导航:首页 > 污水知识 > 废水氨氮表工作原理

废水氨氮表工作原理

发布时间:2022-05-25 14:19:50

1. 废水中氨氮应该如何去除

高氨氮废水处理方法:
一、物化法
1. 吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持"假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。"遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法
传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
1.A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。其特点是缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。
2.两段活性污泥法能有效的去除有机物和氨氮,其中第二级处于延时曝气阶段,停留时间在36小时左右,污水浓度在2g/l以下,可以不排泥或少排泥从而降低污泥处理费用。
3.强氧化好氧生物处理其典型代表有粉末活性炭法(PACT工艺)
粉末活性碳法的主要特点是向曝气池中投加粉末活性炭(PAC)利用粉末活性炭极为发达的微孔结构和更大的吸附能力,使溶解氧和营养物质在其表面富集,为吸附在PAC 上的微生物提供良好的生活环境从而提高有机物的降解速率。
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。
5. 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。
全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。
6. 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
7.超声吹脱处理氨氮
超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的吹脱方法的基础上,引入超声波辐射废水处理技术,将超声波和吹脱技术联用而衍生出来的一种处理氨氮的方法。将这两种方法联用不仅改进了超声波处理废水成本较高的问题,也弥补了传统吹脱技术去除氨氮不佳的缺陷,超生吹脱法在保证处理氨氮的效果的同时还能对废水中有机物的降解起到一定的提高作用。技术特点(1)高浓度氨氮废水采用90年代高新技术--超声波脱氮技术,其总脱氮效率在70~90%,不需要投加化学药剂,不需要加温,处理费用低,处理效果稳定。(2)生化处理采用周期性活性污泥法(CASS)工艺,建设费用低,具有独特的生物脱氮功能,处理费用低,处理效果稳定,耐负荷冲击能力强,不产生污泥膨胀现象,脱氮效率大于90%,确保氨氮达标。

2. 水质中为什么要测定氨氮的含量

水质中测定氨氮含量的原因如下:

  1. 水中的氨氮可以在一定条件下转化成亚硝酸盐,如果长期饮用,水中的亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。

  2. 氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。氨氮毒性与池水的pH值及水温有密切关系,一般情况,pH值及水温愈高,毒性愈强,对鱼的危害类似于亚硝酸盐。

    氨氮对水生物的危害有急性和慢性之分。慢性氨氮中毒危害为:摄食降低,生长减慢,组织损伤,降低氧在组织间的输送。鱼类对水中氨氮比较敏感,当氨氮含量高时会导致鱼类死亡。急性氨氮中毒危害为:水生物表现亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。


氨氮介绍:

氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。 动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氮。


测定氨氮的含量原理:

碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量.
本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定.

3. 氨氮含量为什么作为废水指标

水质中测定氨氮含量的原因如下:

  1. 水中的氨氮可以在一定条件下转化成亚硝酸盐,如果长期饮用,水中的亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。

  2. 氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。氨氮毒性与池水的pH值及水温有密切关系,一般情况,pH值及水温愈高,毒性愈强,对鱼的危害类似于亚硝酸盐。

    氨氮对水生物的危害有急性和慢性之分。慢性氨氮中毒危害为:摄食降低,生长减慢,组织损伤,降低氧在组织间的输送。鱼类对水中氨氮比较敏感,当氨氮含量高时会导致鱼类死亡。急性氨氮中毒危害为:水生物表现亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。


氨氮介绍:

氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。 动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氮。


测定氨氮的含量原理:

碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量.
本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定.

4. 检测污水中的氨氮采用什么原理啊

碘化汞和碘化钾的碱性溶液与氨反应生成淡黄棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。

5. 氨氮废水处理方法有哪些

氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。氨氮废水主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。排放的废水以及垃圾渗滤液等。氨氮废水对鱼类及某些生物也有毒害作用。另外,当含少量氨氮的废水回用于工业中时,对某些金属,特别是铜具有腐蚀作用,还可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和设备。处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。下来江苏帕斯玛环境科技的小编将为您介绍氨氮废水处理方法。
1化学沉淀法
化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg²﹢、PO4³﹣在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。
2 吹脱法
吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。吹脱法去除氨氮效果较好,操作简便,易于控制。
3 化学氧化法
3.1折点氯化法
折点氯化法除氨的机理为氯气与氨反应生成无害的氮气,N2逸人大气,使反应源不断向右进行。
3.2催化氧化法
催化氧化法是通过催化剂作用,在一定温度、压力下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。
3.3电化学氧化法
电化学氧化法是指利用具有催化活性的电极氧化去除水中污染物的方法。影响因素有电流密度、进水流量、出水放置时间和点解时间等。
4 生物法
4.1传统生物脱氮技术
传统生物法是在各种微生物作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。
4.2新型生物脱氮技术
4.2.1同时硝化反硝化(SND)
4.2.2短程消化反硝化
4.2.3厌氧氨氧化
5 膜分离法
膜分离法是利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透纳滤和电渗析等。影响膜分离法的因素有膜特性、压力或电压、pH值、温度以及氨氮浓度等。
6 离子交换法
离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。
7 土壤灌溉
土壤灌溉是将低浓度氨氮废水直接作为肥料使用的方法。对于有些含有病菌、重金属、有机及无机等有害物质的氨氮废水需经预处理将其去除后再进行灌溉。土壤灌溉要求氨氮浓度一般为几十毫克每升。
希望对您有所帮助,望采纳

6. 氨氮吸收塔 氨氮脱氮塔 是什么原理 我们厂是制药厂 就是车间的废液要进行脱氮处理后再去废水站处理

废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。目前采用的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等四种。

废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。目前采用的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等四种。
一、生物硝化与反硝化(生物陈氮法)
(一) 生物硝化
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。生物硝化的反应过程为:
由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:(1)pH值 当pH值为8.0~8.4时(20℃),硝化作用速度最快。由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度 温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间 硝化菌的增殖速度很小,其最大比生长速率为 =0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间 必须大于硝化菌的最小世代时间 。在实际运行中,一般应取 >2 ,或 >2 ;(4)溶解氧 氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷 硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。
(二) 生物反硝化
在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为:
6NO3-十2CH3OH→6NO2-十2CO2十4H2O
6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-

由上可见,在生物反硝化过程中,不仅可使NO3--N、NO2--N被还原,而且还可位有机物氧化分解。
影响反硝化的主要因素:(1)温度 温度对反硝化的影响比对其它废水生物处理过程要大些。一般,以维持20~40℃为宜。苦在气温过低的冬季,可采取增加污泥停留时间、降低负荷等措施,以保持良好的反硝化效果;(2)pH值 反硝化过程的pH值控制在7.0~8.0;(3)溶解氧 氧对反硝化脱氮有抑制作用。一般在反硝化反应器内溶解氧应控制在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);(4)有机碳源 当废水中含足够的有机碳源,BOD5/TN>(3~5)时,可无需外加碳源。当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。外加有机碳多采用甲醇。考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。此外,还可利用微生物死亡;自溶后释放出来的那部分有机碳,即"内碳源",但这要求污泥停留时间长或负荷率低,使微生物处于生长曲线的静止期或衰亡期,因此池容相应增大。
二、沸石选择性交换吸附
沸石是一种硅铝酸盐,其化学组成可表示为(M2+,2M+)O.Al2O3.mSiO2·nH2O (m=2~10,n=0~9),式中M2+代表Ca2+、Sr2+等二价阳离子,M+代表Na+、K+等一价阳离子,为一种弱酸型阳离子交换剂。在沸石的三维空间结构中,具有规则的孔道结构和空穴,使其具有筛分效应,交换吸附选择性、热稳定性及形稳定性等优良性能。天然沸石的种类很多,用于去除氨氮的主要为斜发沸石。
斜发沸石对某些阳离子的交换选择性次序为:K+,NH4+>Na+>Ba2+>Ca2+>Mg2+。利用斜发沸石对NH4+的强选择性,可采用交换吸附工艺去除水中氨氮。交换吸附饱和的拂石经再生可重复利用。
溶液pH值对沸石除氨影响很大。当pH过高,NH4+向NH3转化,交换吸附作用减弱;当pH过低,H+的竞争吸附作用增强,不利于NH4+的去除。通常,进水pH值以6~8为灾。当处理合氨氮10~20mg/L的城市严水时,出水浓度可达lmg/L以下。穿透时通水容积约100~150床容。沸石的工作交换容量约0.4×10-3n-1mol/g左右。
吸附铵达到饱和的沸石可用5g/L的石灰乳或饱和石灰水再生。再生液用量约为处理水量的3~5%。研究表明,石灰再生液中加入0.1mol的NaCl,可提高再生效率。针对石灰再生的结垢问题,亦有采用2%的氯化钠溶液作再生液的,此时再生液用量较大。再生时排出的高浓度合氨废液必须进行处理,其处理方法有:(1)空气吹脱 吹脱的NH3或者排空,或者由量H2S04吸收作肥料;(2)蒸气吹脱 冷凝液为1%的氨溶液,可用作肥料;(3)电解氧化(电氯化) 将氨氧化分解为N2。
三、空气吹脱
在碱性条件下(pH>10.5),废水中的氨氮主要以NH3的形式存在(图20-2)。让废水与空气充分接触,则水中挥发性的NH3将由液相向气相转移,从而脱除水中的氨氮。吹脱塔内装填木质或塑料板条填料,空气流由塔的下部进入,而废水则由塔顶落至塔底集水池。
影响氨吹脱效果的主要因素有:
(1)pH值 一般将pH值提高至10.8~11.5;
(2)温度 水温降低时氨的溶解度增加,吹脱效率降低。例如,20℃时氨去除率为90~95%,而10℃时降至约75%,这为吹脱塔在冬季运行带来困难;
(3)水力负荷 水力负荷(m3/m2.h)过大,将破坏高效吹脱所需的水流状态,而形成水幕;水力负荷过小,填料可能没有适当湿润,致使运行不良,形成干塔。一般水力负荷为2.5~5m3/m2.h;
(4)气水比 对于一定塔高,增加空气流量,可提高氨去除率;但随着空气流量增加,压降也增加,所以空气流量有一限值。一般,气/水比可取2500~5000(m3/m2);
(5)填料构型与高度 由于反复溅水和形成水滴是氨吹脱的关键,因此填料的形状、尺寸、间距、排列方式够都对吹脱效果有影响。一般,填料间距40~50mm,填料高度为6~7.5m。若增加填料间距,则需更大的填料高度;
(6)结垢控制 填料结垢(CaCO3)特降低吹脱塔的处理效率。控制结垢的措施有:用高压水冲洗垢层;在进水中投加阻垢剂:采用不合或少含CO2的空气吹脱(如尾气吸收除氨循环使用);采用不易结垢的塑料填料代替木材等。

空气吹脱法除氨,去除率可达60~95%,流程简单,处理效果稳定,基建费和运行费较低,可处理高浓度合氨废水。但气温低时吹脱效率低,填科结垢往往严重干扰运行,且吹脱出的氨对环境产生二次污染。
四、折点氯化
投加过量氯或次氯酸钠(超过"折点",参见第十四章),使废水中氨完全氧化为N2的方法,称为折点氯化法,其反应可表示为:
NH4+十1.5HOCl→0.5N2十1.5H2O十2.5H+十1.5Cl-
由反应式可知,到达折点的理论需氯(C12)量为7.6kg/kg(NH3-N),而实际需氯量在8~10kg/kg(NH3-N)。在pH=6~7进行反应,则投药量可最小。接触时间一般为0.5~2h。严格控制pH值和投氯量,可减少反应中生成有害的氯胺(如NCl3)和氯代有机物。
折点氯化法对氨氮的去除率达90~100%,处理效果稳定,不受水温影响,基建费用也不高。但其运行费用高;残余氯及氯代有机物须进行后处理。
在目前采用的四种脱氮工艺中,物理化学法由于存在运行成本高、对环境造成二次污染等问题,实际应用受到-定限制。而生物脱氮法能饺为有效和彻底地除氮,且比较经济,因而得到较多应用。

7. 氨氮测定的原理是什么

氨氮检测仪采用纳氏比色法测量水中的氨氮,该方法具有操作简便、灵敏度高等特点。其原理是:以游离态的氨或铵离子等形式存在的氨氮与钠氏试剂反应生成黄棕色络合物,该络合物的色度与氨氮的含量成正比。

8. 废水氨氮做法

处理方法

高氨氮废水如何处理,我们着重介绍一下其处理方法:

物化法

1. 吹脱法

在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。

2. 沸石脱氨法

利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理,此法适合于低浓度的氨氮废水处理,氨氮的含量应在10--20mg/L。

3.膜分离技术

利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。

9. 武汉科梦的氨氮废水处理是运用的什么原理呢

武汉科梦是采用高分散除氨技术处理氨氮废水,运用特殊分散设备,在特制分散剂的作用下,单位体积废水总表面积大幅度增加,氨的逸出机会多,迁移总量大。从而使溶液中NH3-N大幅下降,氨向气相迁移后,用少量空气带离体系即可,尾气用化学方法吸收,既回收氨产品又保护大气环境。氨的逸出总量大幅增加,且克服了温度的影响。

10. 试述废水生物脱氮除磷的原理

废水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用专好氧段经硝化作用,由硝属化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将 转化为 和 。在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将 (经反亚硝化)和 (经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。
该过程可分为三步:
第一步是氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。(在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施)
第二步是硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐,然后再在硝酸菌的作用下进一步氧化成硝酸盐。
三步是反硝化作用,即在缺氧或厌氧的条件下,硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。

阅读全文

与废水氨氮表工作原理相关的资料

热点内容
反渗透膜能否国产替代 浏览:220
纯净水桶盖如何撬下来 浏览:192
除垢滤料 浏览:695
洗辣椒废水 浏览:842
反渗透膜组件的四个基本形式 浏览:125
淮南污水厂管道修复怎么联系 浏览:191
净水器怎么样分辨好坏 浏览:525
阳极有芯镁棒除水垢的原理 浏览:516
大切的空调滤芯如何清洗 浏览:611
树脂抽真空太快 浏览:577
加工热带棕榈污水主要成分 浏览:482
做diy饮水机为什么出不了水 浏览:491
皮革废水有什么污染物 浏览:662
山西废渣废水乱排调查 浏览:655
创星过滤桶cP1400安装 浏览:810
怎样除史密斯燃气热水器水垢 浏览:498
小米反渗透好还是美的 浏览:465
淘宝上买的汽车动力提升器有效果吗 浏览:820
小米净化器pro怎么看滤芯使用率 浏览:962
空气能会有水垢吗 浏览:990