Ⅰ 煤矿矿井水和工业废水有什么区别
煤炭资源开发时,从地下抽排出大量矿井水.矿井水主要来源于地下水,是采煤层版及开拓巷道附权近的地下水.我国北方矿井水主要来自奥陶纪灰岩水、砂岩裂隙水、溶洞水、第四纪冲积层水及极少量井下生产废水等.煤矿生产抽排的地下水,初始流入井筒均未受污染,在煤炭开采过程中才被污染呈灰黑色,主要含悬浮煤粉和岩石粉.我国东北、华北矿区的矿井水水质特性基本为中性,矿化度低、不含有毒有害物质。
Ⅱ 矿井废水能否使用污水源热泵进行换热
矿井水也可以使用污水源热泵进行换热,详细的你可以去咨询雷诺特环境设备(北京)有限公司。他们公司好像是专业从事这一方面的。
Ⅲ 煤矸石、矿坑废水的成因分析
煤矸石、矿坑废水的化学组分是研究其迁移、聚集过程,形成污染的基本出发点。
(1)煤矸石的成分及酸化成因
野外调查和采样结果表明,三号井的煤矸石堆主要由炭质泥岩、炭质页岩、杂砂岩和少量石灰岩的碎块组成。在自然堆放情况下,大小混杂,无分选,其中块径大于10cm 的煤矸石约占29%、块径5~10cm 约占22%、块径3~5cm 约占14%、块径1~3cm 约占22%、块径0.5~1cm 约占8%,其余为块径小于0.5cm 的碎屑。炭质泥岩和炭质页岩占据的比例较高。这类岩块不仅炭质含量高,还有大量肉眼可识别的黄铁矿晶体聚集体和散晶,有些外表呈现硫化物的黄色或磁铁矿的锈痕。除此之外,X 衍射物相分析表明,煤矸石中还含有比例不等的绿泥石、伊利石、石英和黏土类矿物(表4.2)。
利用ICP-AEs仪器测定,煤矸石碎屑混合样所含的化学成分中,铁、硫的含量十分高,其中铁的含量达148.76g/kg,有效态达4.57g/kg;硫的含量达117.82g/kg,有效态达1.45g/kg,其他化学成分远小于铁和硫,详细情况见表4.3。
由此推算,现堆放的煤矸石山约有4.75×104t铁、1.45×104t硫和相当数量的重金属元素。在酸性水环境中可溶解脱出,随渗出液迁移到下游地区,从而形成矿区一个长期的污染源。
表4.2 大峪沟三号井田煤矸石矿物组成
表4.3 大峪沟三号井田煤矸石化学组分含量(单位:mg/kg)
因为煤矸石中普遍含硫量高而且主要以黄铁矿形式赋存,在风化雨淋过程中缓慢氧化成Fe2O3和SO2,与水作用形成Fe2(SO4)3和H2SO4,这样,一部分硫以气态的形式排放到大气中,还有部分以离子方式进入水体和土壤,从而引起酸化。
(2)矿坑废水的化学组分及成因
据2007年8月9日采集的水样测试分析结果(表4.4,表4.5),矿坑废水化学组分有如下特点:
1)总含盐量高,其中矿化度达2400mg/L,相当于咸水-微咸水类型,水中悬浮状固形物为2400mg/L,其成分主要为石膏及非晶质物质。
2)阳离子中以碱金属和碱土金属离子为主。钾、钠、钙、镁离子总量占阳离子总量的90%以上,阴离子中硫酸根含量极高,达1685mg/L,占全部阴离子的90%以上,而重碳酸根离子仅为3.05mg/L。
3)重金属以锌锰为主,分别为2.4mg/L、1.8mg/L,铜、砷、铅、镉、六价铬含量甚微,均小于0.05mg/L。
4)pH值为3.07,属酸性水。这些特点与矿坑废水形成的条件有着直接关系。
现排放的矿坑水大部分来自一1煤围岩的裂隙水、岩溶水,从一1煤和煤矸石的化学成分可知,这些地层含硫、铁极高。在巷道开拓、回采之前,这些物质处于还原环境,大部分以难溶的硫化物形式封存于地下,一旦人工揭露,巷道和采掘面形成氧化环境,矿坑水酸度就会变大。酸度增高的机理有三个方面:
表4.4 矿坑水排水口、矿井口水样测试数据(单位:mg/L)
注:取样地点,矿坑水排水口(N34°43༾.46″、E113°05ཧ.28″);室内编号,856。
矿井口(未加中和剂)(N34°43གྷ.40″、E113°05ཟ.26″);室内编号,857。
取样时间,2007年7月。
表4.5 矿坑水排水口、矿井口水样测试数据(单位:mg/L)
注:取样地点,矿坑水排水口(N34°43༾.46″、E113°05ཧ.28″);室内编号,1323。
矿井口(未加中和剂)(N34°43གྷ.40″、E113°05ཟ.26″);室内编号,1462。
取样时间,2007年11月。
一是煤层和顶底板中含硫化合物在氧气、水共存条件下,氧化形成游离的H2SO4,反应方程式为
煤矿山地质环境问题一体化治理研究
二是式(4.1)中铁等金属的硫酸盐水解释放H+,其反应过程为
煤矿山地质环境问题一体化治理研究
三是地下水中H2CO3的分解。在大峪沟一1煤井巷的条件下,硫化物的氧化和硫酸铁的水解对矿坑水的酸化影响最为突出。此外,H2CO3的分解也将带出一定量的Ca2+、Mg2+。由于H2SO4浸溶又有可能使Ca、Zn等金属转化为硫酸盐,使之从矿物中析出。在上述反应中,硫化细菌起着重要的催化作用,巷道良好的通风条件,适宜的湿度,促使诸如硫杆菌属的细菌大量繁殖,加速Fe2+氧化速度并从中获得自身繁殖所需的能量,与此同时,它们将煤层中所含的单质硫迅速氧化为硫酸,提高了矿坑水的酸度。
Ⅳ 矿井水是否属于废水
恩``基本上是``不过很多矿周边的村庄都把矿井水引到田里面``也不完全是废水
Ⅳ 煤矿废水铁超标怎么办
煤矿废水超标可以用以下方法进行处理:化学法;物理处理法;生物处理法。
化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理,化学法是目前国内外处理含重金属废水的主要方法。
物理处理法主要包含溶剂萃取分离、离子交换法、膜分离技术及吸附法。
生物处理法是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法,包括生物吸附、生物絮凝、植物修复等方法。
Ⅵ 煤矿废水怎么样处理
若是高浓度氨氮废水,我们能够提供帮助,专业做高浓度氨氮废水处理的。QQ2206681882
Ⅶ 矿井废水和矿井污水有区别吗
答
煤矿污水处理设计用流程
般说同煤矿水要求差异较应根据我环保部门要求确定处理程度确保水水质由于污水氮磷水体富营养化影响污水处理要求脱氮除磷效
煤矿污水水质与般城市污水性质类似同于城市污水(城市污水包括部工业废水)其特征概括:水质水量变化较污染物浓度偏低污水化性处理难度
煤矿污水处理厂设计80代采用性污泥处理工艺较由于污水机物含量太低运转程微物低限度营养物质形性污泥运转起氧化沟污水处理工艺存同问题流性污泥流起致使原氧化沟系统变附加曝气带状平流沉淀池达要求处理目标
90代许矿井采用二级物接触氧化处理煤矿污水效工艺特点能适应矿区低浓度、变化污水同投资省操作维护比性污泥简单该脱氮除磷效较差
90代污水物处理新工艺、新技术研究发应用取许新工艺应运些新工艺共同特点:高效、稳定、节能并具脱氮除磷等功能较典型工艺:
(1)A2/O工艺该工艺厌氧,缺氧,氧物脱氮除磷工艺简称70代由美专家厌氧-氧除磷工艺(A/O)基础发
(2)SBR工艺序列间歇式性污泥简称种按间歇曝气式运行性污泥污水处理技术称序批式性污泥SBR实际现早性污泥70代现于美经
20研究发革新变容积性污泥程物选择器原理进行机结合改良型SBR工艺
(3)BAF工艺即曝气物滤池工艺90代初发新型微物附着型污水处理技术能同完物处理与固液离通调整滤池结构形式具脱氮除磷功能组合工艺
Ⅷ 纳滤膜在矿井废水处理工艺中应用有什么好处
纳滤膜在矿井废水处理工艺
煤矿矿井水是矿区所采煤层及开拓巷道附近的地下水,有时也含有少量渗入的地表水,矿井水流经采煤工作面和巷道时,因受人为活动影响,会带入煤粉等悬浮颗粒,此外,矿井水还会受到井下采掘过程中采煤设备的乳化液及工作人员排泄物的轻度污染,煤矿矿井废水的成分主要是悬浮物、可溶性无机物及少量的油脂。一般悬浮物及色度较高,细菌总数超标,COD、BOD略有超标。
采用纳滤膜组合工艺处理含悬浮物矿井水,对矿井水中CODMn去除率为98.1%,浊度去除率为99.7%,硬度和含盐量去除率分别为95.1%和78.2%,色度去除率为95%,纳滤膜工艺不需要加氯消毒细菌的去除率为93.6%,出水达到国家标准,既节省了加氯消毒费用,又避免了加氯消毒产生的副产物。