1. 国内外研究概况
一、生态地球化学的调查与评价
生态地球化学是从全国多目标区域地球化学调查和应用实践中产生的科学理论,是一项以多目标区域地球化学调查为基础,以生态地球化学评价、生态地球化学评估、生态地球化学预警和生态地球化学修复为主体的系统工程(奚小环,2008)。
21世纪勘查地球化学在解决人类资源与环境的重大问题上发挥了巨大作用,区域地球化学调查应用于生态环境与农业地质研究方面的文献近10年来呈明显上升之势。生态地球化学研究工作在国际上的全面开展是从20世纪90年代后。为配合国际地球化学填图计划(IGCP259)的实施,俄罗斯、瑞典、加拿大、德国、捷克、南非和新西兰等许多国家都进行了区域性的地球化学填图,并利用区域地球化学资料开展环境、农牧业和地方病等多目标应用研究(王徽,2001;施俊法,2003)。生态地球化学填图综合考虑了自然污染和人为污染地球化学状况,为勘查地球化学解决人为污染问题开辟了一条崭新的道路,并在生态地球化学的理论框架下,进行区域生态地球化学调查与评价工作。
随着人类社会面临的环境问题与可持续发展问题的日益突出,中国勘查地球化学界审时度势,将工作重点由单一的找矿勘探扩展至以资源与环境并重,立足于为国家社会经济宏观发展战略服务,为国土资源规划、管理、保护和合理利用服务的综合调查与评价。生态地球化学调查是国土资源部中国地质调查局组织实施的一项综合基础地质工作。它以区域土壤和水体地球化学调查为依托,以第四纪地质体为研究对象,以土地质量评估为主要内容,以服务于农业生产、环境保护和矿产资源普查等多领域为目标。该项工作分多目标区域地球化学调查、区域生态地球化学评价、局部生态地球化学评价和总体综合研究4个层次(杨忠芳,2004)。
中国地质调查局组织实施的生态地球化学调查(农业地质调查)项目自2002年实施以来,已完成多目标区域地球化学调查面积近135×104 km2,涉及浙江、江苏、安徽、湖南和湖北等31个省(区、市),采集测试分析了54个指标值(2008)。生态地球化学调查在很大程度上查明了我国土壤中包括有益与有害成分在内的各种元素指标的组成、类型、含量和强度及其分布地区、范围和面积等,填补了国家长期以来包括土壤污染在内各项元素指标的空白,是一项具有深远意义的成果。调查表明,国家土地质量地球化学总体状况是好的,符合种植无公害农作物的土地质量标准的土地面积占调查面积的92%,符合种植绿色农作物的土地面积占87%,达到土壤环境质量一、二类标准的占87%。同时土地污染状况不容忽视,占调查面积13%的土壤存在污染(李敏,2009)。中国存在的主要地球化学现象和问题有:①长江流域 Cd 等重金属异常呈带状分布;②黄河流域高As、高F、低I和高I等地方病问题突出;③城市及周边地区Hg、Pb等异常普遍存在;④全国各大湖泊呈现有害元素汇集的趋势;⑤西南碳酸盐岩区Cd、As等重金属元素背景值普遍较高;⑥土壤酸化问题较为严重;⑦各种肥力元素与有益元素的分布存在较大的差异;⑧土壤有机碳储量分布不均。
生态地球化学评价是在多目标区域地球化学调查基础上,研究元素和化合物等地球化学指标在土壤圈的分布与分配规律、异常特征及其对生态环境产生的影响,针对性地测定元素形态或价态,研究元素成因来源及其在地球系统中的行为,即在迁移转化过程中的形态变化作用途径和机理,预测可能发生的地球化学问题(奚小环,2004)。生态地球化学评价又进一步分为区域生态地球化学评价和局部生态地球化学评价。区域生态地球化学评价是针对流域或区带(面积范围为106~102 km2)内元素和化合物分布特征,通过对元素及化合物的来源示踪及迁移途径研究,评价它们对生态系统及各组成要素的影响,预测其未来变化趋势。局部生态地球化学评价是以面积小于数百平方千米的元素或化合物的局部地球化学异常为研究对象,运用地球化学方法技术,追踪异常物质来源,查明异常成因,研究地球化学环境与生态现象或问题的关系,预测生态地球化学环境变化趋势,提出兴利避害的对策措施。
为指导生态地球化学评价工作,中国地质调查局于2005年底正式发布了《区域生态地球化学评价技术要求(试行)》,规定了河流、农田、城市、湖泊湿地和浅海等生态系统的评价技术路线。目前各个省份生态地球化学调查已经全面进入生态地球化学评价工作阶段,取得了一系列成果,在农业和环境等方面得到普遍应用,产生了广泛影响。例如,珠江三角洲地区生态地球化学评价结果显示:珠江三角洲土壤Hg污染区面积占11.57%,主要分布于广州—佛山一带,属人为污染。蔬菜类农产品超过食品卫生标准Hg限量的比例为3.12%,已影响蔬菜的品质,但对蔬菜质量安全构成的威胁并不大。土壤Hg绝大部分以硫化物存在,活泼相态Hg含量极低(林杰潘,2007)。冀东平原存在不同程度的重金属富集污染,其中以Hg、Cd污染富集较为严重,综合污染级别以轻—中污染为主,重金属富集污染成因与当地地质背景有关,同时当地强烈的工农业等人为活动加剧了污染与富集(栾文楼,2009)。浙江省依据杭嘉湖平原区土壤中Hg、As、Sb、Pb、Zn、Cd、S、Cu、Mo、Sn等元素的污染分指数和综合污染指数,进行了区域环境质量评价(朱立新等,1996)。杭嘉湖平原大部分地区属清洁区、基本清洁区,但由于人类活动和工业污染,在杭州市、绍兴市和嘉兴市等地区的土壤出现了从初始污染—轻度污染—中度污染—重度污染的现象,特别是杭州市和绍兴市周围存在较大范围的重度污染区。
生态地球化学与生态地球化学评价,是研究人类能够感知的和正在进行的地球化学过程。要解决重大的生态地球化学问题,所有研究工作须跨越学科的界线,将生态学、环境科学、地学、农学和医学,甚至政治和经济学等学科融合在一起,通过各学科的相互交叉和渗透,才能了解生态系统复杂性的真谛。中国拥有全球独一无二的区域地球化学资料,深入挖掘多目标区域地球化学调查数据所蕴含的信息,更好地服务于当地的经济建设与社会可持续发展,仍是摆在生态地球化学领域的一个现实课题(廖启林等,2005)。生态地球化学的发展要立足地质、地球化学,充分考虑岩石—水—土—大气—生物等层圈的相互作用,评价地球化学因子在不同生态子系统中的生态服务功能、区域空间分异特征及其变化趋势,为区域社会经济发展规划提供科学依据。
二、土壤污染研究
土壤直接或间接地参与了陆地生态系统物质循环,是生态环境基本构成要素,农业生产的基础(赖启宏,2005)。土壤的环境地球化学效应一方面受各圈层影响,同时也对各圈层的生态地球化学过程具有较大影响。近年来,由于现代化工业和农业的发展,土壤环境污染不断加剧,土壤污染已成为中国乃至全球性土壤退化的重要因素,严重地威胁着人类的身体健康。
土壤污染的种类繁多,有化学污染、物理污染、生物污染和放射性污染,甚至复合交叉污染,其中以化学污染最普遍、最严重,也最难以治理。土壤污染物质,一般分为两大类:无机污染物和有机污染物。由于土壤污染具有隐蔽性、潜伏性、不可逆性和长期性,其后果极为严重。长期以来人们只考虑土壤具有的交换、吸附、淋滤和降解自净作用,将土壤作为废弃物处置场所。然而,在长期污染影响下累积于土壤的化学物质,经植物吸收和动物摄取或溶入水体,可影响农作物产量、农产品质量以至整个生态系统的稳定性和安全性。当气候环境条件和土地利用方式改变时,短时期内土壤污染物有可能大量活化进入水、植物和农产品,危害动植物和人体健康,导致延缓而突然爆发的有害效应,即所谓的“化学定时炸弹”(stigliani W et al.,1991;谢学锦,1993)。在早期工业化国家都曾发生过因环境污染所引发的环境公害事件,如20世纪50年代日本公布的两起震惊世界的环境公害事件:富士地区高含量镉米导致的慢性中毒的“骨痛病”和熊本地区汞污染导致的“水俣病”,都造成了大量人员致病和死亡,均因土壤和水体长时期的污染导致农产品和养殖水产品污染所引发的。因此日本是世界上土壤污染发现最早,也是污染较为严重的国家之一。
为了全面深入地研究污染物对环境质量的冲击程度以及对人类的危害程度,控制并修复土壤污染,诸多国家都陆续开展了不同层面上的土壤污染研究,包括众多的污染现状调查、土壤环境质量评价和风险评价及其宏观决策管理等,并取得了一定的研究进展。关于土壤污染研究的内容主要有以下方面:
一是土壤污染物迁移和转化规律的研究。不同化学物质在土壤中的持留和释放规律,国内外都做了大量研究(Kinniburgh D G,1986),并形成了反映污染物质持留和释放规律的平衡模型与动力学模型。这些模型对于预测土壤环境中化学物质的吸附、释放和运移等行为有积极意义。Pagotto等的研究发现,在公路附近土壤中有Pb、Zn、Cd的积累,且随着距离的增大和土壤深度的增加而降低,一些土壤样品有少量Ni、Cr(Pagotto,2001)。交通对环境的影响主要在公路两侧1500 m的范围内,500 m以内对土壤影响最显著,超出此范围,土壤中的Pb含量达到背景值水平。有学者认为:重金属元素在土壤中的迁移实质上受到重金属随土壤水分的迁移,在土壤中的扩散,与土壤颗粒之间和重金属及其他溶质不同组分之间的化学反应变化,以及被植物吸收等多因素制约和影响(隋红建,2006)。
二是土壤污染物的生态效应研究。土壤中污染物会对土壤生物类型、生物数量、生物活性、土壤酶系统及土壤呼吸和代谢等作用产生较大影响,危及土壤生态系统的正常结构、功能与平衡。研究发现,施用的农药有20%~70%长期残留在土壤中(Calderbank,1994)。残留农药对土壤中的硝化细菌、根瘤菌和根际微生物影响较大。我国大多数城市近郊土壤都受到了不同程度的污染,有许多地方粮食、蔬菜和水果等食物中镉、铬、砷、铅等重金属含量超标或接近临界值。土壤环境重金属分布对人体健康有着重要影响,李森照(1979)讨论了环境中Cr与人的健康关系,指出Cr对人体健康产生重要的影响。
三是关于土壤环境质量的研究。土壤污染会直接导致土壤质量的下降,围绕土壤环境质量问题,目前涉及的主要内容包括土壤重金属的污染与污染土壤的退化和土壤中重金属的行为与环境质量和土壤中稀土元素的行为与环境质量等。近年来国内外学者对土壤环境质量及其指标体系做了较多研究,极大地丰富了土壤质量评价的内容,国外的研究已经开始关注生态系统多样性、土壤质量演变过程及机理等土壤环境的问题。关于土壤环境质量的评价方法,国内外研究和评价虽然还没有完善的评价体系,但已有许多学者发表过有价值的资料,所采用的土壤环境质量评价的方法有很多,土壤环境质量评价也越来越具有科学性和实用性,其中包括有指数评价法、模糊综合评价法和灰色聚类法等。
四是关于土壤污染的防治研究。例如对于土壤重金属污染的防治,世界各国都开展了广泛的研究工作。由于土壤重金属污染存在潜在性、不可逆性、长期性和后果严重性等特点。因此污染的治理应立足于“防重于治”的基本方针。有学者利用生物措施进行土壤修复,如陈同斌等发现As的超累积植物娱蛤草,在工程中有较好的实际应用价值,并在湖南郴州市建立了亚洲的第一个植物修复基地。此外工程措施包括客土、换土、翻土和去表土等方法,适用于大多数污染物和多种条件。汪雅谷等对土壤重金属污染进行客土处理,使镉等重金属残留量平均下降50%~80%。
土壤圈是个开放系统,进入土壤中的污染物,通过迁移、扩散和生物代谢等途径进入生物和水等环境中,并产生污染。要科学研究评价土壤污染物的环境行为和环境效应,必须把大气、水、土壤、生物作为有机整体,研究污染物在不同环境界面上的迁移和转化规律,重点研究土壤-作物耦合系统污染动力学方面的机理,建立相应的数学模型,对综合防治地下水和大气污染及研究土壤环境容量等都具有重要意义。
三、地方病与地质背景的关系研究
人类的生存依赖于自然环境,自然环境的优劣将直接影响人们的身体状况。20世纪60年代,英国地球化学家哈密尔顿研究发现,人体组织中的元素含量曲线与地壳中元素丰度曲线具有惊人的相似性。地质环境中的微量元素通过土壤—水—植物—食物—人体这个食物链进入人体,如果维持人体正常发育所需的微量元素供量不足或过剩,都会影响人体的正常发育生长及代谢。吉林大学、中国地质大学(武汉)、中国地质科学院有关院校及国土资源部的部分研究机构就地方病的地质环境和地球化学成因等问题进行了长期研究。美国、英国和印度等国家也在不同地方开展了地方性疾病与地质环境和地质作用的关系研究。
研究表明:目前我国主要的地方病有碘缺乏病(IDD)、地方性氟中毒、地方性硒中毒、克山病和大骨节病等。它们在时空上的分布和地质环境中的地形地貌、地质构造、地层岩性、土壤和水(地表水、地下水)等因素密切相关。例如青海省碘缺乏病、慢性氟中毒病和大骨节病区绝大多数分布在东部黄河干支流第三纪(古近-新近纪)河谷盆地内。在水平方向上,病区具有沿不同河段分布的特点;在垂直方向上,病区具有与地形地貌垂直分带相一致的分布规律(陈梅芬,1994)。
地质构造控制着山崖岩石的分布,由于各地山崖岩石的不同,其危害性矿物对各地区人的身体影响是不同的。因此引起了地方疾病呈区域性或地区性分布,如地氟病病带范围与氟异常等值线区基本吻合。我国主要分布在大兴安岭和云贵高原经向构造带与燕山和祁连山秦岭两个东西向构造带交切形成的十字交叉状部位(罗卫等,2004)。
我国地球化学工作者在生态环境领域最早进行探索的就是地方病研究。从20世纪80年代初期开始,我国勘查地球化学工作者利用第二代区域化探资料,进行了农牧业、环境和地方病等领域的研究。如贵州邓峰林(1980)、湖北童霆(1982)和福建蔡以评(1988)利用水系沉积物测量地球化学资料进行区域环境质量评价;中国地质科学院地球物理地球化学研究所孙天蔚等(1989)研究了冀东地区1∶20万水系沉积物元素分布与农作物产量和地方病等之间的关系;中国地质科学院地球物理地球化学研究所朱立新等(1993)在浙江杭嘉湖平原区1×104 km2 的范围内,系统地开展了农业和环境地球化学调查和研究。全国多目标区域地球化学调查和生态地球化学评价计划的实施,突出地展示了现代地球化学为社会经济发展和人民健康服务的功能和效用。通过对平原、河谷及盆地地区的系统调查和专题评价,存在的生态和环境问题及生态优势潜力得以查明,城乡土、水、气状况及地方病等问题都得到了系统的研究和评价,为国家经济建设和可持续发展提供了科学依据。
光催化法
锐钛型的TiO2 在紫外光的照射下能产生氧化性极强的羟基自由基,能够氧化降解有机物,使其转化为CO2、H2O以及无机物,降解速度快,无二次污染,为降解处理农药废水提供了新思路 。对于光催化降解有机物目前关注的问题,一方面是降解过程中的影响因素和降解过程的转化问题 ,对纳米TiO2 的固载化和反应分离一体化成为光催化领域中具有挑战性的课题之一,另一方面是提高制备催化剂催化效率的问题。
陈士夫等在玻璃纤维、玻璃珠、玻璃片上负载TiO2 薄膜光催化剂,并用于有机磷农药的降解,取得了满意的结果。梁喜珍通过研究TiO2 光催化降解有机磷农药乐果废水的影响因素,获得了适宜的工艺条件。潘健民通过对纳米TiO2 及其复合材料光催化降解有机磷农药进行的研究,分析了在不同催化剂、不同浓度AgNO3 浸渍、不同实验装置条件下的光催化降解效果,说明TiO2 表面担载微量的Ag后,不仅能提高纳米TiO2 催化活性,而且有较好的絮凝作用,使TiO2 与处理后的水易分离,后处理更方便。葛湘锋研究发现光催化降解在一定条件下符合零级动力学反应模式,而且反应速率常数和反应物起始浓度也呈线形关系,当反应物浓度增长过快达到一定值时,其反应速率常数明显下降,反应物浓度过高时,则降解反应不再符合零级反应。
目前采用的光催化体系多为高压灯、高压氙灯、黑光灯、紫外线杀菌灯等光源,能量消耗大。若能对纳米TiO2 进行有效、稳定地敏化,扩展其吸收光谱范围,能以太阳光直接作为光源, 则将大大降低成本。
超声波技术
超声波是频率大于20 kHz的声波,超声波诱导降解有机物的原理是在超声波的作用下液体产生空化作用,即在超声波负压相作用下,产生一些极端条件使有机物发生化学键断裂、水相燃烧、高温分解 或自由基反应。
钟爱国等研究表明,在甲胺磷浓度为1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、温度30 ℃、Fe2 + >50 mg·L - 1、充O2 至饱和的条件下,用低频超声波(80W·cm- 2 )连续辐照120 min,甲胺磷去除率达到99. 3% ,乙酰甲胺磷的去除率达到99. 9%。孙红杰等研究了各种因素超声波频率、功率、声强、变幅杆直径和溶液初始pH等对超声降解甲胺磷农药废水的影响。Kotronarou等得出对硫磷在超声条件下可以被完全降解为PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反应温度为20 ℃、pH为7. 4时,对硫磷无催化水解半衰期为108 d,其有毒代谢产物对氧磷水解半衰期为144 d。Cristina等对马拉磷农药在超声波辐射下, 82μmol·L - 1的马拉磷溶液30 min内pH从6下降到4, 2 h内所有的马拉磷全部降解,产物均为无机小分子。
蒋永生、傅敏等报道了用超声波降解模拟废水中低浓度乐果的试验表明,辐射时间延长,降解率增加,加入H2O2 可明显提高乐果的降解率,在溶液初始浓度较低的范围内,降解速率随浓度增大而加快,
浓度增大到一定值后,降解速率变化不明显,超声降解时溶液温度控制在15~60 ℃为宜。谢冰等对久效磷和亚磷酸三甲酯生产过程中产生的废水进行了超声气浮预处理,可降低其COD和毒性,提高其可生化性,再经以光合细菌为主的生化处理,可使其COD降至200 mg·L - 1。
王宏青等研究表明: 灭多威经超声作用35min,可被完全转换为无机物,其降解过程为假一级反应;浓度增加时,降解减慢; Fe2 +和H2O2 对降解有促进作用,且Fe2 +促进作用比H2O2 的大;采用不同气体饱和溶液时,降解率的大小顺序为Ar >O2 >Air >N2。红外光谱表明降解产物为SO42 - 、NO3- 和CO2。
目前有关超声辐射降解有机污染物的研究,大多属于实验室研究,还缺乏系统的研究,更缺少中试数据。
生物法
在国内,农药厂家大多建有生化处理装置,但目前几乎没有一家能够获得理想的处理效果。因此,对这类废水的生化处理研究是十分必要的。已有大量研究表明真菌、细菌、藻类等微生物对有农药有很好的降解作用。
程洁红从土壤中分离得到以多菌灵生产农药废水为惟一碳源生长的13株菌,经鉴定为假单胞菌属( Pseudom onas sp. ) ,研究了SBR 工艺运行的最佳条件,所筛选的菌株对多菌灵农药废水的COD去除率为52. 3%。张德咏,谭新球从生产甲胺磷农药的废水中筛选具有促生活性及可降解甲胺磷的光合细菌菌株, 培养后第7 d, 该菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,乐果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,该菌株也能够以三唑磷、辛硫磷作为惟一碳源生长。
生物膜法将微生物细胞固定在填料上,微生物附着于填料生长、繁殖,在其上形成膜状生物污泥。与常规的活性污泥法相比,生物膜具有生物体积浓度大、存活世代长、微生物种类繁多等优点,尤其适宜于特种菌在废水体系中的应用。王军、刘宝章利用半软性填料进行挂膜,处理菊酯类、杂环类综合农药废水。当进水CODCr为6 810、3 130、1 890mg·L - 1时,经过24 h的作用,细菌膜对CODCr的降解率分别达到24. 8%、43. 5%、53. 4%。
电解法
铁炭微电解法是絮凝、吸附、架桥、卷扫、共沉、电沉积、电化学还原等多种作用综合效应的结果,能有效地去除污染物提高废水的可生化性。新产生的铁表面及反应中产生的大量初生态的Fe2 +和原子H具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环;微电池电极周围的电场效应也能使溶液中的带电离子和胶体附集并沉积在电极上而除去;另外反应产生的Fe2 + 、Fe3 +及 其水合物具有强烈的吸附絮凝活性,能进一步提高处理效果。
雍文彬采用铁屑微电解法能有效去除农药生产废水中的COD、色度、As、氨氮、有机磷和总磷,去除率分别可达76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。张树艳采用铁炭微电解法对几种农药配水进行处理,试验结果表明,最佳反应条件下,废水的CODC r 去除率都可达67%以上;最佳反应条件:铁/水比为(0. 25~0. 375) ∶1,铁/炭比为( 1~3) ∶1, pH3~4,反应时间1~1. 5 h。废水经微电解处理,然后进行Fenton试剂氧化,则微电解出水中Fe2 + 可作为Fenton的铁源,且微电 解时有机污染物的初级降解也有利于后续Fenton反应的进行。吴慧芳采用微电解和Fenton试剂氧化两种物化手段对菊酯、氯苯BOD5 /CODCr = 0. 03)和对邻硝氯苯(BOD5 /CODCr = 0. 05) 3种废水按比例配制而成的综合农药废水进行预处理,结果表明:在废水pH为2~2. 5时,经微电解处理后,BOD5 /CODCr比值达0. 45以上,可生化性提高; Fenton试剂对综合农药废水CODCr去除率为60%左右,色度去除率接近100%。刘占孟以活性炭-纳米二氧化钛为电催化剂,对甲胺磷溶液的电催化氧化降解规律进行研究表明,该工艺能有效去除废水中的有机物,纳米二氧化钛催化剂的催化效果显著。电解效果随着电解时间的延长、催化剂的增加而升高,低pH有利于电催化氧化过程中H2O2 和·OH 的生成。王永广采用电解/UASB /SBR工艺处理生化性差、氯离子浓度高的氟磺胺草醚农药废水。设计电流密度取30. 0 A·m- 2 ,该工程的电费为2. 30 元·m- 3 ,药剂费为0. 30 元·m- 3 ,人工费为1. 50元·m- 3 ,运行成本为4. 10元·m- 3 , COD去除率> 97%。
氧化法
深度氧化技术(AOPs)可通过氧化剂的组合产生具有高度氧化活性的·OH,被认为是处理难降解有机污染物的最佳技术。
引入紫外线、双氧水联合作用和调控反应体系pH,可进一步提高臭氧深度氧化法的效率。陈爱因研究表明,紫外光催化臭氧化降解农药2, 4-二氯苯氧乙酸(2, 4- D)废水成效显著,臭氧/紫外(UV)深度氧化法(比较单独臭氧化、臭氧/紫外、臭氧/双氧水、臭氧/双氧水/紫外4种臭氧化过程)是最好的臭氧化处理方法。2, 4- D 200 mg·L - 1的水样,反应30min, 2, 4- D降解完全, 75 min时矿化率达75%以上。碱性反应氛围有利于臭氧化反应进行。双氧水的引入对2, 4- D降解无明显促进作用,这是因为双氧水分解消耗OH- ,没有缓冲的反应体系pH降低,限制了双氧水的分解和·OH自由基链反应。表明添加H2O2 对光解效果有一定改善作用,投加量达到75 mg·L - 1时,水样的COD去除率由零投加时的20%提高到40% ,但过量投加对处理效果没有进一步促进作用。曝气能促进光解效果,特别对UV /Fenton工艺作用更为显著,光解水样2 h后,曝气条件下的COD 去除率可从不曝气条件下的30%提高到80%。
催化湿式氧化能实现有机污染物的高效降解,同时可以大大降低反应的温度和压力,为高浓度难生物降解的有机废水的处理提供了一种高效的新型技术。催化剂是催化湿式氧化的核心,诸多学者致力于研究开发新型高效的催化剂。韩利华等以Cu和Ce为活性组分,制备了Cu /Ce复合金属氧化物,比较了均相-多相催化剂的催化性能。韩玉英在催化湿式氧化法处理吡虫啉农药废水中,分别用硝酸亚铈和硝酸铜作催化剂,反应一定时间后COD去除率分别达到80%和95. 5%。用硝酸铜作催化剂处理吡虫啉农药废水具有较高的活性,但Cu2 + 有较高的溶出量。张翼、马军在废水中加入2种自制的催化剂,结果表明,只用臭氧处理的情况下7 d后有机磷的去除率为78. 03%; 在催化剂A 存在下, 去除率可达93. 85%;在催化剂B存在下,去除率可达为88. 35%。在室温和中性介质中均属于一级反应。ClO2 是一种强氧化剂,碱性条件下氰根(CN- )先被氧化为氯酸盐,氯酸盐进一步被氧化为碳酸盐和氮气,从而彻底消除氰化物毒性。陈莉荣将含氰农药废水空气吹脱除氨后,采用ClO2 作为氰化物的氧化剂,氰化物浓度为60~80 mg·L - 1 , pH为11. 5左右时,按ClO2 ∶CN- ≥3. 5 (质量比)投药,氰化物的去除率达97%以上,氧化后废水经生物处理系统进一步处理后各项指标都能达排放标准要求。
3. 解析农药废水有哪些处理方法
在我国,80%的农药品种是有机磷农药,该类农药具有品种繁多,生产工艺复杂,副产物多,三废排放量大、含盐量高、色重、味臭、难生化等特点。以乐果废水为例,该水味奇臭,COD 高达200000 mg /L,有机磷含量1000 ~ 18000 mg /L,含盐量15%。目前国内有机磷生产厂家往往对该类废水未经处理或处理不达标就向外排放,严重地污染了环境,因此研究并实施有机磷农药废水处理方法是治理农药行业污染的重点。
1 有机磷农药的分类、生化特点及废水共性
1.1 有机磷农药按化学结构大致分为
(1) 磷酸酯类,如敌百虫、草甘膦等,该类化合物生化处理比较容易,如南通农药厂生产的敌百虫,久效磷等废水直接稀释进生化,COD 去除率可达85%左右[1]。
(2) 一硫代磷酸酯类,如甲基对硫磷、甲基嘧啶磷、丙溴磷等,该类化合物因含硫而味臭,不能被微生物降解,与可生化降解物混合,可部分降解为正磷酸。
(3) 二硫代磷酸酯类,如乐果、马拉硫磷等,该类化合物因含多硫味特臭,不能被微生物降解,与可生化降解物混合,极少部分降解为正磷酸。
由以上可知,硫代磷酸酯类有机磷农药是该类农药预处理的重点和难点,只有通过预处理降解才能进一步进生化池生化。
s
2.2 有机磷农药废水共性成分
通过对有机磷废水的成分分析可知,废水中95% 以上不是农药本体,而是它们的中间体及不同阶段的降解产物(图2)中含量较多的有:
3 有机磷农药废水预处理的方法
近年来对有机磷废水的处理,基本围绕着分解和去除废水中的有机硫、磷进行,大体可分为物理处理法和化学处理法。物理处理法包括: 吸附、萃取、气提、絮凝沉降等方法,化学处理法包括: 氧化、还原、水解等方法。
3.1 物理处理
3.1.1 吸附
吸附是一种物质附着在另一物质表面的过程。目前采用较多的吸附剂有大孔树脂、活性炭、粉煤灰及膨润土。其中大孔树脂及活性炭因价格昂贵,使用受到一定的限制,且存在活化再生的问题,而粉煤灰吸附虽效果不及前者,但处理简便、成本低廉,可达到以废治废的效果、目前得到广泛应用。如文献报道[2]采用季铵盐改性粉煤灰处理有机磷废水,磷的吸附率可达97%。
3.1.2 萃取
萃取: 采用与水不溶而能很好溶解污染物的萃取剂,使其与废水充分接触,利用污染物在水及溶剂中溶解度的不同,达到分离和净化废水的目的。使用比较多的有络合萃取、液膜萃取。在处理丙溴磷废水时采用TBP 与环己烷形成络合剂萃取回收水中的氯酚,氯酚回收率可达98%。沈阳化工院采用液膜萃取含酚废水,也达到很好的效果[3]。
3.1.3 气提、吹脱
气提、吹脱法是将气体吹入废水,使溶解性气体或易挥发性物质变成气体,从而净化废水的过程。湖南海利集团采用蒸汽气提回收乐果硫磷酯工段废水中的氨氮,氨氮去除率可达85%,大大提高了废水的可生化性。
3.1.4 絮凝、沉降
絮凝沉降是采用加入絮凝剂破坏废水悬浮颗粒的稳定性,消除颗粒间的斥力,使颗粒接触并吸附在一起,再通过絮凝剂进行架桥及网捕,形成大颗粒从水中分离的方法。该方法因简单,成本低广泛应用在废水处理中。现有絮凝剂主要有无机絮凝剂及有机絮凝剂两大类,无机絮凝剂主要有硫酸铝,聚合氯化铝、聚合硫酸铁等,有机絮凝剂主要有聚丙烯酰胺和甲醛-双氰胺类。
3.2 化学处理
3.2.1 化学氧化法
化学氧化法主要包括电催化氧化、芬顿氧化、及湿式氧化法。
(1) 电催化氧化处理技术
电催化氧化处理技术是一种高级的电化学氧化工艺,是利用外加电场作用,在特定的电化学反应器内,通过一系列设计的化学反应、电化学过程或物理过程,达到预期的去除废水中污染物或回收有用物资的目的。在反应过程中一般是直接氧化和间接氧化同时进行。现在应用较多的电催化氧化技术是以活性碳、惰性金属(Ag,Pt,Ti 等) 和表面涂覆PbO2,SnO2,Sb2O5等氧化膜的惰性金属为阳极,以铁板为阴极,通过电极的直接和间接作用,达到去除污染物、净化水质的目的[4]。湖南海利集团将这一技术运用到硫磷酯废水及甲基嘧啶磷的废水处理中,COD 去除率可达45%,可生化性得到大幅的提高。
(2) 芬顿氧化法
Fenton 法是一种高级氧化工艺。通过Fe2 + 和H2O2结合生成高反应活性的羟基自由基,它可有效处理绝大多数难降解有机废水。与其他高级氧化工艺相比,具有操作简单、反应快速等优点。由于使用双氧水,成本还比较高,限制了该法的广泛应用。如李荣喜等将芬顿法运用到降解湖南天宇化工农药有限公司的三唑磷农药废水,COD 去除率高达95%[5]。为提高芬顿试剂的效率,目前有报道采用UV/Fenton 及超声(微波) /Fenton 的方法,能使COD 去除率提高10% ~ 20%[6]。
(3) 湿式氧化法
湿式氧化法简称WAO,是以空气及氧气为氧化剂将溶解及悬浮于水中的有机物或还原性无机物,在高温高压下进行液相氧化分解,大幅去除COD/BOD/SS 的方法。该方法氧化彻底,如处理硫磷酯废水,能将其完全无机化,但该法对设备要求高,反应条件苛刻、设备成本高,在国内使用尚不普遍[7]。
3.2.2 化学还原法
铁/炭微电解属电化学还原技术,利用铁一炭体系形成的微原电池对水中难降解污染物进行处理。微电解作用机理主要包括:(1) 铁屑的吸附作用; (2) Fe 的还原作用; (3) 微电解产物Fe2 +、氢的还原作用; (4) Fe2 + /Fe3 + 的絮凝作用。匡蕾、扬庚等将此法用在处理有机磷农药中间体乙基氯化物生产废水中,处理后水的COD、硫化物、总磷的去除率分别高达90.2%、99.4%、95.0%,废水的可生物降解性明显提高,为进入生化创造了条件[8]。
3.2.3 水解法
有机磷农药水解分碱式水解、酸式水解[9]。碱式水解机理为OH-进攻P 原子,发生Sn2取代。碱性条件下从三酯水解成二酯容易,再继续水解困难,因此一般停留在一级水解阶段。在酸性条件下水解反应的机理一般认为首先使连酯的氧原子上质子化,然后碳原子受到攻击发生Sn2取代反应,经不断取代,最终水解为无机磷。化学水解法处理有机磷农药废水从理论上看是可行的,从实际应用看是有效的,尤其适宜处理高浓度有机磷废水处理。如在酸性条件水解水胺硫磷,有机磷、硫化物、NH3- N 和总磷去除率均大于90%,COD 去除率达50%以上[10]。
4 结论
有机磷废水种类很多,依结构分,共同的中间体有同样的废水,但因农药缩合的另一半差异,不同的废水要采取不同的处理方法,单独采用任何一种方法处理高浓度有机磷农药废水在经重点难点贯穿于课堂讨论中去,加强教学效果使学生能够牢固掌握复合材料的一些基本概念方法,还能对大学生创新能力的培养起到重要作用。
4. 污水处理技术篇:看高级氧化法是如何处理农药废水的
农药废水达标处理难度较大,原因在于该类废水水量小、毒性大,含有高浓度有毒有机污染物、成分复杂、难降解物质较多,且无机盐浓度较高。农药废水所含有机物大多为致畸、致癌、致突变物质,危害性极大,如随意排放会导致水质污染加剧,并威胁人类健康。农药废水具有较高的毒性和盐度,微生物无法生存,故不适合采用生物法对其进行直接处理,即使采用生物法处理也很难达到排放标准。目前,运用合适的预处理技术使农药废水的可生化性提高、毒性降低是农药废水处理的关键。由于高级氧化方法反应快速彻底、没有选择性,因而作为预处理手段具有较大的优势。
高级氧化方法作为废水预处理方法的研究已经成为一大热点,尤其是对高浓度有机废水的预处理。高级氧化方法的共同特点是能生成具有强氧化性的羟基自由基(•OH),•OH氧化降解有机物,最终降解产物为H2O和CO2。这种方法有诸多优点:
(1)反应中可产生大量活泼•OH以及其他自由基,氧化能力很强,且可作为中间产物诱发后面的链式反应;
(2)•OH与废水中的污染物直接反应,无二次污染;
(3)该方法便于操作,可氧化处理某些微量有机物,以达到不同的处理目标;
(4)能独自降解废水,也能联合其他高级氧化方法或生物工艺使用,降低处理成本。但由于农药废水自身的特殊性质,高级氧化法在应用上仍有许多缺陷,如费用高、规模小等。
目前主要的高级氧化方法有:空气氧化法、光催化氧化法、超临界水氧化法、电催化氧化法和臭氧氧化法等。近年来,微波和超声在环境领域中的应用受到研究者的关注,并且已成功应用于废水、废气、固废的处理方面。关于微波或超声方法与高级氧化方法联用处理农药废水的研究也越来越多。
5. 环境中POPs 研究现状
1.2.2.1水体中的POPs研究现状
已知地表水体中的多环芳烃有20余种,它们通过吸附在悬浮性固体上、溶解于水和呈乳化状态这3种方式存在于水体中。PAHs进入水体主要通过城市生活污水和工业废水排放、地表径流、土壤淋溶、石油的泄漏、长距离的大气传输造成的颗粒物的干湿沉降及水气交换等方式。由于PAHs水溶性较差,水中溶解度很低,通常低环PAHs的检出率大于高环的PAHs,尤其是萘的检出率最高,菲、芘、荧蒽、芴及其他的化合物检出率较低,高环PAHs的检出率最低(杨清书等,2004)。杜兵等(2004)对北京市某典型污水处理厂进出水中的PAHs调查表明,检出的萘和菲占各个阶段PAHs总量的相对比例都相对稳定,均在60%~70%之间。张静姝等(2007)对某城市污水处理厂回用水处理工艺中的入水和回用水进行了PAHs的测定,结果表明,16种PAHs在入水、回用水水样中的总浓度分别为1777.9ng/L、1380.1ng/L,其中芴和菲含量最高,其次分别为萘、苊、芘、荧蒽、二氢苊、蒽等。
陈明等(2006a)对北京市5大城市污水处理厂———高碑店、北小河、酒仙桥、清河、方庄污水处理厂进出水水样中有机氯农药进行了分析,结果表明,在5个污水处理厂进水中检测到有机氯农药类化合物的总浓度∑OCPs为10.1~108.1ng/L,其中方庄污水处理厂的污水进水中∑OCPs最低。方庄污水处理厂主要处理来自方庄住宅区的全部生活污水,其他几个污水处理厂处理的是城市污水和工业废水。这说明生活污水引起的有机氯农药污染较少。污水处理厂出水中的有机氯农药类化合物的总浓度∑OCPs为8.93~70.7ng/L。徐艳玲等(2006)对北京市某污水处理厂的总泵进水、二沉出水中20种有机氯农药进行了测定,结果表明,进水中HCHs总质量浓度为13ng/L,以较稳定的异构体β-HCH为主要成分,出水中仅检测出4种HCHs异构体,其质量浓度在1~8ng/L之间。陈明等(2006b)分析了北京市燕山石油化工有限公司5个典型企业排放废水中有机氯农药的浓度,发现存在六六六(HCHs)、滴滴涕(DDT)等有机氯污染物,在5个采样点的水样中有机氯农药的浓度为0.76~14.8ng/L,其中六六六、滴滴涕的含量分别为0.76~10.5ng/L和4.89~14.8ng/L。
地下水中的POPs主要来源于污染的地表水体的渗漏或补给、污水灌溉、固体废物处置场地及污染土壤的淋滤。如田家怡等(1995)对小清河7个测点污灌水质、污灌区17眼地下水井水质监测表明,河水和地下水中分别检出93种和56种有机污染物,地下水中苯并[a]芘、四氯化碳浓度超过我国《生活饮用水卫生标准》(GB5749—2006)。从河水和地下水检出的有机污染物的种类、浓度、来源、类别、测井分布分析,小清河污灌已造成了沿岸地下水的有机污染,污染程度与污灌强度有关。但是目前关于POPs在土壤系统中是如何运动和迁移的,以及它是通过什么机理渗透进入地下水的等问题研究较少,能够查阅到的资料也较少。在美国已公布的地下水中致癌PAHs的浓度在0.2~6.9ng/L范围内,而在地表水中相应的浓度为0.1~800ng/L,大多数在2~50ng/L范围内(Menziesetal.,1992)。我国在《城市供水水质标准》(CJ/T206—2005)中规定了PAHs总量(苯并[a]芘、苯并[g,h,i]苝、苯并[b]荧蒽、苯并[k]荧蒽、荧蒽、茚并[1,2,3-cd]芘)的限值为0.002mg/L,其中苯并[a]芘的限值为0.01μg/L。从这里可以看出,地下水中PAHs的污染比较少见,即便有,含量水平通常也不高。
地下水环境中有机氯农药的研究同样也相对较少。表1.3列出了3个地区地下水中部分有机氯农药检出情况。可以看出,相对于1995年时孟加拉国的地下水,珠江三角洲地区地下水中的七氯和DDT的四种异构体两种有机氯农药含量普遍偏低,珠江三角洲(黄冠星等,2008)地区地下水中有机氯农药含量要远小于苏锡常(中国地质大学(北京),2006),但两地区地下水中有机氯农药中只有4,4'-DDT在这两个地区的地下水中没有检出,而在1995年时,孟加拉国的地下水中却有相当高含量的4,4'-DDT检出,根据该地区DDT四种异构体检出情况可知,这个地区有机氯农药仍在使用。另一个原因,我国在1982年之后就明文规定停止使用滴滴涕、毒杀芬、六氯苯以及七氯等有机氯农药,而孟加拉国则在1993年之后才停止这些有机氯农药的使用(Matinetal,1998)。
表1.3 不同地区地下水中有机氯农药的含量情况(单位:ng/L)
1.2.2.2土壤中的POPs研究现状
POPs由于具有低溶解性和较强的疏水性,能强烈地分配到土壤有机质中,土壤已成为其重要归宿,它可以通过挥发、扩散、质流转移至大气、地表水和地下水,并且可以通过生物富集和食物链对人体健康产生威胁。因此土壤中POPs的残留及其迁移转化规律已成为国内外广大学者研究的热点。
我国不同地区的土壤都含有一定种类和数量的POPs,其中工业发达区土壤中的PAHs污染尤为严重。刘瑞民等(2004)通过对天津市区土壤多环芳烃含量与国外若干城市的比较结果发现,工业化、城市化水平高的地区,土壤PAHs含量的总体水平较高,城市地区土壤PAHs污染一般以燃烧为主要来源,某些情况下,油矿类污染也是主要的污染源之一。葛成军等(2006)对南京某大型矿业、企业周边农业土壤(0~20cm)中15种多环芳烃的残留量进行了调查。结果表明,PAHs的检出率为100%,总残留量范围为312.2~27580.9μg/kg,且以4环以上多环芳烃组分为主。
污水灌溉是我国土壤POPs污染的最主要方式,长期污水灌溉造成污灌区土壤POPs含量明显升高,严重的会超过环境标准。彭华等(2009)对河南省典型农业区域土壤中PAHs污染状况的初步研究表明,污水灌溉区土壤PAHs污染最为严重。曲健等(2006)研究了沈抚灌区上游土壤中PAHs的含量,结果表明,土壤中PAHs含量在787~24570μg/kg,明显高于清水灌溉土壤。张晶等(2007)对沈抚污水灌区的研究表明,稻田土壤PAHs含量在319.5~6362.8μg/kg之间。肖汝等(2006)研究了有污水灌溉历史的沈抚灌区、浑浦灌区和清原对照点3个土壤剖面中16种多环芳烃(PAHs)含量的分布特征,结果表明,沈抚灌区和浑浦灌区检出PAHs的种类数目明显大于清原灌区。宋玉芳等(1997)研究表明水稻生长期污水灌溉可明显增加土壤中多环芳烃总量,且多环芳烃在土壤中行为与污染物理化性质有关。Khanetal.(2008)对北京和天津的污水灌溉区土壤(0~20cm)中16种PAHs进行了研究,结果表明,天津土壤的PAHs总量达1304~3369μg/kg,北京土壤的PAHs总量为2687~4916μg/kg。2~4环的PAHs占主要的比例,总的PAHs与土壤有机碳(SOC)显著相关。张枝焕等(2004)研究表明,天津污灌区土壤中多环芳烃含量明显高于非污灌区,且4环以上的PAHs含量要明显升高。
有机氯农药的研究主要集中在表层土壤中,对于土壤剖面上有机氯含量的研究不多,已有的研究成果表明,有机氯农药在土壤剖面上的迁移能力较差,它们主要累积在表层土壤中。如李常亮等(2008)研究结果表明,某企业污染场地∑HCH的最大值为271.72mg/kg,主要集中在土壤表层(0~20cm)、亚表层(20~40cm)土壤,表层、亚表层土壤中HCH含量远高于深层(40~150cm)土壤中HCH含量。赵娜娜等(2007)研究结果表明,在土壤表层,生产车间周围DDT的含量高达104mg/kg以上,在土壤深层,浓度随深度增加迅速降低,含量梯度变化最大深度为0.2~3m,3m以下土壤中检出值较小,10m深处浓度最高不超过8.89mg/kg。从他们的研究结果可以看出,HCH和DDT主要累积在土壤表层,且它们向下迁移的能力较差。长期污水灌溉很有可能造成表层土壤OCPs的累积污染。龚钟明等(2002)研究表明,在天津郊区污灌区农田土壤中HCH及DDT等8种有机氯农药检出率为100%,有机氯污染物以β-HCH和4,4'-DDE为主,β-HCH的最高残留量达到了12.87mg/kg,常年污灌的旱地污染程度最严重,而无污水灌溉的旱地污染较轻。孙立波等(2006)对某污灌区的土壤剖面进行采样研究,结果表明,所有土壤样品中HCH和DDT含量均未超过《土壤环境质量标准》(GB15618—1995)。对照当地土壤背景值,少数土壤样品中HCH和DDT的含量有上升趋势,超过了当地的土壤背景值。上层土壤(0~60cm)中两种污染物的含量明显超过底层土壤(60~100cm)。
总结近年来国内外公开发表的资料,土壤中PAHs的残留情况见表1.4,OCPs的残留情况见表1.5。
表1.4 国内外土壤中PAHs的检出情况
续表
表1.5 国内外浅层土壤中有机氯农药残留情况(单位:μg/kg)
综上,国内外学者对土壤中的POPs进行了大量的研究工作,但大都处于POPs污染水平背景调查阶段,且主要集中在表层土壤的研究,对深层土壤中的POPs的迁移变化规律鲜有报道。研究工作大都集中在一个独立的环境,没有把地表、土壤、地下水作为一个联系的系统来研究。此外,研究范围过于狭窄,多限于农业土壤和不同类型的菜地中的POPs残留,而对污灌区土壤中的POPs的研究主要集中在天津和沈阳两地,其他地方几乎还没开展系统研究,对再生水灌溉产生的土壤中的POPs污染在国内外相关研究领域更少。前已述及,由于我国水资源短缺问题日益突出,且污水灌溉会导致土壤环境质量的日益恶化,严重危害人体健康。因此,近年来逐步采用再生水来代替污水灌溉农田,以节约水资源。然而,由于我国对城市再生水的利用和研究都极为缺乏,且再生水中仍然含有大量持久性有毒物质,是否会造成土壤污染,已经引起了广大学者的关注,但这方面的研究非常薄弱,相关报道很少。因此,研究再生水灌溉是否会造成土壤、地下水中的POPs污染具有重要的意义。
6. 国外农村污水处理怎么做
目农村污水处理目前有很多种处理方法和工艺,不过现在还是用一体化污水处理设备好,占地少,运维简单、成本也不高,出水效果好。
污水处理设备
7. 农药废水的简介
农药废水是指农药厂在农药生产过程中排出的废水。废水水质水量不稳定。主要分为:①含苯废水:生产1吨六六六排出3~4吨废水,含苯量1500~2000 mg/L,可采用蒸馏,煤矸矿渣吸附处理;②含有机磷废水:COD在10000 mg/L以上,含有机磷约1000 mg/L,可先用萃取或蒸馏法回收废水中的乐果、甲醇、二甲胺等物质,然后用生物法进行无害化处理;③高浓度含盐废水:生产1吨敌敌畏产生废水5~7吨,含COD达数万毫克/升,含有机磷1000毫克/升及约0.6%敌敌畏有毒物质,以采用浓缩焚烧法或湿式氧化法处理;④高浓度含酚废水:先通过萃取法回收酚使份含量小于300mg/L,并经适当前处理后再进行生化法或化学氧化处理;⑤含汞废水:废水呈酸性,共话物呈溶解状态,可用于硫化物沉淀法进行处理。近年来,还有采用反渗透法,活性炭-生物膜法对农药废水进行处理,一些国家已禁止使用生产六六六等有机氯、有机汞农药,积极研究微生物农药,是防止农药污染的根本途径。
8. 废水处理现状的调研 急急急
利用物理、化学和生物的方法对废水进行处理,使废水净化,减少污染,以至达到废水回收、复用,充分利用水资源。现代的废水处理主要分为物理处理法、化学处理法和生物处理法3类。
处理方法 ①物理处理法。通过物理作用分离、回收废水中不溶解的呈悬浮状态的污染物(包括油膜和油珠)的废水处理法,可分为重力分离法、离心分离法和筛滤截留法等。以热交换原理为基础的处理法也属于物理处理法。
②化学处理法。通过化学反应和传质作用来分离、去除废水中呈溶解、胶体状态的污染物或将其转化为无害物质的废水处理法。在化学处理法中,以投加药剂产生化学反应为基础的处理单元是:混凝、中和、氧化还原等;而以传质作用为基础的处理单元则有:萃取、汽提、吹脱、吸附、离子交换以及电渗析和反渗透等。后两种处理单元又合称为膜分离技术。其中运用传质作用的处理单元既具有化学作用,又有与之相关的物理作用,所以也可从化学处理法中分出来 ,成为另一类处理方法,称为物理化学法。
③生物处理法。通过微生物的代谢作用,使废水中呈溶液、胶体以及微细悬浮状态的有机污染物,转化为稳定、无害的物质的废水处理法。根据作用微生物的不同,生物处理法又可分为需氧生物处理和厌氧生物处理两种类型。废水生物处理广泛使用的是需氧生物处理法,按传统,需氧生物处理法又分为活性污泥法和生物膜法两类。活性污泥法本身就是一种处理单元,它有多种运行方式。属于生物膜法的处理设备有生物滤池、生物转盘、生物接触氧化池以及最近发展起来的生物流化床等。生物氧化塘法又称自然生物处理法 。厌氧生物处理法,又名生物还原处理法,主要用于处理高浓度有机废水和污泥。使用的处理设备主要为消化池。
分级 按处理程度,废水处理(主要是城市生活污水和某些工业废水)一般可分为三级。
一级处理的任务是从废水中去除呈悬浮状态的固体污染物。为此,多采用物理处理法。一般经过一级处理后,悬浮固体的去除率为70%~80%,而生化需氧量( BOD)的去除率只有25%~40%左右,废水的净化程度不高。
二级处理的任务是大幅度地去除废水中的有机污染物 ,以 BOD 为例 ,一般通过 二级处 理后 ,废水中的 BOD可
去除80%~90%,如城市污水处理后水中的 BOD含量可低于30毫克/升。需氧生物处理法的各种处理单元大多能够达到这种要求。
三级处理的任务是进一步去除二级处理未能去除的污染物,其中包括微生物未能降解的有机物、磷、氮和可溶性无机物。
三级处理是高级处理的同义语,但两者又不完全一致 。三级处理是经二级处理后,为了从废水中去除某种特定的污染物,如磷、氮等,而补充增加的一项或几项处理单元;高级处理则往往是以废水回收、复用为目的,在二级处理后所增设的处理单元或系统。三级处理耗资较大,管理也较复杂,但能充分利用水资源。有少数国家建成了一些污水三级处理厂。
废水处理制剂
Waste water treatment preparation
采用合理的水处理工艺,配合水的深度处理,处理水可达到GB5084-1992、CECS61-94中水回收用水标准等,可以长时间循环使用,节约大量水资源。
Adopt the rational water treatment handicraft, the depth coordinating water's handles, water reclaims in processing water but reaching GB5084-1992 , CECS61-94 using water standard to wait , to be able to cycle for a long time to be put into use, save large amount of water resource.
Risr-601环保型COD专用除去剂
Risr-601 environmental protection type COD special use eliminates an agent
MRisr- 2688重金属捕捉剂
MRisr-2688 heavy metal catches an agent
瑞仕莱斯水处理
[编辑本段]废水处理之除重金属
[1]重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。如果不对重金属废水处理,就会严重污染环境。废水处理中重金属的种类、含量及存在形态随不同生产企业而异。除重金属在废水处理中显得很重要。
由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态,达到除重金属的目的。例如,废水处理过程中,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,废水处理除重金属原则是:
除重金属原则一:最根本的是改革生产工艺.不用或少用毒性大的重金属;
除重金属原则二:是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。重金属废水处理应当在产生地点就地处理,不同其他废水混合,以免使处理复杂化。更不应当不经除重金属处理直接排入城市下水道,以免扩大重金属污染。
废水处理除重金属的方法,通常可分为两类:
除重金属方法一:是使废水中呈溶解状态的重金属转变成不溶的金属化合物或元素,经沉淀和上浮从废水中去除.可应用方法如中和沉淀法、硫化物沉淀法、上浮分离法、电解沉淀(或上浮)法、隔膜电解法等废水处理法;
除重金属方法二:是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用方法有反渗透法、电渗析法、蒸发法和离子交换法等。这些废水处理方法应根据废水水质、水量等情况单独或组合使用。
废水处理法(有废水中和处理法、废水混凝处理法、废水化学沉淀处理法、废水氧化处理法、废水萃取处理法等):http://ke..com/view/898501.htm
废水化学处理法:http://ke..com/view/1528366.htm
……生物………: http://ke..com/view/443893.htm
希望对你有用
9. 农药废水的污染比较大,目前处理该废水最常用的方法是什么!
农药废水具有以下特点:
1.其COD值一般为1万~4万mg/L。与普通工业园区废水COD≤500mg/L相比,该类废水具有有机物浓度高的特点;
2.成分复杂,水质变化大;
3.盐含量高;
4.有机物降解难度高;
5.废水生物毒性高。
因此,废水处理难度较大;随着国家对环境保护问题的重视,近年来环境保护法的不断完善提高了废水的排放标准,农药废水的处理越来越受到重视。
对于高浓度、高毒性农药废水的处理,通常采用预处理方法,去除农药废水中部分难以降解的有机物,提高废水的可生化性,然后进行后续处理,使终端出水符合标准。
目前常用的预处理方法是物化预处理方法,包括微电解、深氧化、微电解+深氧化的组合工艺等。
10. 国外是怎么处理抗生素生产废水的
抗生素生产废水成份复杂,有机物浓度高,溶解性和胶体性固体浓度高,PH值经常变化,温度较高,带有颜色与气味,悬浮物含量高,含有难降解物质和有抑菌性作用的抗生素,并且有生物毒性。其具体特征如下:
处理方法:
1、混凝预处理
抗生素废水的浊度和悬浮物浓度较高,因而在水质预处理部分采用混凝法预处理,去除高悬浮物和浊度,以便使水质史适宜进行后续生物处理。
混凝的基本原理
混凝澄清是给水和废水处理实践中的一种常用的单元操作它是指在混凝剂的作用下,使废水中的胶体和细微悬浮物凝聚为絮凝体,然后予.以分离除去的水处理方法。胶体溶液或悬浮液稳定的原因是:固体微粒的粒度太细,同时带有同性电荷形成布朗运动;另外,溶液中还有一种亲水的胶体,它是可溶性的大分子,如蛋白质、淀粉和腐植酸等,它们的分子上都带有亲水的极性基团如一OH、一COOH、一NH3等对水具有较强的亲和力,在分了的周围保持较厚的水层,能发生膨胀,有形成真溶液的倾向。胶体或悬浮液形成分散体系就是依靠细微粒度,荷同性电荷以及在水中的溶解作用而形成稳定状态的,因而必须投加混凝剂来破坏他们的稳定性,使其相互聚集为数百微米以至数毫米的絮凝体,才能予以除去。混凝就是在混凝剂的离解和水解产物的作用下,使水中胶体污染物质和细微悬浮物脱稳并聚集为具有可分离性的絮凝体的过程,其中包括凝聚和絮凝两个过程,统称为混凝。
混凝的作用机理
在混凝处理中,主要是通过压缩双电层和电性中和机理起作用的。
凝聚作用:
凝聚作用是指加入无机电解质,通过电性中和作用,压缩双电层,降价了ζ电位,减少微粒间的排斥能,解除布朗运动,使微粒能够靠近接触而聚集在一起的作用。
混凝预处理对原水中的COD及硫酸盐浓度的影响
在进行混凝预处理时,除了希望通过混凝预处理去除较高的SS外,还希望能够同时去除水中的高浓度COD及某些生物抑制性物质,如硫酸盐。由于在进行水质保存时,引入了硫酸根离子,根据前述内容可知,抗生素制药废水中主要的生物抑制性物质就是硫酸盐。因而,在预处理部分,混凝预处理过程对COD及硫酸盐浓度变化的影响。随沉降时间的延长,COD及硫酸盐的去除率均会逐渐地增大,这主要是因为随着沉降时间的延长,不溶性的COD附着在絮凝体上而不断下沉,最终被除去的缘故。硫酸盐的去除为下一步的厌氧生物处理提供了便利,降低硫酸盐浓度,从而减少硫酸盐还原菌作用后生成的硫化氢不能及时地外排而造成对厌氧微生物的毒害作用。
抗生素废水的生化处理
2、废水的好氧生物处理
废水的好养生物处理原理
好氧生物处理是在提供游离氧的前提下,以好氧微生物为主,使有机物降解,稳定的无害化处理方法。废水中存在的各种有机污染物,以胶体状、溶解状的有机物为主,作为微生物的营养源。这些高能位的有机物质经过一系列的生化反应,逐级释放能量,最终以低能位的无机物质稳定下来。有机物被微生物摄取后,通过代谢活动,有机物一方面被分解、稳定,并提供微生物生命活动所需的能量;另一方面被转化,合成为新的原生质的组成部分,即微生物自身生长繁殖。这一部分就是废水生物处理中的活性污泥或生物膜的增长部分,通常称为剩余活性污泥。
活性污泥法的基本流程
活性污泥法是一种应用最广的废水好氧生物处理技术,它是指将空气连续鼓入大量溶解有机污染物的废水中,经过一段时间,水中即形成生物絮凝体一活性污泥,在活性污泥上栖息、生活着大量的好氧微生物,这种微生物以溶解有机物为食料,获得能量,并不断增长,使废水得到净化。它由曝气池、二次沉淀池、曝气系统及污泥回流系统等组成。由初次沉淀池流出的废水与二次沉淀池底部回流的活性污泥同时进入曝气池,在曝气池的作用下,混合液得到足够的溶解氧并使活性污泥和废水充分接触,废水中的可溶性有机污染物为活性污泥所吸附并为存活在活性污泥上的微生物群体所分解,使废水得到净化。
活性污泥处理系统有效运行的基本条件是:
(l)废水中含有足够的可溶性易降解有机物,作为微生物生理活动所必需的营养物质:(2)混合液含有足够的溶解氧:(3)活性污泥在池内呈悬浮状态,能够充分地与废水相接触:(4)活性污泥连续回流,及时地排除剩余污泥,使混合液保持一定浓度的活性污泥:(5)没有对微生物有毒害作用的物质进入。
活性污泥法的净化过程
在正常发育的活性污泥的微生物体内,存在着由蛋白质、碳水化合物和核酸组成的生物聚合物,这些生物聚合物是带有电荷的电介质。因此,由这种微生物形成的生物絮凝体,都具有生理、物理、化学吸附作用和凝聚、沉淀作用,在其与废水中呈悬浮状和胶休状的有机污染物接触后,能够使后者失稳、凝聚,并被吸附在活性污泥表面。
活性污泥具有很大的表面积,能够与混合液广泛接触,在较短的时间内,通过吸附作用,就能够除去废水中大量的呈悬浮和胶体状的有机污染物,使废水的COD值大辐度地下降。
小分子有机物能够直接在透膜酶的催化作用下,透过细胞壁被摄入细菌体内,但大分子有机物则首先被吸附在细胞表面,在水解酶的作用下,水解成小分子后再被摄入到细胞体内。一部分被吸附的有机物可能通过污泥排放被去除。
3、废水的厌氧处理
废水的厌氧处理原理
废水的厌氧处理是在没有游离氧的情况下,以厌氧微生物为主对有机物进行降解,稳定的一种无害化处理方法[。在厌氧生物处理过程中,复杂的有机化合物被降解,转化为简单、稳定的化合物,同时释放能量。其中,大部分能量以CH4的形式出现,可回收利用。同时,仅少量有机物被转化,合成新的细胞组成部分。
第一阶段,可称为水解、发酵阶段。复杂有机物在微生物的作用下进行水解发酵。水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能为细菌直接利用,因此它们在第一阶段被细胞外酶分解为小分子。如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶水解为麦芽糖和葡萄糖,这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。而后,这些物质在发酵细菌的细胞内转化为更简单的化合物并被分泌到细胞外。发酵是有机化合物既作为电子受体也是电子供体的生物降解过程,在此过程中,溶解性有机物被转化为以挥发性脂肪酸为主的末端产物。这一阶段的主要产物有挥发性脂肪酸、酸类、乳酸、CO2、H2、H2S、甲胺等。与此同时,酸化菌也利用部分物质合成新的细胞物质。
酸化过程是由大量的、多种多样的发酵细菌完成的。其中重要的类群有权梭状芽孢杆菌和拟杆菌。它们大多是严格厌氧的,但通常有约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够保护严格厌氧菌免受氧的损害与抑制。
第二阶段,称为产氢、产乙酸阶段,是由一类专门的细菌,称为产氢产乙酸菌,将丙酸、丁一酸等脂肪酸和乙醇等转化为乙酸、C02、HZ。
在标准条件卜,乙醇、丁酸和丙酸不会被降解,因为在这些反应中不产生能。但氢浓度的降低可使这些反应导向产物方向。在运转良好的反应器中,氢的分压一般不高于lOPa,平均值约为0. 1 Pa。当作为反应产物之一的氢的分压如此之低时,乙醇、丁酸和丙酸的降解则可以产生能,即反应的实际自由能成为负值。
在由氢和二氧化碳形成甲烷时,只有在产乙酸产生的氢被产甲烷菌有效利用时,系统中氢才能维持在很低的分压。根据平均氢分压可以计算出反应器里一个氢分子平均在0. 5s以内被消耗,这意味着氢分子在其产生后仅仅能移动0. 1 mm的距离。也说明这种生化反应需要密切的共生关系存在于菌种之间。这种现象称为“种间氢传递”。不仅存在着氢的传递,有迹象证明“种间甲酸传递”也是相当重要的。
第三阶段,称为产甲烷阶段。由产甲烷菌利用乙酸、H2、C02,产生CH4。
在厌氧反应器中,所产甲烷的大约70%由乙酸歧化菌产生。在反应中,乙酸中的羧基从乙酸分子中分离,甲基最终转化为甲烷,羧基转化为二氧化碳,在中性溶液中,二氧化碳以碳酸氢盐的形式存在。
已知利用乙酸的产甲烷菌是索氏甲烷丝菌和巴氏甲烷八叠球菌。两者的生长速率有较大的区别。当乙酸浓度较低时,索氏甲烷丝菌较巴氏甲烷八叠球菌优势生长。由于索氏甲烷丝菌对底物有更高的亲和力,在废水处理中可能取得较高的有机物去除率,且索氏甲烷丝菌的生长有利于形成品质良好的颗粒污泥。因此这种优势生长对系统运行是非常有利的。
厌氧消化微生物
1、发酵细菌(产酸细菌)
主要包括梭菌属、拟杆菌属、丁酸弧菌属、真菌属和双歧杆菌属等。
这类细菌的书要功能是先通过胞外酶的作用将不溶性有机物水解成可溶性有机物,再将可溶性的大分子有机物转化成脂肪酸、醇类等。研究表明,该类细菌对有机物的水解过程相当缓慢,pH和细胞平均停留时间等因素对水解速率的影响很大。不同的有机物的水解速率不同,如类脂的水解就很困难。因此当处理的废水中含有大量类脂时,水解就会成为厌氧消化过程的限速步骤。但产酸的反应速率较快,并远高于产甲烷反应。
发酵细菌大多数为专性厌氧菌,按其代谢功能,发酵细菌可分为纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋自质分解菌和脂肪分解菌。
2、产氢产乙酸细菌
产氢产乙酸菌包括互营单胞菌、互营杆菌属、梭菌属和暗杆菌属等。这类细菌能把各种挥发性脂肪酸降解为乙酸和H2。
3、产甲烷细菌
产甲烷菌分为两类:一类主要利用乙酸产生甲烷,另一类数量较少,利用氢和二氧化碳的合成生成甲烷。
厌氧反应中的硫酸盐还原
在处理含硫酸盐或亚硫酸盐废水的厌氧反应器中,这些含硫化合物会被细菌还原。硫酸盐和亚硫酸盐会被硫酸盐还原菌(SRB)在其氧化有机污染物的过程中作为电子受体而加以利用。SRB将硫酸盐和亚硫酸盐还原为硫化氢,会使甲烷产量减少。
根据所利用底物的不同,SRB可被分为三类:
氧化氢的硫酸盐还原菌(HSRB);
氧化乙酸的硫酸盐还原菌(ASRB);
氧化较高级脂肪酸的硫酸盐还原菌(FASRB)。
有机物的降解中少量硫酸盐的存在不会影响处理过程,但与甲烷相比,硫化氢在水中的溶解度要大得多,每克以硫化氢形式存在的硫相当于2克COD,因而在处理含硫废水时,尽管有机物的氧化已相当不错,COD的去除率却不令人满意。
4、抗生素废水的活性炭吸附
活性炭水处理的特点
活性炭吸附技术用于医药、化工及食品工业等方面,在国内外有多年的历史。活性炭水处理的特点为:
1、活性炭对水中有机物有卓越的吸附特性
由于活性炭具有发达的细孔结构和巨大的比表面积,因此对水中溶解的有机污染物,如苯类化合物、酚类化合物、石油及石油产品等具有较强的吸附能力,而且对用生物法和其它化学法难以去除的有机污染物,如色度、异臭、亚甲蓝表面活性物质、除草剂、杀虫剂、农药、合成洗涤剂、合成染料、胺类化合物及许多人工合成的有机化合物等都有较好的去除效果。
2、活性炭对水质、水温及水量的变化有较强的适应能力,对同一种有机物污染物的污水,活性炭在高浓度或低浓度时都有较好的去除效果。
3、活性炭对某些重金属化合物也有较强的吸附能力,如汞、铅、铁、镍、铬、锌、钻等,因此,活性炭用于电镀废水、冶炼废水处理上也有很好的效果。
4、活性炭水处理装置占地面积小,易于自动控制,运行管理简单。
5、饱和炭可经再生后重复使用,不产生二次污染。
6、可回收有用物质,如处理高浓度含酚废水,用碱再生后可回收酚钠盐。
活性炭吸附的基础理论
固体表面由于存在着未平衡的分子引力或化学键力,而使所接触的气体或溶质被吸引并保持在固休表面上,这种表面现象称为吸附。固体都有一定的吸附作用,但具有实用价值的吸附剂是比表面积较大的多孔性固体。活性炭就因为具有较大的比表面积而具有较高的吸附能力,可用作吸附剂。
吸附剂与被吸附物质之间是通过分子间引力(即范德华力)而产生吸附的,称为物理吸附;吸附剂与被吸附物质之间产生化学作用,生成化学键引起吸附的,称为化学吸附离子交换吸附是指一种吸附质的离子,由于静电引力,被吸附在吸附剂表面的带电点上。
活性炭的吸附速度
吸附速度是指单位重量吸附剂在单位时间内所吸附的物质量。在废水中,吸附速度决定了废水和吸附剂的接触时间。吸附速度越快,所需的接触时间越短,吸附设备容积也越小。
吸附速度决定于吸附剂对吸附质的吸附过程。多孔吸附剂对溶液中吸附质吸附过程基本上可分为三个连续阶段:第一阶段称为颗粒外部扩散阶段,吸附质从溶液中扩散到吸附剂表面:第二阶段称为颗粒孔隙扩一散阶段,吸附质在吸附剂孔隙中继续向吸附点扩散:第三阶段称为吸附反应阶段,吸附质被吸附在吸附剂孔隙内的表面上。一般而言,吸附速度主要由膜扩散速度或孔隙扩散速度来控制。
由实验得知,颗粒外部膜扩散速度与溶液浓度成正比。对一定重量的吸附剂,膜扩散速度还与吸附剂的表面积的大小成正比。因为表面积与颗粒直径成反比,所以颗粒直径越小,膜韦、一散速度就越大。另外,增加溶液和颗粒之间的相对运动速度,会使液膜变薄,可以提高膜扩散速度。
孔隙扩散速度与吸附剂孔隙的大小及结构、吸附质颗粒大小及结构等因素有关。一般来说,吸附剂颗粒越小,孔隙扩散速度越快,即扩散速度与颗粒直径的的较高次方成反比。因此,采用粉状吸附剂比粒状吸附剂有利。其次,吸附剂内孔径大可使孔隙扩散速度加快,但会降低吸附量。
影响活性炭吸附的因素
1、吸附剂的理化性质
吸附剂的种类不同,吸附效果也不一样。一般是极性分子(或离子)型的吸附剂容易吸附极性分了(或离子)型的吸附质,非极性分子型的吸附剂容易吸附非极性分子型的吸附质。由于吸附作用是发生在吸附剂的内外表面上,所以吸附剂的比表面积越大,吸附能力就越强。另外,吸附剂的颗粒大小、孔隙构造和分布情况,以及表面化学特性等,对吸附也有很大的影响。
2、吸附质的物理化学性质
吸附质在废水的溶解度对吸附有较大的影响。一般来说,吸附质的溶解度越低,越容易吸附。吸附质的浓度增加,吸附量也是随之增加:但浓度增加到一定程度后,吸附量增加很慢。如果吸附质是有机物,其分子尺寸越小,吸附反应就进行得越快。
3、废水的pH值
pH值对吸附质在废水中的存在形态(分子、离子、络合物等)和溶解度均有影响,因而其吸附效果也就相应地有影响。废水pH值对吸附的影响还与吸附剂性质有关。例如,活性炭一般是在酸性溶液中比在碱性溶液中有较高的吸附率。
4、温度
吸附反应通常是放热的,因此温度越低对吸附越有利。但在废水处理中,一般温度变化不大,因而温度对吸附过程影响很小,实践中通常在常温下进行吸附操作。
5、共存物的影响
共存物质对主要吸附质的影响比较复杂。有的能相互诱发吸附,有的能相当独立地被吸附,有的则能相互起千扰作用。但许多资料指出,某种溶质都以某种方式与其他溶质争相吸附。因此,当多种吸附质共存时,吸附剂对某一种吸附质的吸附能力要比只含这种吸附质时的吸附能力低。悬浮物会阻塞吸附剂的孔隙,油类物质会浓集于吸附剂的表面形成油膜,它们均对接触时间吸附有很大影响。因此在吸附操作之前,必须将它们除去。
6、接触时间
吸附质与吸附剂要有足够的接触时间,才能达到吸附平衡。吸附平衡所需时间取决于吸附速度,吸附速度越快,达到平衡所需时间越短。
四、研究结果(废水处理试验结论)
1、针对此种废水,其混凝处理的最佳条件为:混凝剂品种为三氯化铁,质量百分比浓度为10%,每lL废水中需投加此种混凝剂0.2ml,其最适pH值为7
2、进行废水的生化处理,可知废水中含有大量的隋性物质、难降解物质。
3、在T=33士1℃的条件下,确定其厌氧水解常数
4、由于废水中含有多种有机化合物,在用活性炭进行吸附试验时,表现了一定的竞争作用,活性炭总吸附量不高。
5、对于厌氧处理中的硫酸盐,它的去除与废水中所含的COD有一定的关系。详细资料摘自:http://wenku..com/link?url=-rZYzotwVqhEibE74YEzhcMF_gxdXU3ZhB0sJEQVO8NtKcdqDwSeh_m6m-fjJY7ooOxeuuSJvT_2rnAuTtVNHi4TdsfeE3r-0esoZroDqEm www.juheliusuantie.com.cn 详情请到网络文库了解