同作用,在灌溉水中,必须注意多种盐类的存在,以防治单因子盐类对作物的伤害。国标要求灌溉水的全盐量在非盐碱地区应小于1000 mg/l,在盐碱地区应小于2000 mg/l,有条件的地区可以适当放宽。
9、氯化物(以CL计)
氯化钠危害小麦发芽的临界浓度为2000mg/l,危害水稻发芽的临界浓度为1000mg/l。国标要求灌溉水的氯化物的含量应小于250 mg/l。
10、硫化物(以S计)
地下水(特别是温泉水)及生活污水,通常含有硫化物,其中一部分是在厌氧条件下,由于细菌的作用,使硫酸盐还原或由含硫有机物的分解而产生的。某些工矿企业,如焦化、造气、选矿、造纸、印染和制革等工业废水亦含有硫化物。
水中硫化物包括溶解性的 、 、 ,存在于悬浮物中的可溶性硫化物、酸可溶性金属硫化物以及未电离的有机、无机类硫化物。硫化氢易从水中逸散于空气、产生鸡蛋臭味,且毒性很大。硫化物是水体污染的一项重要指标。
硫化物浓度即使很低也会使土壤有臭味,因此禁止采用含硫化物的废水灌溉作物。国标要求灌溉水的硫化物的含量应小于1.0 mg/l。
11、汞及其化合物(按Hg计)
含汞0.005mg/l以上的水溶液灌溉水稻,糙米中含汞量均超过我国《食品中汞允许量》规定的0.02毫克/公斤的标准。汞在糙米及油菜中的残留量随灌溉液中汞的浓度的增加而增加。汞在水稻各器官中的分配为根>茎叶>壳>糙米。
灌溉水中含汞0.005mg/l,则汞在土壤表层即稍有积累,长期灌溉可造成汞在土壤表层的积累,污染土壤,造成对作物的危害。土壤中含汞量随灌溉水中汞的浓度的增加而增加。随灌溉水进入土壤中的汞主要集中在表层0-5厘米处。农作物能从被污染的土壤中吸收汞。作物中含汞量与土壤积累量成正相关。根据汞对农作物生长,产量的影响及农产品中的残留,在土壤的积累,考虑到汞的毒性较大,长期灌溉能污染土壤,拟定汞的农田灌溉水质标准为0.001mg/l。
12、镉及其化合物(按Cd计)
土壤对镉有很强的吸附力,特别是粘土和有机质多的土壤,易于造成镉含量的积蓄。当土壤的pH值偏酸时,镉的溶解度增高,而且在土壤中易移动,可能污染地下水,同时也易被植物从根部吸收;当土壤pH值偏碱时,镉的移动性差,作物也难以吸收。在铜、锌、砷、镉这些元素中以镉最容易造成土壤污染。
当灌溉水中或土壤中含有一定镉时,均可被农作物吸收和在土壤中造成积蓄,其吸收量和积蓄量的多少随灌溉水中镉浓度、灌溉量和污灌年限的增加而增加。农作物吸收镉后,镉在植物体内的分布顺序是根>茎叶>籽实。各种作物吸收镉的能力有很大差异,小麦的吸收能力比水稻高,而玉米的吸收能力又低于水稻。由于镉大量地积累在植物根、茎叶中,因此,在受镉严重污染的农田里,农作物的茎叶不宜作家畜饲料,根茬也不宜沤制肥料。为了防治土壤及在其上生长的农产品中有镉的积累,建议灌溉水中镉的最高允许浓度不应超过0.005mg/l。
13、砷及其化合物(按As计)
砷在土壤中的残留主要集中在表层,自上而下的移动性小。
利用含砷污水灌溉农田,随灌溉水中砷含量的增高和灌溉次数的增加,砷在土壤和作物中累积增加,使作物受害,污染收获物。0.05mg/l以上的砷使水稻减产15.9%。0.1mg/l以上的砷使油菜减产10.3%。水稻、油菜减产百分率均随砷浓度的增高而增加。用含砷0.25mg/l的水灌溉水稻,开始在糙米中出现残留。含砷0.5mg/l水灌溉油菜,在油菜中开始出现砷残留。用含砷0.5mg/l以下的灌溉水对水稻、油菜生长影响不明显;含0.5mg/l以上砷的水对水稻、油菜生长有抑制作用,抑制程度随砷的浓度增高而加大,含砷0.5mg/l为危害浓度,100mg/l为致死浓度。因为砷及其含砷化合物毒性很强,对人、蓄的健康有较大影响。规定灌溉水中的砷含量:水作、蔬菜不得超过0.05mg/l,旱作不得超过0.1mg/l。
14、六价铬化合物(按Cr 计)
含六价铬的灌溉水对水稻、小麦种子的萌发及其生长发育都有一定影响。水稻、小麦均能吸收灌溉水及土壤中的铬。铬对数种蔬菜及谷物的生长有刺激作用。铬浓度5mg/l对作物有害;浓度10mg/l时作物出现严重的萎黄病;铬与镍协同作用时,铬浓度仅2mg/l即对作物产生损害。铬还在作物内积累。吸收的铬主要积累在根中,其次是茎叶,少量积累在籽实里。
含铬污水灌溉后,土壤可以积累铬。植物吸收和土壤积累的铬都随灌溉水中铬的浓度的增加及灌溉年限的增加而增加。可通过增加土壤有机质施用量和适当提高土壤的pH值来减少铬污染造成的危害。为防止铬对农作物、土壤造成的污染危害,灌溉水中铬的最高允许浓度控制在0.1mg/l以下。国标要求灌溉水的六价铬的含量应小于0.1 mg/l。
15、铅及其化合物(按Pb计)
含铅污水灌溉农田,其最高允许量应在1.0mg/l以下,否则抑制植物生长。进入土壤的铅主要分布在土壤表层。当污灌水中铅的浓度为50ppm左右时,对水稻产生毒害作用。但污水中硫酸根离子含量较多时,易生成硫酸铅,就没有危害了。铅对植物毒性比砷、铜小。作物可以通过根吸收土壤或灌溉水中的铅,并主要积累在根部,只有极少部分转移到地上部。国标要求灌溉水的铅及其化合物的含量应小于0.1mg/l。
16、铜及其化合物(按Cu计)
含铜污水灌溉农田,其最高以允许量应在2.0mg/l左右。铜是植物必需的微量元素。植物缺铜时,幼叶尖端干枯,叶片脱落,生长受到抑制。谷类作物一般不能结实。土壤含铜过高时,作物主要积累在根部,造成根系发育恶化,减弱了根对各种营养成分的吸收。作物受害的程度,一般是随农业环境中铜的含量的增加而加重。铜被作物吸收后,以根部分布的最多,茎叶次之,籽粒中最少。国标要求灌溉水的铜及其化合物的含量应小于1.0 mg/l。
17、锰
锰浓度1~10mg/l对豆类有害;达5mg/l对橙和柑桔幼苗有致毒作用;锰浓度5~10mg/l对西红柿有致毒作用;锰浓度10~25mg/l对大豆和亚麻有致毒作用。
18、锌及其化合物(按Zn计)
锌是植物生长必需的微量元素。锌可以间接影响植物生长素的形成,在缺锌的土壤里,作物生长常常受到抑制,并出现各种病症。含锌废水灌溉农作物,锌可以在土壤内累积,并能富集。土壤里含锌过高时,主要伤害作物的根系,使根的伸长受到阻碍,叶子呈黄绿色,并逐渐萎黄,而且分孽少,茎短。小麦受锌危害,叶尖上即出现黄褐色的条斑点。被吸收的锌主要积蓄在植物的根部,也有一部分向茎叶中转移。锌在植物体内的移动性居于中等水平,向籽实中的转移不如镉。我国规定灌溉水中锌及其化合物的含量为不超过2.0mg/l。
19、氟化物(按F计)
氟在植物体的积累随着植物种类不同而有所差异。氟化物含量在34.0mg/l以下,水稻生长发育未受影响;113.25mg/l以上,水稻生长发育受到抑制;453mg/l可致水稻死亡,但此浓度以下对茄子无影响。含氟污水中有一定的磷酸盐,污灌后硫化细菌增加,可促进磷酸盐的转化,提高了土壤中可溶性磷的含量,有利作物生长。含氟污水灌溉后细菌数量增大,生物学过程旺盛,产量增加。由于不同作物对氟敏感程度不同,为避免对地面水和渔业的污染危害,为保护整个农业环境和人民健康,规定氟的灌溉标准为高氟区应小于2.0mg/l,一般地区应小于3.0mg/l。
20、氰化物(按游离氰根计)
50mg/l以上氰对水稻、油菜的生长、发育和产量有影响,并开始在糙米、油菜中有残留,残留量随灌溉浓度最高而加大。
根据不同生育期污灌氰残留量不同,在生产上利用含氰污水灌溉水稻宜在前期,不宜在后期。不同浓度氰在水稻根、茎、叶中有残留,残留量与浇灌浓度成正相关。残留量:根>茎叶>谷壳>糙米。根残留量占80%左右,茎叶占15%左右。不同浓度氰在土壤中有残留,残留量随着浓度增加而增大,但不与灌溉浓度成正比上升。土壤中氰的分解速度与气温和灌溉浓度有关,但无论在何种气温下,土壤中氰的分解速度都与灌溉氰的浓度成正相关。氰化物随水进入土壤后消失的速度较快,在土壤中不会逐年积累。一般大田土壤中,氰的年净化率都在90%以上。采取隔年清污轮灌,不会造成土壤和水稻的明显污染。国标要求灌溉水的氰化物的含量应小于0.5mg/l。
21、挥发性酚
灌溉水中的酚,高浓度时(50-1000mg/l)可影响作物的正常生长和产量,甚至造成作物的死亡(1000mg/l)。低浓度时(30mg/l)可促使作物增产。不影响作物正常生长和产量的安全浓度在50mg/l左右。灌溉水中的酚可造成作物体内酚量的增加。作物体内的酚量随灌溉水中酚浓度的提高而增加。作物体内酚积累量茎>根>籽粒。酚毒性较小,酚在作物中的积累问题,以及酚对作物生长、产量的影响问题,不会成为制定农田灌溉水质标准的限制因素。
含酚污水进入土壤,主要分布在土壤表层,50厘米以下的土层中酚的含量极少。土壤对酚具有较强的净化能力,酚在土壤中的年净化率在90%以上。因此,低浓度含酚污水灌溉后,不会影响土壤肥力,也不会造成土壤污染。国标要求灌溉水的挥发酚的含量应小于1.0 mg/l。

❷ 含氟废水如何处理

含氟废水国内外常用的方法有混凝沉淀法、离子交换法、膜过滤法、吸附法。

混凝沉淀法:对于低浓度含氟废水一般采用混凝沉淀法,利用混凝剂在水中形成正电的胶粒吸附废水中的氟离子,但是混凝沉淀池池体一般比较大、占地面积大,且停留时间长以及产生大量污泥,且出水很难达标等缺点

膜过滤法:与常规分离方法相比,膜分离过程具有不污染环境、能耗低、效率高、工艺简单等优点,尤其是反渗透(RO)膜分离过程被广泛用于废水的除氟,RO膜对氟离子呈现出高的截留能力,但是膜处理一般投资大,操作过程复杂,膜使用寿命较短,需要经常更换膜。

然后,离子交换法也有其缺点,会产生过量的再生废液,吸附周期长,且会消耗大量脱附剂,排出大量含盐废水易引起管道腐蚀,材料昂贵、树脂再生处理困难。

所以,含氟废水不能直接通过上述方法达到排放要求, 因此必须要对废水进行深度处理,江苏海普功能材料开发的吸附法,可以达到处理效果。

采用海普吸附工艺处理含氟废水时,将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料对废水中的氟进行选择性吸附并富集到吸附材料中,吸附出水氟浓度降低,吸附饱和后,对吸附材料进行脱附处理,使吸附材料得以再生并重新继续吸附,如此不断循环进行。

宁波某企业的废水经吸附处理后,实验处理效果表明采用吸附处理,废水中的氟去除率达到97%以上,在保证达到客户的要求的同时留有一定的安全余量,能有效防止入料废水的水质波动造成出水不达标。

从上图及上表中可以看出原水与出水无色透明,废水中的氟几乎完全被脱除,试验证明利用特种吸附剂吸附可以有效的降低废水中的氟浓度。

❸ 含氟废水处理方法

氟的危害有以下几点:

(1)过多的的氟会造成氟斑牙及氟骨症等慢性疾病;严重会引起人畜中毒。

(2)废水中过多的氟渗入土壤中,再从土壤中转移到植物中,导致植物生长障碍。

下面江苏海普功能材料就为大家详细的介绍下含氟废水处理的困局及方法,希望对你有所帮助。

一、含氟废水处理的困局及方法:

含氟废水国内外常用的方法有混凝沉淀法、离子交换法、膜过滤法、吸附法。

(1)混凝沉淀法

混凝沉淀法是污水处理中主要的一种化学处理方法,混凝法的基本原理是在废水中投入混凝剂,因混凝剂为电解质,在废水里形成胶团,与废水中的胶体物质发生电中和,形成绒粒沉降。

(2)离子交换法

离子交换是利用阴离子交换树脂的离子交换作用来达到除氟的目的。离子交换树脂是一种聚合物,带有相应的功能基团。

(3)膜过滤法

膜分离技术膜分离技术主要指通过借助膜的选择作用,在外界能量作用下对污水中的溶质和溶剂进行分离的技术手段,与常规分离方法相比,膜分离过程具有不污染环境、能耗低、效率高、工艺简单等优点。

❹ 地下水中氟的形成条件与富集规律

一、氟的水文地球化学简述

氟属卤族元素,其原子外层有7个电子,因此,在自然界常以F的形式存在,与一价的碱金属形成易溶盐,如氟盐(NaF)、氟钾盐(K F),与碱土金属形成难溶盐,如萤石(CaF2)、氟镁石(MgF2)。

由于F和OH离子半径相近,可以产生类质同象置换,因此,在岩浆岩和热液矿物中形成含氟铝硅酸盐矿物,如白云母、电气石、脚闪石等。氟的负电性高达3.95,居所有元素之首,其化学活性最大。这种特性使氟趋向于形成稳定的络合物,不易水解,电离也很弱。它们与碱金属、碱土金属和稀土元素相结合形成各种含氟矿物,如氟硅钠石(Na2﹝SiF﹞6)、氟磷灰石(Ca5﹝PO4]3F)等。

氟矿物和含氟矿物在表生带的风化作用是地下水中氟的主要来源。风化作用主要包括溶解和水解作用。萤石,无论在酸性条件下,还是碱性条件下,都可以发生水解。但萤石在地壳上的分布具有局限性,而含氟硅酸盐的分布则极为普通,为地下水氟的来源提供了广泛的物质基础,如白云母转变为水白云母、黑云母转变为水黑云母时,氟被释放出来进入地下水中。

在自然界中,钙与氟是一对拮抗体,钙对氟的迁移起着抑制作用。因为它们形成的氟化钙沉淀,不易被水所溶解。氟化钙的形成起着固定储存氟的作用,有利于氟的富集。因此,在富钙的情况下,土层中往往氟含量较高,而地下水中则较低,在富钙环境中的盐渍化、苏达化地段,由于阳离子交替吸附作用,使钙的活度降低,而钠的活度提高,形成了HCO3﹣Na型水。氟化钠在常温常压下,溶解度达40540~42100mg/l。氟不在受钙的抑制,活度大大增加,在这种情况下,土层中含氟量不一定很高,而地下水中却很高。总之,富钙地区为氟的积累富集提供了场所,而其中的盐渍化、苏达化地段又为氟的活化创造了条件,这就构成了高氟地下水形成的特殊的地球化学环境。

二、地下水中氟的来源

(一)岩、土中的氟

地下水中的氟主要来自于含水围岩,因为氟在岩石、土壤中的含量比在地下水中的浓度要高出几个数量级,因此,在“岩石、土壤—地下水”系统中经常保持较高的浓度梯度,存在着氟从岩石、土壤中向地下水转移的潜在可能性。

在基岩地区,岩石在风化过程中,其中的氟化物被地下水所溶解,因此,水中氟含量的高低与所流经的岩石类型的富氟程度有密切的关系。例如,在伏牛—桐柏—大别山一带,广泛分布有花岗岩和萤石矿脉,构成典型的富氟地球化学环境区,该区具有高氟地下水的分布。据在太行山区的调查,不同富氟程度的岩组中,地下水氟含量有明显的差别,见表7-2。

表7-2 不同岩组中水氟含量统计表

对于松散沉积物来说,其氟含量与颗粒组分关系密切。颗粒越细总氟和水溶性氟含量越高,而且水溶性氟与总氟的比值也越大,见表7-3。因此,细颗粒的沉积物(主要是粘粒和粉粒),为地下水中氟的来源提供了丰富的物质基础。

表7-3 各种土的氟含量单位:ppm

(二)大气中的氟

在自然条件下,大气中氟的含量很低,约0.01μg/m3,高者也仅在0.3~0.4μg/m3。我国卫生标准规定居住区的大气中日平均最高浓度为0.007mg/m3

大气中的氟来自于火山喷发、海水蒸发和生活、工业污染。磷肥、氟硅酸岩、炼铝、炼钢、玻璃、陶瓷、水泥、有机氟农药等工业部门排放的废气以及煤,特别是劣质煤的燃烧、铝土矿的煅烧,都可以造成氟污染,从而使大气氟含量增加。据测定,煅烧前铝土矿含氟量为160ppm,而煅烧后为20ppm,可见在煅烧过程中绝大部分氟逸入大气。

氟在大气中主要以氟化氢(H F)、四氟化硅(SiF4)、氟硅酸(H2SiF6)、氟气(F2)和含氟粉尘的形成存在。大气中的氟化氢遇水形成氢氟酸,随降水落到地面,成为地下水中氟的来源之一。

(三)地表水中的氟

黄河为我省东部平原地区地下水的常年补给来源,由于其流经黄土地区,水氟含量较高,参见表7-4。因此,在补给影响带内,地表水中的氟成为地下水氟的来源之一。

表7-4 黄河水化学特征表

另外,含氟废水、废渣的任意排放,必然造成地下水的污染,使其氟含量升高,但这种影响范围有局限性。

三、地下水氟含量分布概况

我国生活饮用水水质标准规定,氟含量不过超过1.0mg/l,适宜浓度为0.5~1.0mg/l。根据水质标准,结合我省实际情况,将地下水氟含量划分为三个级别,见表7-5。

表7-5 地下水氟含量级别划分及分布面积统计表

高氟地下水,集中分布在黄河冲积平原、太行山前倾斜平原和南阳盆地中,分散分布于黄土地区和基岩山区。在黄河冲积平原的黄河以北地区,分布于濮阳市大部分地区和封丘县的东部,其中2~3mg/l的级别呈片状分布,大于3mg/l的级别主要分布在内黄—浚县一带。黄河以南地区主要分布在许昌市东部、开封市南部、周口市北部和商丘市东南部,其中2~3mg/l的级别亦呈不连续的片状分布,大于3mg/l的级别主要分布于周口市北部。在太行山前倾斜平原,主要分布在温县、武陟、获嘉、新乡等县的北部和博爱、修武、辉县等南部以及安阳、汤阴东部,其中2~3mg/l和大于3mg/l的级别主要分布在博爱—修武—辉县一带。在南阳盆地中,分布面积较大的有邓州、新野、唐河、南阳、镇平等县,并出现有2~3mg/l和大于3mg/l的区域,其他县市呈星点状和小片状分布。在黄土地区呈小片状分布灵宝、陕县、义马、洛宁、偃师、荥阳等县市。在基岩山区呈星点状或小片状分布于灵宝、栾川、嵩县、鲁山、方城、沁阳、桐柏、信阳、罗山、光山、新县以及登封、汝州、洛宁、浙川、内乡、南召等县市。

中氟地下水,在平原的盆地中分布于高氟地下水的外围,在黄土地区有较大面积分布,在基岩山区呈零星片状分布。低氟地下水广泛分布于基岩山区,上蔡朱里、郸城连线以南的平原地区,在连线以北的平原地区和黄土地区,亦有较大面积的分布。

在平原地区,氟在地下水中的富集具有分带性的演化规律。太行山前冲积倾斜平原从山麓地带到前缘,地下水氟含量逐渐升高,到交接洼地达到最高值。黄河冲积平原,从后缘到前缘,地下水氟含量也大致是由低到高,高氟地下水主要分布于中部和前缘的洼地中。从黄河冲积平原南部(西华—周口—淮阳—郸城双楼以北)过渡到淮河冲湖积平原(商水固墙—项城范集—沈丘老城以南),随着环境条件的改变,地下水氟含量具有明显的分带性,见表7-6。

无论在山区或平原,不同氟含量级别的地下水,常常是插花分布,在一个较小的范围内,既有低氟地下水的分布,也有高氟地下水的形成。例如,扶沟南部重病区张店—汴岗—冯家一带126km2范围内,浅层地下水氟含量的变化就极其复杂。因此,所谓高氟地下水分布区,严格地来说应该是有高氟地下水分布的地区。在地下水氟含量分布图上,氟含量点有50%以上达到某一较高级别时,即以该级别加以表示。

表7-6 黄淮平原环境条件与地下水氟含量比较

续表

四、高氟地下的成因类型与形成条件

根据高氟地下水形成的环境条件和化学作用,可划分为三个成因类型。

(一)溶滤型

主要分布于高氟的岩浆岩地区,特别是萤石矿附近,呈不连续的星点状或小片状分布。由于地形切割破碎,地下水交替条件良好,溶滤作用不断地进行,因此,多为低矿化度的HCO3-Ca·Na型水。在这些地区,虽然氟源异常丰富,但由于淋滤作用强烈,因此,地下水氟含量一般并不太高,多在1~2mg/l之间。仅在地形、构造不利于水交替的局部地段,出现较高的含氟水,有时大于4mg/l。

(二)碱化型

主要分布在平原和盆地中。其化学作用的特点是,溶滤作用已不甚充分;而阳离子交替吸附作用在含水层中广泛进行,在对改变地下水的化学成分和提高氟的活度方面具有重要意义;同时,浓缩作用对于氟的富集也有明显的影响。该类型高氟地下水的形成条件主要有:

1.气候条件

气候是高氟地下水形成的重要因素之一。降水入渗补给和蒸发消耗,对地下水的动态类型与化学成分的形成具有明显的影响。蒸降比较大,有利于氟的活化和富集。因此,就全省范围来看,半干旱的气候条件是高氟地下水形成的区域性控制因素,即高氟地下水分布于蒸降比大于2.0的地区(南阳盆地东部接近2.0)。春旱夏涝,涝后有旱的现象,使土壤中水盐运行频繁,积盐和脱盐在年内交替发生,加之地下水多含NaHCO3,这就促使了碱化环境的形成。

2.地貌条件

地形地貌是氟的分异集散的重要条件。从山区到平原地下水,氟含量呈有规律性的变化。沉降堆积作用为主的平缓低洼地区是氟富集的主要场所。特别是在地形闭塞、排水不畅的情况下,地下水以垂直交替运动为主,氟与其他可溶性盐分仅随降水与蒸发反复上下运动,而不向外区排泄,构成高氟地下水集中分布的地形条件。

3.地质条件

高氟地下水分布区,一方面具有提供氟源的地质背景,即其松散堆积物主要来自于富含云母、磷灰石、角闪石、电气石等矿物的岩浆岩、变质岩、黄土等地区;另一方面又具有氟的积累的化学条件及富钙的地质环境。钙与氟结合形成氟化钙沉积下来,造成氟在土地中富集。特别是细颗粒沉积物中,具有较高的氟含量。

4.水文地质条件

地下水中氟含量也与含水层结构类型、导水性能、地下水位埋藏深度、径流条件、补排类型以及包气带岩性等均有较为明显的关系。高氟地下水主要形成于多层结构、导水性能弱(导水系数小于200 m2/d)、地下水为浅埋(小于2 m,或历史上长期小于2 m),水平径流滞缓、入渗—蒸发、开采型和侧渗—蒸发的条件下,也常有较大面积的高氟地下水的形成,但含量级别相对较低。地下水的蒸发排泄,是通过包气带进行的,其蒸发强度决定于包气带岩性的毛细上升高度与速度。实际观测表明,粉砂、亚砂土毛细上升高度一般为2~3 m,较大者可达3~4 m,亚粘土1~2 m,粘土0.5~1m。可见粉砂与亚砂土毛细上升高度最大,速度亦较快,因而地下水的蒸发作用强烈,是高氟地下水形成的重要条件之一。

5.水化学环境

地下水中的氟与pH值、某些常量组分呈现明显的相关关系。

pH值较高是高氟地下水形成的重要条件,因为在较高pH值的情况下,容易发生Ca(HCO3)2的沉淀,钙的活度降低而氟的活度增加。例如,在黄河冲积平原的南部,地下水一般呈碱性甚至强碱性反应,因而普通有高氟水分布;向南过渡,pH值降低,到淮河冲湖积平原,地下水趋于中性,并较多地出现了弱酸性水,成为低氟地下水分布区。南阳盆地与淮河冲湖积平原比较,地下水pH值也有明显差别,前者pH值最高为8.4,大于7.5的占20%;后者最高为7.9,大于7.5的仅占3.6%。因此,南阳盆地中高氟地下水的形成也与pH值较高有关。

氟还随着矿化度增加而升高,但增加到一定时(一般为1.5g/1),矿化度继续增加而氟不再升高,因为随着矿化度的继续增加,地下水向中性转化,这在一定程度上降低了氟的活性。地下水氟含量与水质类型也有密切关系,由低矿化的HCO3-Ca型水向矿化度较高的Cl-Na型水演化的过程中,氟含量的最高级别出现在HCO3-Na·Mg和HCO3-Na型水中。在太行山前倾斜平原前缘的交接洼地中,较高的氟含量形成于HCO3·SO4-Na·Mg和SO4-Na·Mg型水中。

6.土壤条件

浅层地下水与土壤的化学性状具有明显的一致性,其化学组分在一定条件下互相转移。在这种条件下,含氟矿物易被溶解,氟以离子状态活跃于水体之中。同时,土壤胶体和粘粒吸附的氟也被释放出来。这些活性氟转移到地下水中,形成含氟很高的水。从全省情况来看,凡有盐碱土分布的地区,就有高氟地下水的出现。就黄河冲积平原来讲,盐碱土与高氟地下水分布的范围与特点是一致的。

碱化型高氟地下水是在多种因素综合作用下形成的,把这些因素归纳起来,一是有提供氟源的富氟岩层和有利于氟积累的低洼地形;二是有使氟浓缩富集的水位浅埋和干燥的气候条件,三是有促进氟的活化和向水中转移的碱性环境。这几个因素的协同作用,便构成了高氟地下水形成的水文地球化学过程。

(三)热水富集型

河南省已发现温泉35处,其中大部分为高氟温泉,氟含量常超过10mg/l,鲁山下汤高达24.8mg/l。温泉水pH值大于8.0,以钠和二氧化硅含量较高为其特征,主要化学类型为HCO3-Na、HCO3·SO4-Na型,见表7-7。

表7-7 高氟温泉一览表

高氟温泉的形成一般都与挽近活动断裂和岩浆岩分布有关。鲁山的温泉形成于车村—鲁山深断裂带,断裂带南侧为燕山晚期黑云母花岗岩。断裂带为地下水深循环提供了空间和通道,富氟的岩浆提供了氟在水中聚积的物质来源。地下水的溶滤作用又产生有利于氟迁移和聚积的水文地球化学环境。因为水中含有多量的钠时,便形成了易溶的氟化钠,保证了氟在溶液中高度的稳定性,造成了氟在热水中富集的有利条件。另外,pH值和温度也是影响氟在水中富集的重要因素。较高的氟含量,出现在pH值大于8.0、温度高于50℃热水中。

出露于河谷地带的高氟温泉,往往与冷水混合,使河谷潜水氟含量升高。鲁山的温泉对沙河河谷潜水有明显的影响。南召皇路店白河西岸一级阶地,被热水浸染的砂砾石层孔隙水,氟含量达到3.5mg/l,见表7-8,使该村氟病患病率达80%。

表7-8 皇路店河谷潜水氟含量对比表

❺ 水文地球化学微环境与地下水中的氟

1.土壤微环境与氟

土壤中含氟量高是形成高氟地下水环境的主导因素。强烈的蒸发作用是造成细土平原区潜水中氟离子进一步浓缩增高的主导因素,但土壤中含氟是不可忽视的前提条件(张群等,2010)。氟在地球化学中属于“易迁移元素组”,在自然土壤剖面中有由表层向下层逐渐集中的趋势(陈国阶等,1990)。土壤是氟环境化学体系的枢纽。地下水中氟的富集过程是伴随着水化学成分演变过程的一个地球化学过程,不能单纯地以岩土体中氟含量的高低来判断进入地下水体中的氟,地下水中的氟是在多种因素综合作用下进行迁移富集的,其中水文地球化学环境尤为重要。所以,从水文地球化学的角度研究高氟地下水形成的化学机理是解释氟在水中迁移、聚集规律的重要途径。

氟在地下水中富集具有明显的分带性规律,总体上从山前到滨海平原或盆地中心,由补给区、径流区至排泄区,地下水含氟量逐渐增高。垂向上,蒸发浓缩型和溶滤富集型高氟地下水以浅层地下水为主,且浅层地下水中的氟含量普遍大于中深层;地热温泉型和海侵富集型往往相反,一般是地下水自深而浅氟含量降低(张福存等,2010)。对于松散沉积物而言,其氟化物含量与颗粒粗细关系密切,颗粒越细则总氟化物和水溶性氟化物越高,而且水溶性氟化物与总氟化物的比值也越大,因此,细颗粒的沉积物(黏粒和粉粒)为地下水中氟化物的来源提供了丰富的物质基础(龚建师等,2010)。首先是地形变化的影响,往往一河之隔、一沟之隔、坡上坡下、塬面边坡,乃至村东村西病情轻重差异明显,甚至在病区中出现“健康岛”(林年丰等,1983)。通过生态地球化学调查发现(高宗军等,2010),尽管在大的地貌单元上土壤高氟区域与地下水高氟区域一致,但在小的区域上却存在差异。地下水的运动,导致氟迁移、聚集是造成这种差异的原因。其次是气候的影响,土壤中的氟处于淋失和富集两种地球化学作用过程的平衡之中。淋失过程占优势的条件下,在干旱半干旱地区内的特定区域形成地带性的高氟地表水和地下水,这是饮用水型地方性氟中毒发生的物质基础(王滨滨等,2010;赵宏海等,1999;卢莉莉,2006)。潜水中氟离子聚积成因主要跟阳离子交换和蒸发浓缩作用有关,而承压水中氟离子的形成机理主要为含氟矿物的溶解(何锦等,2008)。还有就是水化学类型的影响,在地球化学作用中,常量组分的含量和性质决定了微量组分的地球化学行为,当土壤易溶盐成分由以氯化物、硫酸盐为主向以碳酸盐为主演化时,土壤中水溶性氟含量急剧增加。在苏打盐渍化过程中,水溶性氟将在土壤中积聚并形成高氟地下水(郑宝山,1983)。高氟地下水多为中等TDS的弱碱性水,其水化学类型以钠镁、钠钙水为主,氟含量与地下水中主要离子成分配比有一定相关关系。

2.氟离子与其他离子的关系

氟离子总是以化合物或配合物的形式与其他物质共存于土壤或水体中,研究其与其他离子的关系对于分析高氟地下水的形成机理无疑有着决定性意义。从目前的文献看,基本都是以统计分析、线性相关来进行研究的。如Karthikeyan et al.(2000)发现F-浓度与pH值之间有很好的相关性,相关系数达96%,另外总碱度和Cl-含量也与氟含量有很好的相关性。Kunetal.(2001)通过Ca2+、Mg2+、Na+、Cl-

、pH值与氟离子之间的散点图,观察到pH值、Na+、Cl-以及

和氟有着较好的正相关关系,与Ca2+、Mg2+存在负相关关系。Rafique et al.(2009)对巴基斯坦的Nagar Parkar地区高氟地下水的研究结果证明,高氟的形成与矿化度、pH 值、Na+的富集等赋存环境有关。Jacks(2005)发现地下水中的氟离子与补给区土壤 pH 值有明显的相关关系。Levy et al.(1999)通过对加利福尼亚浅层地下水水化学组分与氟之间关系的分析发现,低钙含量和碱性环境是氟富集的最重要因素。

国内学者对高氟形成的研究往往将注意力放在氟离子含量与地下水中各个离子组分之间的相关关系,以及水化学类型与高氟之间的关系上。如任弘福等(1996)认为,浅层与深层高氟地下水的形成机制及其控制因素不同。浅层是以吸附性氟为物源,在各种要素的综合作用下,通过蒸发浓缩作用形成。深层高氟地下水是在滞缓水运动条件下,是通过盐分积累与水化学组成、含水介质氟矿物含量和侧向补给氟流量的强度共同作用的结果。曾溅辉等(1996)发现,浅层地下水中CaF2趋于溶解,有利于氟的迁移富集。王根绪等(2000)认为F-在pH值为7.5~10.2的碱性水环境中较为稳定而累积,与矿化度、Cl-

、硬度、Ca2+均有密切关系。金琼等(2001)认为,在河西走廊地区,从山区到山前冲积平原,存在淋溶—径流、径流—蒸发与溶滤—蒸发浓缩富集三个水文地球化学分带。氟的迁移富集与水化学特征关系密切,F-含量高的水化学类型中

和Cl-含量也较高,

含量低,也就是在含苏打的碱性低硬度水环境,F-的累积要高于硫酸盐高硬度水。刘瑞平(2009)认为地下水中F-含量与矿化度的关系较为复杂,基本呈偏态分布规律,随着Cl-

、pH值的增加而增大,与Ca2+呈负相关关系。

3.氟离子与水化学类型(类型)之间的关系

除了分析地下水中各离子组分与 F-之间的关系,人们还注意到地下水水化学类型与高氟地下水形成之间的关系,并做了许多相关的研究,大多数的做法是作 P iper图或其他水化学类型图,从图中研究高氟点所集中的区域。王德耀(2004)发现,高氟地下水的水化学类型以SO4-Na、HCO3-Na为主,碱性条件有利于氟的富集,酸性溶液中,不利于氟的富集。刘进等(2010)通过作F-浓度大于1.0mg/L的水化学类型图,发现研究区水化学类型较为复杂,主要为HCO3-Na、SO4-Na、HCO3·SO4-Na·Mg、HCO3-Na·Ca和HCO3·Cl-Na型等。而病区的形成是次生堆积富集的结果,即是原生富氟岩层受淋溶后向低洼区堆积的结果。因此,从山系→山前丘陵→波状平原→低洼内陆相应地形成淋溶区→淋溶过滤区→盐分堆积区→盐分大量累积区,地下水化学类型也相应从 HCO3-Ca·Mg→HCO3·SO4-Ca·Mg→HCO3·SO4-Na·Ca→SO4·Cl-Na过渡,相应地形成缺氟区→氟的适中区→轻病区→重病区的有规律变化,整个迁移累积过程及自然景观分异十分明显(陈国阶,1981)。

❻ 氟与地下水

地下水含氟量的影响因素很多,如与地形、地貌、岩性与矿物成分、地下水径流、水化学类型、地下水温度、气候、自然界的理化作用、人类活动等因素密切相关。在高、中山地区,含氟岩矿在风化、淋溶条件下,易被洪水冲刷流失,不利于氟的聚集;而洼地和盆地地区,氟不易流失,有利于富集。所以地下水含氟量从高到低为盆地(洼地区)、平原区、丘陵区、高中山区。在地下水径流强烈地区,地下水运动交替积极,有利于氟的迁移;反之,则有利于氟的聚集。

国外学者如 Agrawal 研究斯里兰卡的氟分布时发现氟的分布趋向于被气候控制,Subba研究得出该地区氟的聚集是由于蒸发作用、长时间的水-岩作用、农业土壤施肥综合作用的结果,地下水中的氟与氯离子没有明显的相关关系,而与碳酸氢根离子有很好的相关性。Rafique et al.(2009)的研究结果表明地下水为高矿化的Cl-Na型水,咸水入侵、高蒸发率、离子交换强度大是氟富集的主要原因。Meenakshi et al.(2004)认为地下水作为一个整体,氟的自然聚集决定于地质、含水层的物理和化学特性。Chae et al.(2007)发现高氟地下水赋存的水化学类型为HCO3-Na,而含氟量最低的水化学类型为HCO3-Ca,因此他们认为地下水中氟的水文地球化学行为与钠离子的释放以及钙离子的沉淀有关;Rukah et al.(2004)认为硝酸盐和重碳酸盐能促进氟的聚集。Abdelrahman et al.(2009)认为含氟矿物的风化程度也是影响氟聚集的重要成因。Levy et al.(1999)认为钙含量的降低和碱性环境是氟聚集的最重要因素。

国内学者郑明凯等(2007)认为,焦作市处于干旱半干旱大陆性季风气候条件下,蒸发量远远大于降水量,地下水中盐分积累,致使氟聚集。邓英春(2006)认为安徽淮北地区高氟地下水是由于远河泛滥带及湖相沉积区的地下水径流相对滞缓造成的。曾昭华(1997)认为,深层水的高氟形成与断裂等构造有关,而浅层高氟地下水的形成则是受气候条件控制。曹小虎(2005)认为高氟是由半干旱的气候、富氟的包气带土体和独特的水文地质构造决定的。王德耀(2008)的研究结果表明,地层岩性、气候、地貌是该区高氟的主要原因。孙占学(1992)认为,我国大多数地下水中的氟受自然地理条件(气候、土壤、地形地貌)、地质条件(岩性、构造、火山活动)、水文地质条件、水化学条件的共同制约。曾溅辉等(1997)认为,河北邢台平原中氟的保存条件取决于浅层地下水的化学成分特征。金琼等(2001)对甘肃河西走廊地区氟的环境特征研究表明,氟的富集与水化学特征关系密切,低

的贫钙碱性水环境有利于氟的溶解与聚集。刘瑞平等(2009)认为,水化学组分中的Na+、Cl-

、pH与氟呈正相关,而Ca2+则抑制水中氟的增加。丁丹等(2009)运用统计分析的方法研究氟离子的赋存化学环境,结果表明氟离子浓度随地下水中pH增大而增大,但是与(K++Na+)浓度、Ca2+浓度、Mg2+浓度之间并无明显的相关性。郭天辉(2009)认为,地下水中的氟含量与水化学类型关系不明显,与pH及钠钙比呈正相关。王根绪等(2000)的研究表明,氟离子在碱性环境中容易聚集,且与矿化度呈近似正相关关系,同时认为氟的赋存环境与硬度、Ca2+、Na+等有关。

阅读全文

与含氟污水对土壤地下水的影响相关的资料

热点内容
真空废水处理装置处理流程 浏览:969
小肠能做半透膜材料 浏览:496
矿井污水处理用药比例关系 浏览:29
净水器滤芯坏了怎么拆 浏览:42
小米净化器什么价格 浏览:141
净水器里pac是什么 浏览:734
叠片过滤器北京 浏览:958
反渗透净水器净水器废水少怎么办 浏览:407
小型制氧机滤芯怎么换 浏览:811
银川污水处理厂2018 浏览:986
超滤膜滤芯发臭 浏览:301
宝宝喝了些除垢灵怎么办 浏览:234
纳滤氨氮总氮脱除率 浏览:218
醇酸树脂提高成膜性 浏览:941
验车给空气滤芯冲水是什么作用 浏览:425
海德能反渗透膜和陶氏膜 浏览:202
本田思域八代空气滤芯怎么换 浏览:74
提升泵扬程5m流量3ls 浏览:220
ro膜有人回收吗 浏览:844
小米400g滤芯怎么拿下来 浏览:149