导航:首页 > 污水知识 > 氰化金废水回收设备

氰化金废水回收设备

发布时间:2022-06-09 19:11:53

污水处理站怎样处理含氰废水

处理含氰废水的方法
除了氯氧化法、二氧化硫-空气氧化法、过氧化氢氧化法、酸化回收法、萃取法已独立或几种方法联合使用于黄金氰化厂外,生物化学法、离子交换法、吸附法、自然净化法在国内外也有工业应用,由于报道较少,工业实践时间短,资料数据有限,本章仅对这些方法的原理、特点、处理效果进行简要介绍。
一、生物化学法
1、生物法原理
生物法处理含氰废水分两个阶段,第一阶段是革兰氏杆菌以氰化物、硫氰化物中的碳、氮为食物源,将氰化物和硫氰化物分解成碳酸盐和氨:
微生物
Mn(CN)n(n-m)-+4H2O+O2─→Me-生物膜+2HCO3-+2NH3
对金属氰络物的分解顺序是Zn、Ni、Cu、Fe对硫氰化物的分解与此类似,而且迅速,最佳pH值6.7~7.2。
细菌
SCN-+2.5O2+2H2O→SO42-+HCO3-+NH3
第二阶段为硝化阶段,利用嗜氧自养细菌把NH3分解:
细菌
NH3+1.5O2→NO2-+2H++H2O
细菌
NO2-+0.5O2→NO3-
氰化物和硫氰化物经过以上两个阶段,分解成无毒物以达到废水处理目的。
生物化学法根据使用的设备和工艺不可又分为活性污泥法、生物过滤法、生物接触法和生物流化床法等等,国内外利用生物化学法处理焦化、化肥厂含氰废水的报导较多。
据报道,从1984年开始,美国霍姆斯特克(Homestake)金矿用生物法处理氰化厂废水,英国将一种菌种固化后用于处理2500ppm的废水,出水CN-可降低到1ppm,是今后发展的方向。
微生物法进入工业化阶段并非易事,自然界的菌种远不能适应每升数毫克浓度的氰化物废水,因此必须对菌种进行驯化,使其逐步适应,生物化学法工艺较长,包括菌种的培养,加入营养物等,其处理时间相对较长,操作条件严格。如温度、废水组成等必须严格控制在一定范围内,否则,微生物的代谢作用就会受到抑制甚至死亡。设备复杂、投资很大,因此在黄金氰化厂它的应用受到了限制。但生物化学法能分解硫氰化物,使重金属形成污泥从废水中去除,出水水质很好,故对于排水水质要求很高、地处温带的氰化厂,使用生物法比较合适。
2、生物法的应用情况
国外某金矿采用生物化学法处理氰化厂含氰废水。首先,含氰废水通过其它废水稀释,氰化物含量降低到生化法要求的浓度(CN-<10.0mg/L)、温度(10℃~18℃,必要时设空调),pH值(7~8.5)然后加入营养基(磷酸盐和碳酸钠),废水的处理分两段进行,两段均采用Φ3.6×6m的生物转盘,30%浸入废水中以使细菌与废水和空气接触,第一段用微生物把氰化物和硫氰化物氧化成二氧化碳、硫酸盐和氨,同时重金属被细菌吸附而从废水中除去,第二段包括氨的细菌硝化作用,首先转化为亚硝酸盐,然后被转化为硝酸盐,第一段采用事先经过驯化的,微生物从工艺水中以两种适应较高的氰化物和硫氰化物的浓度。第二段采用分离出来的普通的亚硝化细菌和硝化细菌,被附着在转盘上的细菌的浮生物膜吸附重金属并随生产膜脱落而被除去,通过加入絮凝剂使液固两相分开,清液达标排放,污泥排放尾矿库。该处理装置处理废水(包括其它废水)800m3/h,每个生物转盘直径3.6m,长6m。由波纹状塑料板组成。该处理厂总投资约1000万美元,其处理指标见表10-1。
表10-1 生物化学法处理含氰废水效果
废水名称 废水各组份含量(mg/L)
总CN- CN- SCN- Cu
处理前 3.67 2.30 61.5 0.56
处理后 0.33 0.05 0.50 0.04
3、生物化学法的特点
(一)优点
生物法处理的废水,水质比较好,CN-、SCN-、CNO-、NH3、重金属包括Fe(CN)64-均有较高的去除率,排水无毒,尤其是能彻底去除SCN-,是二氧化硫-空气法、过氧化氢氧化法、酸化回收法等无法做到的。
(二)缺点
1)适应性差,仅能处理极低浓度而且浓度波动小的含氰废水,故氰化厂废水应稀释数百倍才能处理,这就扩大了处理装置的处理规模,大大增加了基建投资。
2)温度范围窄,寒冷地方必须有温室才能使用。
3)只能处理澄清水,不能处理矿浆。
二、离子交换法
1950年南非开始研究使用离子交换法处理黄金行业含氰废水。1960年苏联也开始研究,并在杰良诺夫斯克浮选厂处理含氰废水并回收氰化物和金。
1970年工业装置投入运行,取得了较好的效果,1985年加拿大的威蒂克(Witteck)科技开发公司开发了一种处理含氰废水的离子交换法,不久又成立了一个专门推广该技术的公司,叫Cy-tech公司,离子交换法处理进行研究,取得了许多试验数据,并已达到了工业应用的水平。
1、离子交换法的基本原理
离子交换法就是用离子交换树脂吸附废水中以阴离子形式存在的各种氰化物:
R2SO4+2CN-→2R(CN)2+SO42-
R2SO4+Zn(CN)42-→R2Zn(CN)4+SO42-
R2SO4+Cu(CN)32-→R2Cu(CN)3+SO42-
2R2SO4+Fe(CN)64-→R4Fe(CN)6+2SO42-
Pb(CN)42-、Ni(CN)42-、Au(CN)2-、Ag(CN) 2-、Cu(CN)2-等的吸附与上述类似,硫氰化物阴离子在树脂上的吸附力比CN-更大,更易被吸附在树脂上。
R2SO4+2SCN-→2RSCN
在强碱性阴离子交换树脂上,黄金氰化厂废水中主要的几种阴离子的吸附能力如下:
Zn(CN)42->Cu(CN)32->SCN->CN->SO42-
树脂饱和时,如果继续处理废水,新进入树脂层的Zn(CN)42-就会将其它离子从树脂上排挤下来,使它们重新进入溶液,但即使继续进行这一过程,树脂上已吸附的各种离子也不会全部被排挤下来,各种离子在树脂上的吸附量根据各种离子在树脂上的吸附能力以及在废水中的浓度不同有一部分配比。对于强碱性树脂来说,这种现象十分明显,具体表现在流出液的组成随处理量的变化特性曲线上。各组分当被吸附力强于它的组分从树脂上排挤下来时,其流出液浓度会出现峰值。
不同的弱碱树脂具有不同的吸附特性。因此,对不同离子的吸附力也有很大差别,研究用离子交换法处理含氰废水的一个重要任务就是去选择甚至专门合成适用于我们要处理的废水特点的树脂,否则树脂处理废水的效果或洗脱问题将难以满足我们的需要。难以工业化应用。
2、离子交换法存在的问题及解决途径
离子交换法存在的问题主要是树脂的中毒问题,主要是吸附能力强于氰化物离子的硫氰化物、铜氰络合物和铁氰络合物。由于上述物质吸附到树脂上,使树脂的洗脱变得较为复杂甚至非常困难。
(一)硫氰化物
对于大部分金氰化厂来说,废水中含有100mg/L以上的SCN-,其中金精矿氰化厂废水SCN-高达800mg/L以上,由于强碱性阴离子交换树脂对SCN-的吸附力较大,而且SCN-的浓度如此之高,使树脂对其它应吸附而从废水中除去的组分的吸附量大为降低,如Zn(CN)42-、Cu(CN)32-,同时,由于SCN-的饱和,会使CN-过早泄漏,导致离子交换树脂的工作饱和容量过低。例如,当废水中SCN-350mg/L时,其工作饱和容量(指流出液中CN-≤0.5mg/L条件)仅20倍树脂体积,而且SCN-难以从树脂上通过简单的方法洗脱下来,这就限制了具有大饱和容量的强碱性阴离子交换树脂的应用,而弱碱性阴离子交换树脂饱和容量最高不过强碱性树脂的一半,从处理洗脱成本考虑,也不易使用,可见较高的SCN-浓度给离子交换树脂带来很大麻烦。如果从树脂上不洗脱SCN-,那么流出液CN-不能达标,即使不考虑CN-的泄漏,树脂对其它离子的工作容量也减少。
(二)铜
尽管树脂对Cu(CN)32-的吸附力不如Zn(CN)42-大,但它的浓度往往较高,在强碱树脂上的饱和容量约8~35kg/m3,甚至更高,但用酸洗脱树脂上的氰化物时,铜并不能被洗脱下来,而是在树脂上形成CuCN沉淀,为了洗脱强碱树脂上的铜,必须采用含氨洗脱液洗脱,使铜溶解,形成Cu(NH3)42-或Cu(NH3)2+而洗脱下来,这就使工艺复杂化,尤其是洗脱液的再生也不够简便。
(三)亚铁氰化物离子
Fe(CN)64-尽管在树脂上吸附量不大,但在用酸洗脱树脂上氰化物和锌时,会生成Zn2Fe(CN)6、Fe2Fe(CN)6、Cu2Fe(CN)6沉淀物,而使树脂呈深绿至棕黑色,影响树脂的再生效果,如果专门洗脱Fe(CN)64-,尽管效果好,可是,洗脱液再生等问题均使工艺变得更长,操作更复杂。
3、技术现状
根据国产强碱树脂的上述特点,提出二种工艺:一是用强碱性阴离子处理高、中浓度含氰废水,旨在去除废水中的Cu、Zn,废水不达标但由于Cu、Zn的大为减少而有宜于循环使用。二是用强碱性树脂处理不含SCN-或SCN-浓度100mg/L以下的废水,回收氰化物为主,处理后废水达标外排。例如,在金精矿烧渣为原料的氰化厂用离子交换法处理贫液。把离子交换法用于这两方面在技术和经济上估计比用酸化回收法优越。最好的办法是开发易洗脱再生的新型树脂,国外的许多开发新型树脂的报导介绍了吸附废水中Fe(CN)64-、而且较容易被洗脱下来的树脂,近年来,由于越来越重视三废的回收,使人们十分重视使用离子交换法处理废水使其达到排放标准同时使大多数氰化物得以回收并重新使用这类课题。
加拿大Witteck开发公司开发出的一种氰化物再循环工艺就是其中比较有代表性的一例,该公司为此成立了一个Cy-tech公司专门推销这种工艺装置。一份报导介绍,该工艺用于处理锌粉置换工艺产生的贫液,使用强碱性阴离子交换树脂吸附重金属氰化物,当流出液CN-超标时对树脂进行酸洗,使用硫酸自下而上通过树脂床即可使树脂上的重金属和氰化物被洗脱下来,其重金属以阳离子形式存在于洗脱液中,洗脱液用类似于酸化回收法的装置回收HCN,然后大部分洗脱液进行再生并重复用于洗脱。回收的NaCN用于氰化工段,少量洗脱液经过中和沉淀出重金属离子后外排。据称这种方法也可用于处理炭浆厂的尾浆,其工艺和树脂矿浆法十分类似。Cy-tech公司认为该工艺经改进后也可消除尾矿库排水中残余氰化物及其它重金属,该报导无详细数据、资料以及树脂的型号。
另一报导称,这项工艺的关键是在废水进入离子交换柱前,先完成一个化学反应(使游离CN-形成Zn(CN)42-),并在化学反应中应用一种催化剂,有关人士解释说,如果没有这个反应,废水就不得不通过若干个交换柱提出那些无用的分子,从而增加了系统的成本和复杂性。
采用一段顺流吸附装置处理效果是CN-<0.5mg/L、各种重金属的总和小于1mg/L,处理能力约720加仑/h,树脂量约36加仑。
该试验装置大约需要处理3500加仑废水才能使一个交换柱饱和,每隔一天对交换柱进行一次解吸,每月最大产渣量(重金属沉淀物)也可装入1只45加仑的桶中,其废水按所给数据估算重金属总含量不大于50mg/L,估计重金属绝大部分是锌粉置换产生的Zn(CN)42-,该工艺装置的投资与其它处理装置相当。能在一年多的时间里靠回收氰化物而收回全部投资,该工艺由Cy-tech公司开始转让。但无工业应用的详细报导。
我国对离子交换法处理氰化厂含氰废水的研究主要有两个目的,一是解决氰化—锌粉置换工艺产生贫液的全循环问题,即从贫液中除去铜和锌,为了达到较高的吸附容量,通常使用强碱性阴离子交换树脂, 当废水中铜、锌含量分别为140、100mg/L时,强碱树脂的工作吸附容量不小于15kg/m3和6.5kg/m3。饱和树脂经酸洗回收氰化物并能洗脱部分锌,然后用另一种洗脱剂洗脱铜,树脂即可再生,而铜的洗脱剂需经再生方可重复使用,由于工艺较长目前尚无工业应用。
含氰废水→过滤→离 子 交 换→(低浓度含氰废水)返回浸出或处理

(饱和树脂)回收氰化物
↓ 再生树脂返回使用
洗脱重金属

重金属回收

图11-1离子交换法回收氰化物工艺

当然如果废水中铜和SCN-极低时,树脂的再生仅通过酸洗就
可完成,此条件下可保证离子交换工艺出水达标。无论是国内还是国外,其离子交换工艺原则流程大致相同,见图11-1。
4、离子交换法的特点
(一)优点:
1)当废水中CN-低于酸化回收法的经济效益下限时,采用离子交换法由于氰化物和贵金属具有较好的经济效益,其处理效果优于酸化法,当废水组成简单时可排放。
2)投资小于酸化回收法
3)与酸化回收法相比,该方法药耗、电耗小,金回收率高。
(二)缺点:
1)当废水中SCN-含量高时,洗脱困难,树脂的容量受到影响,处理效果变差,离子交换法的应用范围受SCN-很大影响。
2)在洗脱氰化物过程中,很难洗脱铜,故需专门的洗脱方法和步骤,使工艺复杂化。
3)在酸洗过程中,Fe(CN)64-会在树脂颗粒内形成重金属沉淀物而使树脂中毒。
4)对操作者的素质要求高。
三、吸附—回收法
前面已谈过,离子交换为化学吸附,吸附力较强,故解吸困难,解吸成本高。近来,国外开发了用吸附树脂、活性炭做吸附剂,从含氰矿浆或废水中回收铜和氰化物的技术,已完成了半工业试验。
1、吸附树脂吸附—回收法
西澳大利亚一炭浸厂对液相中铜、氰化钠浓度分别为85、158mg/L之氰尾进行了吸附─回收法半工业试验,采用法国地质科学研究所开发的V912吸附树脂,处理能力为10m3/d,处理后尾浆液相中游离氰化物(CN-)浓度小于0.5mg/L。饱和树脂分两级洗脱再返回使用,用金属洗脱剂洗重金属,用硫酸洗脱氰化物,洗脱液用与酸化回收法类似的方法回收氰化物。
试验表明,当铜浓度增加时,处理成本增加较大。
以半工业试验结果推算,建一座年处理能力100万吨的装置,在铜、氰化钠浓度分别为100、300mg/L条件下,设备费为250万加元。年回收铜122t,氰化钠377t,年洗脱树脂1700t次,洗脱每吨树脂的消耗如下(单位:t):

H2SO4攭NaOH Na2S 水 动力
0.5 0.453 0.048 17.5m3 12.3kwh
2、活性炭吸附—回收法
活性炭具有吸附废水中重金属和氰化物的特性,这早已人所共知,国外早在十年前就有金矿试验用来处理贫液中铜等杂质,使贫液全循环,但没能解决洗脱再生问题。
近年来,西澳大利亚一个炭浆厂完成了用洗性炭从浸出矿浆中回收铜和氰化物的半工业试验,采用加温解吸法选择性解吸铜,含铜解吸液在酸性条件下沉淀氰化铜,再把氰化铜用硫酸氧化为硫酸铜出售。酸性水中的HCN用碱性解吸液吸收再用于解吸工艺中。
铜是氰化过程增加氰化物耗量的一个较大因素,从浸出矿浆中回收铜和氰化物不但避免了铜对浸出的影响,提高了金的浸出率,而且减少了氰化物的消耗,具有一定的经济效益,这一技术在特定的条件下可用来做为贫液全循环工艺中的去除铜措施。
四、自然净化法
黄金氰化厂除少数收购金精矿进行提金然后把氰渣做硫精矿出售而不设尾矿库外,绝大部分矿山建有较大容量的尾矿库(池)。氰化厂废水在其内停留时间一般在1~3天,有个别尾矿库,废水可停留十天以上。由于曝气、光化学反应,共沉淀和生物作用,氰化物的浓度逐渐降低,这种靠尾矿库(池),降低氰化物含量的方法称为自然净化法。目前绝大部分氰化厂都把尾矿库自然净化法做为除氰的一种辅助手段,经废水处理装置处理后的废水再经尾矿库进行二级处理,排水氰含量进一步降低,由于这种方法没有处理成本问题(尾矿库的建设是为了沉降悬浮物和贮有尾矿),故对人们有很大的吸引力,甚至有些氰化厂建立了专门的自然净化池以期使自然净化法的处理效果更好,如何提高自然净化法的处理效果,把目前做为辅助处理方法的自然净化法单独用来处理含氰废水?这是一项很有意义的科研工作,许多科研人员都在深入研究这一课题。
1、自然净化法的特点
由于使用自然净化法的氰化厂不多,可靠的数据有限,其特点尚未充分暴露出来。
(一)优点
1)不使用药剂,处理成本低。
2)与其它方法配合,可做为一级处理方法也可做为二级处理方法,可灵活使用。
3)无二次污染。
(二)缺点
1)对尾矿库要求高,必须不渗漏,汇水面积要大。
2)受季节、气候影响大,在寒冷地区效果差。
2、自然净化法原理
已完成的研究表明,自然净化法至少是曝气、光化学反应、共沉淀和生物分解四种作用的叠加。自然,影响自然净化法效果的因素也就是上述四种作用之影响因素的叠加。
(一)曝气
含氰废水与大气接触,大气中的SO2、NOx、CO2就会被废吸收,使废崐水pH值下降。
CO2+OH-→HCO3-
SO2+OH攩-搅→HSO3-
随着废水pH值的下降,废水中的氰化物趋于形成HCN:
CN-+H+→HCN(aq)
亚铁氰化物会与重金属离子形成沉淀物这一反应促使重金属氰化物的解离,以Zn(CN)42-为例:
Zn(CN)42-+Fe(CN)64-+4H+→Zn2Fe(CN)6↓+4HCN(aq)
由于空气中HCN极微,废水中的HCN将倾向于全部逸入大气中,从动力学角度考虑,HCN的逸出速度受如下因素影响:
1)废水温度,废水温度高,HCN蒸气分压高,有利于HCN逸出,而且水温高,水的粘度小,液膜阻力减少。
2)风力,尾矿库上方风力大,水的扰动剧烈,气—液接触面积增大,酸性气体和HCN在气相扩散速度加快,水体内HCN的液相扩散也加快,酸性气体与水的反应加快。
3)尾矿库汇水特性
尾矿库汇水面积大,水层浅,使单位体积废水与空气接触表面增大,风力对水体的搅动效果增大,有利于HCN的逸出和酸性气体的吸收。
4)废水组成
废水中重金属含量高时,HCN的形成和逸出由于受络合物解离平衡的限制,速度明显变慢。
5)废水pH值
废水pH值低,有利于重金属氰络物的解离和HCN的形成。
HCN全部从水中逸出需要较长时间,其道理与酸化回收相似,在1m深的水层条件下,表层氰化物浓度为0.5mg/L时,底层氰化物浓度15mg/L,可见HCN逸出之难度。
在曝气过程中,空气中的氧不断地溶于废水中,其传质速率也受液相扩散阻力的影响,表层溶解氧浓度高,底部浓度低,溶解氧进入液相后,与氰化物发生氧化反应:
2Cu(CN)2-+0.5O2+3H2O+2H+→2Cu(OH)2↓+4HCN
2CN-+O2→2CNO-
CNO-+2H2O→CO32-+NH4+
含氰废水在尾矿库内,还会发生水解反应,生成甲酸铵,废水温度越高,反应速度越快:
HCN+H2O=HCO-ONH4
这些反应的总和就是曝气的效果,为了提高曝气效果,必须提高废水温度,废水与空气的接触表面积,增大水体的搅动程度,这样才能保证HCN迅速逸入空气而氧迅速溶解于废水中并和氰化物反应,曝气法受季节地域影响较大。
(二)光化学反应
废水中的各种氰化物在阳光紫外线的照射下,发生如下反应:
Fe(CN)64-+H2O→Fe(CN)53-·H2O+CN-
4Fe(CN)64-+O2+2H2O→4Fe(CN)63-+4OH-
4Fe(CN)64-+12H2O→4Fe(OH)3↓+12HCN+12CN-
亚铁氰化物和铁氰化物离子在光照下分解出游离氰化物,文献介绍在3~5小时的光照时间里,60%~70%的铁氰化物分解、80%~90%的亚铁氰化物分解。由于分解出的氰化物不会很快地被氧化,因而会造成水体氰化物含量增高,这就是地表水水质指标中要求用总氰浓度的原因之一。
分解出的游离氰化物不断地被氧化,水解以及逸入空气中,达到了降低废水中氰化物浓度的目的。
逸入空气中的HCN,在阳光紫外线作用下,与氧发生反应。
HCN+0.5O2→HCNO
夏季,反应时间约10分钟,冬季约1小时,从这点看,HCN的逸出不会影响大气的质量,许多焦化厂利用曝气法处理含氰废水,其氰化物挥发量比黄金行业多,而且大部分工厂位于城市,并未闻发生污染事故。
光化学反应与气温和光照强度有关,因此,夏季除氰效果远比冬季好。
(三)共沉淀作用
废水中亚铁氰化物还会形成Zn2Fe(CN)6、Pb2Fe(CN)6之类的沉淀,与Cu(OH)2、Fe(OH)3、CaCO3、CaSO4等凝聚在一起,沉于水底从而达到了去除重金属和氰化物的效果,沉淀效果受pH值和废崐水组成的制约,pH值低时效果好。
(四)生物化学反应
当尾矿库废水氰化物浓度很低时,废水中的破坏氰化物的微生物将逐渐繁殖起来,并以氰化物为碳、氮源,把氰化物分解成碳酸盐和硝酸盐。
生物化学作用受废水组成和温度影响,如果氰化物浓度高达100mg/L,那么微生物就会中毒死亡,如果温度低于10℃,则微生物不能繁殖,生化反应也不能进行。
综上所述,自然净化法的效果受地理位置(南、北方、高原、平原)、天气(阴、晴、气温、风力)、尾矿库(汇水面积、水深、水流速度)微生物,废水组成(pH、氰化物浓度、重金属浓度)废水在尾矿库内停留时间等诸因素的影响。至崐于上述因素对曝气、光化学反应,共沉淀以及生化反应的影响程度,以及这四种除氰途径哪个作用大,目前尚无定量的数据可供参考。某研究所提出的氰化物自净数学模型如下:
C=C0e-kt
其中,k为常数,单位:小时;t为自然净化时间(小时),C、C0分别为某时某刻氰化物浓度和原始氰化物浓度。当温度在10~30℃范围内时,式中k值在0.005~0.01范围,由于k值仅反应了温度,没有反应其它众多的因素,故无多大应用价值。
正因为自然净化法受许多因素制约,其处理效果并不稳定,如果进入尾矿库的崐废水氰化物浓度低(<10mg/L)、废水在尾矿库停留时间长,排水有可能达标,大部分氰化厂把尾矿库做为二级处理设施。然而近年来,由于氰化物处理费用增高,一些氰化厂正探索用尾矿库做为氰化物的一级处理设施。
3、自然净化法的实践
某全泥氰化厂尾矿库建在较厚(2~5m),黄土层的沟内,废水无渗入地下水的可能,该地区干燥少雨,年蒸发水量大于降雨量,故尾矿库无排水,氰化物在尾矿库内自然净化,不再采用其它方法处理,节省了大量药剂、费用,降低了选矿成本。
某全泥氰化厂尾矿库不渗漏,含氰化物尾矿浆直接排入尾矿库,经自然净化再进行二级处理,使其达标排放,由于二级处理的是澄清水,而且氰化物浓度有较大的降低,故处理成本大幅度下降,处理效果好。
某浮选—氰化—锌粉置换工艺装置,其贫液用酸化回收法处理后,残氰在5~20mg/L经浮选废水(浆)稀释后,氰化物含量在0.5~2范围,进入尾矿库自然净化,外排水CN-<0.5mg/L。
某氰化厂采用酸化回收法处理贫液,其酸性废水含氰5~10mg/L,在2m深的废水池内,经20天的自然净化,氰化物降低到0.5mg/L。

② 氯化还原法处理氰化金泥的原理、所用设备、及操作步骤

或许可以考虑一个问题:
我们知道,王水溶解金的原理是:
HNO3 + 3HCl ==== 2H2O + Cl2 + NOCl
因而在王水中含有硝酸、氯分子和氯化亚硝酰等一系列强氧化剂,同时还有高浓度的氯离子。
王水的氧化能力比硝酸强,金和铂等惰性金属不溶于单独的浓硝酸,而能溶解于王水,其原因主要是在王水中的氯化亚硝酰(NOCl)等具有比浓硝酸更强的氧化能力,可使金和铂等惰性金属失去电子而被氧化:
Au + Cl2 + NOCl = AuCl3 + NO↑
同时高浓度的氯离子与其金属离子可形成稳定的络离子,如[AuCl4]- :
AuCl3 + HCl = H[AuCl4]
从而使金或铂的标准电极电位减小,有利于反应向金属溶解的方向进行。总反应的化学方程式可表示为:
Au + HNO3 + 4HCl = H[AuCl4] + NO↑+ 2H2O

将含金固体废料溶于王水是最常用的将金转入溶液的方法。所得溶液酸度较大,常称为含金废王水,金在其中以+3价氧化态存在。从中回收金的基本原理是给这些游离状态或配位状态的金离子提供电子,使其转化为原子状态而得到金的单质。常用的给金离子提供电子的方法有两种:一是在废王水溶液中加入适当的还原剂使金离子得到还原,二是通过电解方式给金离子提供电子,使金在阴极析出。
目前在工业上得到应用的可用于回收废王水中金的还原剂主要有硫酸亚铁、亚硫酸钠、活泼过渡金属(如锌粉和铁粉等)、亚硫酸氢钠(NaHSO3)、草酸、甲酸和水合肼等有机还原剂等。使用还原法回收废王水中的金时必须注意废王水的酸性和氧化性的强弱。通常情况下,废王水的酸性和氧化性很强,在加入还原剂之前必须设法降低其酸性和氧化性。常用的方法是将含金废王水过滤除去不溶性杂质,所得滤液置于瓷质或玻璃内衬的容器中加热煮沸,在此过程中以少量多次的方式滴加一定量的盐酸并加热,使废王水中的氮氧化物气体逸出,此操作俗称为赶硝。赶硝是否完全的简单判别标准是从废王水中逸出的气体颜色必须为无色。

赶硝这一点我想你们应该更清楚的。

从上面的资料看来,从含金废王水中回收金
通常可以有两种方法,你们采用的是——一在废王水溶液中加入适当的还原剂使金离子得到还原。但同时也有另一种方法可供参考的——通过电解方式给金离子提供电子,使金在阴极析出。
我个人认为,之所以氢氧化钠溶液中还溶有那么多的金,
可能是因为金离子得到还原的流程出现问题了,在使用还原剂方面,包括选材,剂量,反应是否充分,以及其他的反应环境方面都应该适当考虑一下。

我不是很清楚你们的制作流程,所以也就不好说出具体的问题所在,也就是做一下猜测吧!·重要的还是做下试验,才有利于问题的解决,毕竟实践是检验真理的唯一标准!
回答者: yupeicong

③ 含氰废水如何处理

含氰废水有抄很多种处理方法,袭需要根据废水水质情况来选择。
碱性氯气氧化破氰,在碱性含氰废水中通入氯气氧化;
UV光催化破氰,以双氧水为氧化剂,通过光辐射催化处理含氰废水;
双氧水催化氧化,通常以铜离子作为催化剂,在弱碱性条件下常温氧化;
臭氧氧化法,采用臭氧发生器制备臭氧氧化氢化物和硫氰酸盐;
高温加压水解法,65℃以上氰根即可与水反应生成氨和碳酸盐,200℃以上时水解速度非常快;
还有活性炭吸附、膜分离、溶剂萃取、金属离子络合法等等。

④ 怎么提炼电子垃圾

电子垃圾回收后如何变黄金

黄金,白银已成为现代工业和国防建设的重要材料。由于其储量有限、生产困难、产量不高、价格不断上涨,许多工业发达国家都极为重视发掘贵金属再生资源这座取之不尽的“金矿”。他们把贵金属废料的回收与矿产资源的开发置于同等重要的地位,建立起贵金属再生回收工业的管理体系。

电子垃圾就是各类报废的电子产品。手机、电脑等家电的更新率越来越快,很多废旧家电都被随便丢弃。专家称,这些被丢弃的电子垃圾仍然具有很好的利用价值,譬如一些旧手机、电脑等散件中可以挑出含金元件,提炼出黄金。而1吨电子板中,可以分离出130公斤铜、20公斤锡、0.45公斤黄金。“电子垃圾”赫然成为隐藏巨大利润的产业。

据悉,不少电子产品的元件用黄金加工制造,黄金是电的良导体,而且永不生锈,1克黄金可拉出3000米比头发还细的细丝,加工性能非常好。电脑、手机等追求小型微型化的电器产品中,黄金是电子线路上必不可少的材料。旧手机等丢弃后会严重污染环境,但如果把里面的废电池回收起来,积攒到1吨就可以提炼出200克黄金,而普通含金矿石(沙)每吨只能提取2克。电子垃圾中的黄金含量大大高于原矿中的含量,一般都在几百倍以上,从中回收比从原矿中提取成本低的多,经济上效益非常明显。此外,很多废旧电子产品的外部材料以及内部的金属元件都可重新利用,产生更大的价值。所以,很多电子垃圾都是一座小“金矿”。

“点石成金”这好像是只能在神话故事中看到,如果有人告诉你,他有技术可以让垃圾变成黄金,你会相信吗?但这不是“天方夜谭”。

一项神奇的技术;100吨电子垃圾回收提炼30公斤黄金。

一套较完整的从电子废弃物中回收金银等贵金属的湿法技术,通过溶出、吸附、精制、干燥和熔炼等工艺后,得到含金(银)量可达到国标金(银)标准的产品。这项技术处理电子垃圾,可以从100多吨的电子垃圾中,提炼出30公斤黄金。价值人民币300多万元。

电子垃圾提炼黄金,这种黄金与在矿上开采提炼的黄金有什么不同?会在质地与纯度上有所不同吗?人们可能会产生这样的疑问。人们已经习惯了在矿山中采来的黄金,对这种“电子垃圾”中提炼的黄金还有一定的怀疑。经过严格的监测,从电子垃圾中提炼的黄金能够直接得到含金(银)量可达到2号金(银)标准,是指金的纯度达到99%。所以说,用电子垃圾生产提炼的黄金与采矿所得的黄金是没有区别的。如果一定要说有区别,就是从电子垃圾中回收的成本要比从矿山开采的低得多。

发达国家每年都要从二次资源中回收大量的金、银。目前,美国的电子垃圾处理企业年利润就已经达到了2500万~3000万美元。据统计,开采1吨银大约需要30万元费用,回收1吨银仅1万元;开采1盎司金需要 300美元,回收1盎司金只需要10美元。如把旧手机里面的废电池回收起来,积攒到1吨就可以从中提炼出200克黄金。

目前,我国较大的国有、民营或合资回收贵金属厂家有150-200家(不含以回收废旧首饰的公司和贵金属冶炼企业)。但回收单位分散,形不成规模,而且回收设备简陋、技术落后、回收率不高,浪费了资源和能源。我国贵金属回收小作坊不少,这些贵金属回收个体户的出现,对贵金属废料回收起到一定承前启后的作用。

据统计,目前我国电视机的社会保有量达3.5亿台,冰箱1.3亿台、洗衣机1.7亿台。从2003年起,我国每年将至少有500万台电视机400万台冰箱、500万台洗衣机要报废。此外,近年来我国电脑、手机的消费量激增。目前约有500万台电脑、1000万部手机已进入淘汰期。这样巨大数量的电子垃圾,应该加强回收。

资料来源中国电子废料网新闻资讯

⑤ 谁知道从电子垃圾提炼黄金的简单方法

用王水嘛,一次成功!!!

⑥ 金矿尾矿回收需要哪些设备

金矿氰化尾矿综合回收要求粒度比较细,需要对粒度较粗的金矿尾矿耐磨耐腐蚀选矿设备进行再破碎再次研磨。
用重选预选抛尾后再浮选:对低品位氰化尾矿,采用处理量大、投资少、成本低的螺旋选矿机进行初选富集,可丢弃绝大部分脉石矿泥残余药剂。然后进行浮选分离。技术上更可靠,经济上更合理。
在氰化法提金工艺中,矿料经过高碱度、富氧、长时间浸泡将会在矿粒表面生成亲水性的过氧化钙薄膜。使金矿氰化尾矿浮选回收时,捕收剂失去了对各种矿物捕收的选择性,同时此薄膜也阻碍捕收剂与矿粒表面的吸附。氰化尾矿综合回收浮选的技术要点是通过耐腐蚀高浓度搅拌桶搅拌擦洗矿粒表面的各种薄膜,还矿物本来面目。
氰化尾矿浮选过程中,分散剂的使用是不可缺少的,但用量一定要严格控制。采用铅、铜、硫优先顺序浮选工艺,技术上可行,经济上合理,是氰化尾矿浮选的理想工艺。
金矿氰化尾矿选矿工艺有重选、浮选、磁选、重浮联合流程等,因为金矿氰化尾矿里面含有强酸性物质,腐蚀性极强,因此必须选用耐腐蚀的选矿设备。

⑦ 怎么无毒提炼黄金

黄金提取和回收专利技术 1、从氰化含金废水中回收金的吸附装置 2、氰化贵液碳纤维电积提金槽 3、渗滤氰化提金的快速浸出附加装置 4、黄金难选原生矿直接焙烧提金工艺 5、一种从难浸金、银精矿中提出金、银的方法 6、一种从含金银物料中分析金、银量的方法 7、一种粗金提纯的方法 8、一种难选冶金精矿的生物提金方法及专用设备 9、提高含硫铜铅金银矿中银回收率的方法 10、从贫金液、废金液中提取金的液膜及工艺 11、一种粗金或合金快速溶解及提纯方法 12、含砷等难处理金精矿的预处理方法 13、碱硫氧压浸出提取金银方法 14、两段细菌氧化提金方法 15、一种以氰化提金废渣再提金的工艺方法 16、由电解含金萃取有机相制备高纯金的方法 17、从浮选金精矿焙砂废矿浆中回收金的方法 18、从含金物中无氰浸提金的方法 19、从铁矿中综合回收金的方法 20、含金氯化液还原制取金的方法 21、一种复用氰化浸金贫液的提金工艺 22、一种从金银矿物中氰化提取金银的方法 23、提高焙烧-氰化浸金工艺中银的回收率的技术方法 24、加盐培烧一氰化法从含铜金精矿中综合回收金,银,铜 25、从载金炭上解吸电解金的工艺方法 26、含砷含硫难浸金矿的强化碱浸提金工艺 27、控温掺氧式燃气热解炉分解原生金矿——氰化法提金工艺 28、从难处理金精矿中提取金的方法 29、混合助浸剂氰化浸金技术 30、用于含金铜锌矿石氰化提金的制剂 31、含金矿粉氰化提金添加剂 32、用于提纯金的配方及其快速湿法金提纯方法 33、一种湿法精炼高纯金的新工艺 34、湿法协同氧化氰化浸出提金工艺新型助剂 35、从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 36、使用带胍官能物的萃取剂回收金的方法 37、从金铜矿中提取铜铁金银硫的方法 38、氨氧化炉废料回收铂金的方法 39、从碱性氰化液中萃取金的方法 40、氰化浸出中用混合氧化剂提取金的方法 41、一种无氰解吸提金方法 42、从难浸硫化物矿石、碳质矿石中提金的预处理方法及其专用设备 43、从难浸矿石中提取金的方法 44、难浸独立银矿浮选银精矿提取银和金的方法 45、一种水氯法硫酸烧渣提金新工艺 46、一种浸出液提金工艺 47、无汞炼金方法及设备 48、一种从废料中回收金的简易方法 49、从铅阳极泥中回收银、金、锑、铜、铅的方法 50、一种从含金的氰碴中提取金精矿的生产工艺 51、从废炭中回收金的新工艺 52、尾矿浆中金的回收 53、无氰电铸K金制品的电铸液 54、用溴酸盐和加合溴提取金的方法 55、无氰电铸K金制品的方法 56、高压釜内快速氰化提金方法 57、金泥全湿法金、银分离新工艺 58、首饰用金提纯方法 59、从硫化物铜矿中浸提回收铜、银、金、铅、铁、硫的方法及设备 60、用巯基乙酸(盐)和硫脲联合浸提金、银的方法 61、一种从含金尾矿砂中提取金精矿砂的选矿工艺 62、回收低浓度金的方法 63、边磨边浸-液膜萃取提金工艺方法 64、一种乳化液膜法提金及回收氰化钠工艺 65、从废催化剂回收金和钯的方法及液体输送阀 66、用石硫合剂提取金、银的方法 67、低压热酸浸聚氨酯泡沫提金法 68、萃取分离金和钯的萃取剂及其应用 69、从金矿尾矿库溢流水中回收金的方法 70、从铜阳极泥中回收金铂钯和碲 71、一种无毒提金工艺方法 72、氰化贵液用钢棉直接电解提金工艺 73、一种焊锡阳极泥硝酸渣提取银和金的方法 74、一种从重砂中回收细粒金的方法 75、金选择吸附树脂合成及提取金的方法 76、金、银分离方法 77、一种提炼金属金的方法 78、从难处理金矿中回收金、银 79、载氯体氯化法浸提金和银 80、氨法分离金泥中的金银 81、从低品位金矿中回收金的工艺方法 82、用复合萃取剂生产高纯金的方法 83、金的回收方法 84、催化氧化酸法预处理难冶炼金精矿 85、一种从银阳极泥提金的新工艺 86、硫脲铁浸法提金工业生产新工艺 87、锑、金冶炼工艺方法 88、酸浸聚氨酯泡沫提金法及装置 89、从含金贫液中萃取金的方法 90、一种从含金王水中提取金的方法 91、低温硫化焙烧—选矿法回收铜、金、银 92、从难熔含金含铁硫化物精矿中回收黄金的工艺 93、氰化金泥的全湿法精炼工艺 94、从难熔含金含铁的硫化物矿石中回收黄金 95、吸附、浮选回收金的方法 96、从含金含铁硫化物矿当中回收黄金的工艺 97、高含量黄金样品中金含量的快速测定法 98、从金矿中综合提取金、银、铜的工艺过程 99、用巯基胺型螯合树脂回收电镀废液中的金和钯 100、从铜电解阳极泥中提取金、银的萃取工艺 本光盘详细地阐述了每个项目的技术领域、现有市场产品技术分析、新产品发明的市场背景、新产品制作的主要技术原理、实现该产品的生产工艺过程、原料配方、具体实施例、以及该项目的研制单位名称、通信地址、研制时间等。是不可多得的技术开发,企业生产的技术汇编资料。 全文资料光盘是计算机专用数据光盘,在Windows操作系统运行环境下,可以直接打开、阅读、打印。为您的企业参与市场产品开发提供第一手宝贵资料。 以上各项专利全部在一张光盘内,价格200元/张,含邮政特快邮资,款到当天办理邮寄 咨询电话:0571—86624586 相关购买方式可以参考本站网页: http://www.zf18.com/fukuan.asp

⑧ 如何从镀黄金废料中提取黄金

从废料中回收金的简易方法 本技术属于环境保护固体废物资源化领域。 本技术提供了一种从电路板边料、废料和其它镀金废料中提取金的简易方法,直接用浓度5~95%的硝酸或浓度5~50%三氧化铁作退金液退金,分离后用浓度15~37%盐酸与3~50%的过氧化氢按1~5∶1比例配成的溶金液溶金,然后还原提纯,工艺简单,费用低廉,污染减少,有良好的经济效益和环境效益。

⑨ 你们公司回收贵金属用的是哪种技术,有没有用到螯合离子交换树脂

在湿法冶金废水、电镀废水及电子酸洗液中回收贵重金属工艺中,根据PH范围可采用螯合树脂。螯合树脂的特点是双羧酸基,其抓取吸附重金属离子能力比普通离子交换树脂强,但相对洗脱难度也会相应增加。由于螯合树脂价格较高,目前国内在一些废水中回收贵金属更多采用了离子交换树脂(更多的是一些小型回收工艺设备系统),比如氰化金工艺采用大孔弱碱阴树脂,一些首饰加工废水中回收金也有采用凝胶强碱阴树脂,电镀废水除铜、镍也有采用大孔强酸或弱酸阳树脂。目前市场上的螯合树脂使用一般是在普通离子交换树脂处理能力难以承受时选用的。国外市场很多直接使用螯合树脂。如有需要可以进一步沟通,详见附件资料。

⑩ 粗金提纯

从氰化含金废水中回收金的吸附装置氰化贵液碳纤维电积提金槽 渗滤氰化提金的快速浸出附加装置 黄金难选原生矿直接焙烧提金工艺 一种从难浸金、银精矿中提出金、银的方法 一种从含金银物料中分析金、银量的方法 一种粗金提纯的方法 一种难选冶金精矿的生物提金方法及专用设备 提高含硫铜铅金银矿中银回收率的方法 从贫金液、废金液中提取金的液膜及工艺 一种粗金或合金快速溶解及提纯方法 含砷等难处理金精矿的预处理方法 两段细菌氧化提金方法 一种以氰化提金废渣再提金的工艺方法 由电解含金萃取有机相制备高纯金的方法 从浮选金精矿焙砂废矿浆中回收金的方法 从含金物中无氰浸提金的方法 从铁矿中综合回收金的方法 含金氯化液还原制取金的方法 一种复用氰化浸金贫液的提金工艺 一种从金银矿物中氰化提取金银的方法 从载金炭上解吸电解金的工艺方法 含砷含硫难浸金矿的强化碱浸提金工艺 控温掺氧式燃气热解炉分解原生金矿--氰化法提金工艺 [C44-025]从难处理金精矿中提取金的方法 [C44-026]混合助浸剂氰化浸金技术 [C44-027]用于含金铜锌矿石氰化提金的制剂 [C44-028]含金矿粉氰化提金添加剂 [C44-029]用于提纯金的配方及其快速湿法金提纯方法 [C44-030]一种湿法精炼高纯金的新工艺 [C44-031]湿法协同氧化氰化浸出提金工艺新型助剂 [C44-032]从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 [C44-033]使用带胍官能物的萃取剂回收金的方法 [C44-034]从金铜矿中提取铜铁金银硫的方法 [C44-035]氨氧化炉废料回收铂金的方法 [C44-036]从碱性氰化液中萃取金的方法 [C44-037]氰化浸出中用混合氧化剂提取金的方法 [C44-038]一种无氰解吸提金方法 [C44-039]从难浸硫化物矿石、碳质矿石中提金的预处理方法及其专用设备 [C44-040]从难浸矿石中提取金的方法 [C44-041]难浸独立银矿浮选银精矿提取银和金的方法 [C44-042]一种水氯法硫酸烧渣提金新工艺 [C44-043]一种浸出液提金工艺 [C44-044]无汞炼金方法及设备 [C44-045]一种从废料中回收金的简易方法 [C44-046]从铅阳极泥中回收银、金、锑、铜、铅的方法 [C44-047]从铅阳极泥中回收银、金、锑、铜、铅的方法2 [C44-048]一种从含金的氰碴中提取金精矿的生产工艺 [C44-049]一种尾矿浆中金的回收方法 [C44-050]无氰电铸K金制品的电铸液 [C44-051]用溴酸盐和加合溴提取金的方法 [C44-052]无氰电铸K金制品的方法 [C44-053]高压釜内快速氰化提金方法 [C44-054]金泥全湿法金、银分离新工艺 [C44-055]首饰用金提纯方法 [C44-056]从硫化物铜矿中浸提回收铜、银、金、铅、铁、硫的方法及设备 [C44-057]回收低浓度金的方法 [C44-058]边磨边浸--液膜萃取提金工艺方法及其设备 [C44-059]一种乳化液膜法提金及回收氰化钠工艺 [C44-060]从废催化剂回收金和钯的方法及液体输送阀 [C44-061]用石硫合剂提取金、银的方法 [C44-062]低压热酸浸聚氨酯泡沫提金法 [C44-063]萃取分离金和钯的萃取剂及其应用 [C44-064]从金矿尾矿库溢流水中回收金的方法 [C44-065]从铜阳极泥中回收金铂钯和碲 [C44-066]一种无毒提金工艺方法 [C44-067]氰化贵液用钢棉直接电解提金工艺 [C44-068]一种焊锡阳极泥硝酸渣提取银和金的方法 [C44-069]一种从重砂中回收细粒金的方法 [C44-070]金、银分离方法 [C44-071]一种提炼金属金的方法 [C44-072]从难处理金矿中回收金、银 [C44-073]载氯体氯化法浸提金和银 [C44-074]氨法分离金泥中的金银 [C44-075]用复合萃取剂生产高纯金的方法 [C44-076]一种尾矿浆中金的回收方法3 [C44-077]金的回收方法 [C44-078]催化氧化酸法预处理难冶炼金精矿 [C44-079]一种从银阳极泥提金的新工艺 [C44-080]硫脲铁浸法提金工业生产新工艺 [C44-081]酸浸聚氨酯泡沫提金法及装置 [C44-082]从含金贫液中萃取金的方法 [C44-083]一种从含金王水中提取金的方法 [C44-084]从难熔含金含铁硫化物精矿中回收黄金的工艺 [C44-085]从难熔含金含铁的硫化物矿石中回收黄金 [C44-086]吸附、浮选回收金的方法 [C44-087]从含金含铁硫化物矿当中回收黄金的工艺 [C44-088]高含量黄金样品中金含量的快速测定法 [C44-089]碱硫氧压浸出提取金银方法 [C44-090]提高焙烧-氰化浸金工艺中银的回收率的技术方法 [C44-091]加盐培烧一氰化法从含铜金精矿中综合回收金,银,铜 [C44-092]从废炭中回收金的工艺 [C44-093]用巯基乙酸(盐)和硫脲联合浸提金、银的方法 [C44-094]一种从含金尾矿砂中提取金精矿砂的选矿工艺 [C44-095]从脉金矿或精金矿的氰化浸出液或氰化矿浆中提取金的方法 [C44-096]自含砷难处理金矿中回收金银和三硫化二砷的方法 [C44-097]锑、金冶炼工艺方法 [C44-098]低温硫化焙烧—选矿法回收铜、金、银 [C44-099]氰化金泥的全湿法精炼工艺 [C44-100]从金矿中综合提取金、银、铜的工艺过程 [C44-101]用巯基胺型螯合树脂回收电镀废液中的金和钯 [C44-102]从铜电解阳极泥中提取金、银的萃取工艺

阅读全文

与氰化金废水回收设备相关的资料

热点内容
屯昌县城污水 浏览:602
磷脂油废水 浏览:452
21款CT6空调滤芯怎么换 浏览:172
滤芯收尘器多少钱一台 浏览:746
耐水煮玻璃漆树脂 浏览:80
废水暖零件是水箱么 浏览:812
电瓶车电瓶加蒸馏水后能马上充电吗 浏览:994
国内做RO膜招聘 浏览:524
安装前置过滤器需要加什么 浏览:879
污废水管道 浏览:256
净空气净化器多少钱 浏览:607
废水处理工作防护 浏览:743
如何把污水处理厂经营好 浏览:111
十渡污水 浏览:971
土壤阳离子交换量都多大 浏览:317
为什么要求雨污水分离 浏览:469
斯麦恩净水器滤芯怎么换视频 浏览:618
利用沼气池做污水处理 浏览:815
树脂能用多長时间 浏览:225
几十度热水才有水垢 浏览:363