A. 酸碱废水处理的介绍
酸碱废复水是废水处理时最常制见的一种。酸性废水主要来自钢铁厂、化工厂、染料厂、电镀厂和矿山等,废水处理要重点治理含有各种有害物质或重金属盐类。废水处理中酸的质量分数差别很大,低的小于1%,高的大于10%。碱性废水主要来自印染厂、皮革厂、造纸厂、炼油厂等。废水处理时,会遇到含有机碱或含无机碱。碱的质量分数有的高于5%,有的低于1%。酸碱废水中,除含有酸碱外,常含有酸式盐、碱式盐以及其他无机物和有机物。
B. 煤矿酸性废水如何处理
酸性废水来源广泛,排污量较大。废水中含有很多悬浮物、金属离子和有用酸,专直接排放属不仅浪费资源还会污染环境,所以需要对酸性废水回用。
酸性废水回用装置的优点:
1、减少了中和药剂的使用。
2、分离废水中的有机物和金属离子。
3、回用的酸可以重复使用,减少了运行投资。
4、减少了污染物的排放。
5、出水水质可以达到国家标准。
6、设备简单、操作方便,自动化程度高。
7、节能、低耗,节约成本。
C. 矿山废水的来源危害
矿井水主要由伴随矿井开采而产生的地表渗透水、岩石孔隙水、矿坑水、地下含水层的疏放水、以及井下生产防尘、灌浆、充填污水,选矿厂和洗煤厂污水是矿山废水的主要来源。通常,矿井水pH值在7~8之间,属弱碱性。但是含硫的矿井水,其SO42-较多,大都是酸性水。在含硫矿井,由于矿石或围岩及含硫煤中含有硫化矿物。这些矿物经氧化、分解并溶解在矿井水中,形成酸性水。尤其在开采巷道中,在大量渗入地下水和良好的通风条件下,为硫化矿物的氧化、分解提供了极为有利的环境。
地下开采尤其是水力采煤、水沙充填采矿法排放的污水是不可忽视的。据统计,若不考虑回水利用,每产1t矿石,废水排放量为1m3左右;生产1t原煤约从井下排出废水0.5~10m3不等,最高可达60m3。而且有些矿山关闭后,还会有大量的废水继续污染矿区环境。并且矿山废水引起的影响范围远远超出矿区本身。
矿井水污染可分为矿物污染、有机物污染和细菌污染。在某些矿山中还存在放射性物质污染和热污染。矿物污染有砂、泥颗粒、矿物杂质、粉尘、溶解盐、酸和碱等;有机物污染有煤炭颗粒、油脂、生物生命代谢产物、木材及其它物质的氧化分解产物。以及受开采、运输过程中散落的粉矿、煤粉、岩粉及伴生矿物的污染,水体呈灰黑色、浑浊、水面浮有油膜,并散发少量的腥臭、油腥味。水质分析检验结果,化学耗氧量大,细菌总数和大肠菌群含量大,如未加处理,任其长期外排,对环境会产生一定的不良影响。
D. 酸碱废水处理原则及特点都有哪些
酸性废水主要来自钢铁厂、化工厂、染料厂、电镀厂和矿山,其中含有各种有内害物质或重金属盐。酸的质量容分数差异很大,低的不到1%,高的不到10%。碱性废水主要来自印染厂、皮革厂、造纸厂、炼油厂等。其中一些含有有机碱或无机碱。碱的质量分数高于5%,低于1%。酸碱废水除酸和碱外,通常还含有酸式盐、碱式盐、其他无机物和有机物。
另外,中科检测认为,酸碱废水腐蚀性强,只有经过适当处理后才能排放。
处理酸碱废水的一个原则是:
(1)高浓度酸碱废水优先考虑回收利用,根据水质、水量不同的工艺要求,进行工厂和地区的安排,尽量再利用:再利用困难或浓度低时,水量大时,可以用浓缩的方法回收酸碱。
(2)酸洗槽冲洗水、碱洗槽冲洗水等低浓度酸碱废水应进行中和。
关于中和处理,首先必须考虑废弃的原则。例如,酸、碱废水相互中和,利用废碱中和酸性废水,利用废酸中和碱性废水。没有这些条件的话,可以用中和剂处理。
E. 矿山酸性废水怎么处理
矿山酸性废水主要是由还原性的硫化矿物在开采,运输,选矿及废石排放和尾矿贮存等过程中经空气,降水和菌的氧化作用形成的.矿山酸性废水水量较大,pH值较低,含高浓度的硫酸盐和可溶性的重金属离子.
矿山酸性废水的处理方法主要分为中和法和微生物法2种.中和法是最常用的方法,即向酸性废水中投加碱性中和剂(碱石灰,消石灰,碳酸钙,高炉渣,白云石等),一方面使废水的pH值提高,另一方面废水中的重金属离子与中和剂发生化学反应形成氢氧化物沉淀,去除水体中的重金属离子.为了提高处理效果,中和法通常与氧化或曝气过程(如将Fe2+转变为Fe3+)相结合使用.王洪忠等人利用中和法对排入孝妇河的矿山酸性废水进行处理,出水pH值达到7.5,硫酸根和总铁含量为微量.陈喜红对江西万年银金矿矿山废水采用中和法处理,出水水质指标优于农灌用水标准.银山铜锌矿采用两段石灰中和法处理矿山酸性废水得到含锌量达40%的锌渣.栅原矿山和平水铜矿分别采用分段中和沉淀法处理酸性废水,有效地回收了有价金属.微生物法是利用自然界中的硫循环原理,利用硫酸盐还原菌通过异化硫酸盐的生物还原反应,将硫酸盐还原成H2S,并利用某些微生物将H2S氧化为单质硫,同时重金属离子在微生物体内"积累"起来.国外应用微生物法处理矿山酸性废水的实例较多,如美国蒙大拿州对某矿山酸性废水建立(硫化还原菌)处理系统,出水pH值达到7,Fe,Al,Cd和Cu的去除率也较高.随着科学的进步,矿山酸性废水的处理技术不断得到新的发展,如湿地处理法,生物膜吸附处理法和生化材料过滤法等.
F. 酸性工业废水包括哪些种类啊
含较低浓度的硫酸、硝酸、盐酸、磷酸、有机酸等酸性物质的废水称酸性废水。
G. 酸碱废水处理原则及特点有哪些
酸碱废水是废水处理时最常见的一种。酸性废水主要来自钢铁厂、化工厂、染料厂、电镀厂和矿山等,废水处理要重点治理含有各种有害物质或重金属盐类。废水处理中酸的质量分数差别很大,低的小于1%,高的大于10%。碱性废水主要来自印染厂、皮革厂、造纸厂、炼油厂等。废水处理时,会遇到含有机碱或含无机碱。碱的质量分数有的高于5%,有的低于1%。酸碱废水中,除含有酸碱外,常含有酸式盐、碱式盐以及其他无机物和有机物 [1] 。
来源
含酸含碱废水来源很广,化工、化纤、制酸、电镀、炼油以及金属加上厂酸洗车间等都会排出酸性废水。有的废水含有无机酸如硫酸、盐酸等有的则含有蚁酸、醋酸等有机酸,有的则兼而有之。废水含酸浓度差别很大从小于1到10以上都有。造纸、印染、制革、金属加工等生产过程会排出碱性废水大多数情况下是无机碱也有些废水含有有机碱。某些废水的含碱浓度很高,最高可达百分之几。废水中除含有酸、碱外还可能含有酸式盐和碱式盐以及其他的酸性或碱性的无机物和有机物等物质。 将含有酸碱的废水随意排放不仅会对环境造成污染和破坏,而且也是一种资源的浪费。因此,对酸、碱废水首先考虑回收和综合利用。
当酸、碱废水浓度较高时,例如:
含酸废水含酸量达到4以上、含碱废水含碱量达到2以上时就存在回收和综合利用的可能性可以用以制造硫酸亚铁、石膏、化肥,也可以回用或供其他工厂使用。浓度低于4的酸性废水和浓度低于2的碱性废水因为回收利用的意义不大才考虑进行中和处理。 其中含有各种有害物质或重金属盐类。酸的质量分数差别很大,低的小于1%,高的大于10%。
碱性废水主要来自印染厂、皮革厂、造纸厂、炼油厂等。其中有的含有机碱或含无机碱。碱的质量分数有的高于5%有的低于1%。酸碱废水中除含有酸碱外,常含有酸式盐、碱式盐以及其他无机物和有机物。 酸碱废水具有较强的腐蚀性,需经适当治理方可外排。
处理方法
酸碱废水具有较强的腐蚀性,如不加治理直接排出,会腐蚀管渠和构筑物;排入水体,会改变水体的pH值,干扰,并影响水生生物的生长和渔业生产;排入农田,会改变土壤的性质,使土壤酸化或盐碱化,危害农作物;酸碱原料流失也是浪费。所以酸碱废水应尽量回收利用,或经过处理,使废水的pH值处在6~9之间,才能排入水体。
酸碱废水处理的一般原则是:
(1)高浓度酸碱废水,应优先考虑回收利用的废水处理法,根据水质、水量和不同工艺要求,进行厂区或地区性调度,尽量重复使用:如重复使用有困难,或浓度偏低,水量较大,可采用浓缩的废水处理法回收酸碱。
(2)低浓度的酸碱废水,如酸洗槽的清洗水,碱洗槽的漂洗水,应进行中和废水处理。
对于中和处理,应首先考虑以废治废的废水处理原则。如酸、碱废水相互中和或利用废碱(渣)中和酸性废水,利用废酸中和碱性废水。在没有这些条件时,可采用中和剂废水处理。
回收利用
对于高浓度含酸(一般在10%以上)、含碱(一般在5%以上)废水,首先应根据水质、水量和不同工艺要求,进行厂区或地区性调度,尽量重复使用;如重复使用有困难,或浓度较低,水量较大,可采用浓缩的方法回收酸碱。
含酸废水回收利用的方法主要有:浸没燃烧高温结晶法、真空浓缩冷冻结晶法和自然结晶法。
浸没燃烧高温结晶法的基本过程是:将煤气燃烧所产生的高温气体直接喷入待蒸发的废液,去除废液中的水分,浓缩并回收酸类物质。这种浓缩方法适用于处理大量废水,其优点是热效率高,回收的再生酸浓度较高(可达42.6%);缺点是酸雾大,防腐蚀要求较高,并须有可燃气体来源。真空浓缩和自然结晶法的基本过程是:利用真空减压法降低含酸废水的沸点,以蒸发水分,浓缩并回收酸类物质。这种浓缩方法的优点是自动化程度较高,酸雾问题易于解决;缺点是回收的再生酸浓度较低(仅为18~20%);需用耐酸防腐蚀材料较多,设备投资较大。自然结晶法主要是利用含酸废水制取硫酸亚铁、硫酸铵等化工原料和化学肥料。此外,还可用渗析法、离子交换法回收酸、碱物质。在水处理工艺中,也可将酸性废水用于给水软化的磺化煤再生和用于水质稳定等 [1] 。
H. 煤矸石山的生态环境危害
煤矸石露天堆放,一方面压占大量的土地,另外暴露在空气中极易发生一些物理化学反应,发生自燃、扬尘等现象,对矿区及其周边地区的大气、水体等造成严重污染;另一方面煤矸石山在外力的作用下还可能发生坍塌、泥石流等地质危害,产生生态破坏、景观破坏,引发社会问题,最终危害矿区的生态安全和人类健康(图1-1)。
图1-1 煤矸石山可能引起的生态环境危害
一、煤矸石山的物理危害
1.占压土地
煤矸石是我国目前工业排出的固体废弃物中数量最大的一种。据统计,我国国有重点煤矿现有煤矸石山1700多座,堆积量达50×108t以上,占地面积超过20000hm2,而且随着煤炭的开采,煤矸石以每年约5×108t的数量增加,约占土地面积300~400hm2,造成了大量土地资源的浪费,使农民失去土地,也破坏了原有的土地结构和景观结构。在我国人多地少的基本国情下,矸石山占用大量的土地资源,加剧了人地矛盾,对社会和经济发展造成的影响已不容忽视,必须加快对煤矸石的综合利用,或进行绿化复垦,进而减少和消除矸石堆放所占用的宝贵的土地资源(图1-2)。
图1-2 煤矸石的堆积压占了大量的土地
2.扬尘对大气环境的污染
煤矸石在空气中很容易发生风化,遇风会产生扬尘现象。由煤矸石引起的细小粉尘颗粒物质进入人体肺部,导致如呼吸道、肺部的疾病,甚至导致癌症;大粉尘颗粒进入眼、鼻、嘴等器官,容易引起感染,特别是风化粉尘中常常含有对人体有害的重金属元素和有机元素,危害人体健康。另外,颗粒悬浮于大气中容易造成气候异常。
3.煤矸石山引发的地质灾害
自然堆放的煤矸石由于堆放方式、自燃、风化等原因,使得煤矸石山很不稳定,从而极易引发地质灾害。
(1)煤矸石山崩塌和滑坡。煤矸石山多为自然堆积而成,具有坡度大、内部结构疏松的特点,而且受矸石自燃等的影响,煤矸石山非常容易发生崩塌、滑坡。如1994年,山东枣庄煤矿北煤井一矸石堆发生坍塌,导致17人死亡,7人受伤。
(2)煤矸石泥石流。山区煤矿大多数直接将煤矸石倾倒于沟谷中,这些结构疏松的煤矸石成为泥石流的物质源,一旦山谷中由于降雨等形成较强的径流条件,即可形成泥石流灾害。如2004年5月,重庆市万盛区的煤矸石山发生泥石流,造成了严重的人员伤亡,有5人遇难,16人失踪,14间房屋被埋。2009年6月,重庆合川双凤煤矸石山引发泥石流,将两村民埋没死亡。
(3)煤矸石山爆炸。选煤厂煤矸石和其他具有一定热值、硫含量较高的煤矸石堆积而成的煤矸石山,一般发热量可达到3350~6280J。此类煤矸石山由于内部发热,并随着温度的蓄积,温度最高可达800~1200℃,形成一个高温高压的内部环境。风化后的煤矸石山表面覆盖了一层较细的风化颗粒,内部热量和瓦斯气体散发不出来,当煤矸石山内瓦斯气体的浓度达到一定程度,极易产生爆炸,并引起崩塌、滑坡等地质灾害,对附近居民的安全造成严重威胁。
自燃煤矸石山爆炸时释放出大量的热能,瞬时温度可达2300~2500℃。爆炸抛出的高温矸石可引起周围建筑火灾,烧毁周边的树木、工厂设备,烧伤人员,也是引发连续爆炸的主要热源。图1-3所示是某座矸石山发生爆炸产生的高温热浪将20多米远的树木叶子烧焦,可见爆炸产生热量之高,危害之大。
图1-3 矸石山爆炸产生高温热浪对环境的破坏
图1-4 矸石山爆炸产生粉尘对环境的破坏
自燃矸石山爆炸不仅产生高温,而且爆炸压力也很高。高压可以促使爆源附近的气体以极大的速度向外冲击,其传播速度可达2340m/s,对矿井地面建筑和器材设施造成破坏,同时,冲击波可扬起大量矸石粉尘,并使之参与爆炸,造成局部粉尘的连续小爆炸,形成更大的破坏力。冲击波可以在它的作用区域内产生震荡作用,使物体因震荡而松散,甚至破坏。据研究,当冲击波大面积作用于建筑物时,波阵面超压在20~30kPa内,就足以使大部分砖木结构建筑物受到强烈破坏(图1-4、图1-5);超压在100kPa以上时,除坚固的钢筋混凝土建筑外,其余部分将全部破坏。
图1-5 平煤四矿“2005年5月15日”煤矸石爆炸事件灾后房屋
2005年5月,河南平煤集团煤矸石山发生自燃崩塌,造成周边房屋严重破坏和人员伤亡;另外在抢险过程中,煤矸石山又发生3次喷发,造成8人遇难,122人灼伤。焦作矿区1988年的一次矸石山爆炸,造成6名儿童死亡。矸石山爆炸已经是我国煤矿常见的地质灾害,给矿区人民的生产生活造成了极大的伤害和财产损失。2001年5月13日,阳泉一矿正在使用的排矸场上,发生一起煤矸石山爆炸事故,造成一人死亡。据不完全统计,我国每年发生的矸石山地质灾害几十起。由此可见,我国煤矸石山安全现状不容乐观。
4.煤矸石山的水土流失
自然堆放的煤矸石山一般坡度较大,有些煤矸石山的安息角高达40°以上。由于煤矸石的粒径较大,堆放初期,表面的煤矸石风化程度低,煤矸石山入渗能力较强。随着表面煤矸石风化程度的提高,入渗能力逐渐降低,使得煤矸石山表面径流加大,造成土壤的冲刷。近年来煤矸石堆放一般需要经过压实,经过机械碾压的煤矸石山表面由于形成致密的“不渗层”,在暴雨天气下其上覆盖的表土极易造成严重的水土流失(图1-6)。
图1-6 阳泉煤矸石山的水土流失现象
二、煤矸石山的化学危害
1.自燃的危害
由于煤矸石山中含有一定量的残煤、碳质泥岩、废木材等可燃物和易氧化释放热量的硫铁矿和硫等化学物质,野外露天堆放的煤矸石极易发生自燃。首先是煤矸石里的黄铁矿(FeS2)氧化产热,当温度达到可燃物的燃点时,引起残煤、炭质等可燃物质的自燃,进而导致起煤矸石山自燃。自燃后的煤矸石山内部温度可达800~1200℃,并释放出大量CO、CO2、SO2、H2S、氮氧化合物、苯芘等有害气体(表1-5)。
在供氧不足时,主要产生的气体为:
自燃煤矸石山治理与生态重建技术
自燃煤矸石山治理与生态重建技术
自燃煤矸石山治理与生态重建技术
当供氧充足时,碳质物和黄铁矿的氧化反应更激烈:
自燃煤矸石山治理与生态重建技术
自燃煤矸石山治理与生态重建技术
自燃煤矸石山治理与生态重建技术
在高温作用下:
自燃煤矸石山治理与生态重建技术
自燃煤矸石山治理与生态重建技术
表1-5 中国部分自燃煤矸石山污染监测结果 单位:mg/m3
据统计,全国国有重点煤矿所属的1700多座煤矸石山中,约1/3的矸石山正在发生燃烧。其中,山西阳泉煤业集团累计矸石量达1×108t,现有大小煤矸石山20多座,而且大部分都在自燃。煤矸石在自燃过程中放出大量的SO2、H2S、CO、CO2和NOx等有害气体并伴有大量烟尘。常年自燃的矸石山,每平方米燃烧面积每天将向大气排放出CO 10.8g、SO2 6.5g、H2S和NOx 2g。大量的SO2、H2S、CO、CO2和NOx等有害气体的释放,不仅对矿区环境造成破坏,而且对周围居民的急、慢性疾病的发生率均有显著影响。煤矸石自燃时大量SO2、NOx进入大气,还是造成酸雨的源头之一。另外,煤矸石在露天堆放时,矸石表面会风化成粉尘,在风力作用下,整个矿区飞沙走石,遮天盖日,全都笼罩在黑色煤尘包围之中,对周围大气环境造成严重不良影响。
我国矸石山自燃以黄河中上游一带较为严重,如宁夏的大部分煤矿矸石山,内蒙古的乌达矿矸石山,陕西的铜川矿区矸石山,山西太原西山煤田的东西矿区矸石山、阳泉煤业集团煤矸石山,河南的焦作、平顶山等矿区矸石山均发生大面积自燃,不仅污染大气,还影响人体健康。例如,阳煤集团现在堆积有20多座矸石山,年排矸量约700×104t。由于大量洗矸和部分洗矸中的煤源源不断地堆上了各矿的煤矸石山,一至四矿4座特大型煤矸石山先后发生了大面积自燃,煤矸石山自燃严重污染了排矸作业环境,影响排矸工人身体健康。在排矸现场的工人,经常发生SO2和CO中毒症状,被送往医院抢救。经阳煤集团环境监测站采样监测,SO2平均浓度为19mg/m3,CO为125.9mg/m3,在排矸场局部地区SO2最高浓度达138mg/m3,CO最高浓度达237mg/m3,分别超过国家大气环境质量三级标准196倍和10.9倍,对排矸场周围的农作物和居民都造成了严重污染,使村、矿矛盾尖锐化。例如:铜川矿务局6个自燃矸石山周围均为癌症高发区,在矸石山附近工作过5年的职工,都患有肺气肿。我国乌达跃进选煤厂矸石山燃烧区附近检测结果:SO2平均浓度为10.69mg/m3,超过国家标准70多倍,而H2S平均浓度为1.57mg/m3,超过国家标准150多倍。
煤矸石山自燃产生大量CO、SO2等有毒有害气体。一座煤矸石山自燃可长达十余年至几十年,由于长期释放大量有毒有害气体造成了严重的大气污染,使得自燃煤矸石山周围地区呼吸道等发病率明显高于其他地区(图1-7、图1-8)。煤矸石山自燃释放出的SO2等气体对绿色植物的叶片细胞产生危害作用,导致叶绿素枯死。SO2浓度严重超标,还会导致一些敏感植物死亡。SO2对绿色植物的污染受害浓度见表1-6。
图1-7 煤矸石山的自燃产生大量有毒有害气体
图1-8 阳泉煤矸石山的自燃
表1-6 SO2对绿色植物的污染受害浓度
续表
2.酸性水污染和有毒重金属污染
矸石风化物无粘结性,矿物颗粒可随降水而移动,风化物中有毒元素等某些成分可随降水渗入土壤、进入潜流和水系等。据研究表明,矸石中氯离子、碳酸氢根、镁离子、钙离子、钾离子、钠离子组成和含量与内陆盐渍土的盐分组成和含量相似,影响矸石山上的植物生长。严重的是,矸石中含有多环芳烃等多种微量重金属元素,这些有毒重金属元素通过雨水淋溶渗入土壤或进入水域,对水环境和土壤环境造成污染,其污染程度则取决于这些元素的含量、煤矸石pH和淋溶量的大小。这些重金属元素被农作物吸收,同时通过食物链进入人体,危害人体健康。煤矸石中淋溶析出的金属元素有Cd、Pb、Hg、Cr、As、Cu、Zn、Al、Ca等,它们的排放与转移会对接纳水体造成污染(图1-9)。Cd、Pb、Hg、Cr、As等重金属离子的毒性非常大,能在环境中蓄积于动植物体内,对人体健康产生长期的不良影响,会引起急、慢性中毒,造成人体肝、肾、肺等组织的伤害,严重时甚至能够导致畸形、癌变和死亡。
图1-9 煤矸石山淋溶产生的酸性矿山废水严重污染周围的土壤和水体
我国许多地区煤矸石含硫量较高,如山西阳泉煤矸石含硫量5.77%,四川南桐煤矿矸石含硫量18.93%,贵州大枝煤矿8%~16.08%,煤矸石中的黄铁矿经过氧化、淋溶作用,形成富含硫酸根、铁、重金属等有毒元素的酸性水;煤矸石山自燃产生的SO2、CO2等与水分子结合,也易使煤矸石山土壤酸化,有的煤矸石山土壤pH可达到3。如2006年甘肃雷坛河遭煤矸石侵袭,致使两万人饮用水源受威胁。河道的一大半已经被一座上面宽约2m、下面宽约10m、高约5m、绵延约200m的煤矸石山占据,底部的煤矸石全部浸泡在河水中,严重污染了河水,使饮用水水源遭到污染。
3.煤矸石对环境的放射性污染
在长期的堆积过程中,煤矸石中放射性元素大量析出,使空气中的放射性元素浓度增大,超过其本底值造成辐射污染。煤矸石中天然放射性元素主要为铀-238、钍-232、镭-226、钾-40。据山西省阳泉等矿区监测,矸石中的天然放射性核心元素均高于原煤和土壤中的相应数值。
依据我国《放射防护规定》、《建筑材料放射卫生防护标准》和《建筑材料用工业废渣放射性物质限制标准》中的有关规定,结合全国部分地区土壤放射性核元素含量,可以认为煤矸石不属于放射性废物,而属于一般工业固体废物。煤矸石即使100%用于建材制品,亦满足有关放射性限制标准和卫生防护限制规定。
三、煤矸石山对矿区景观的破坏
煤矸石山的堆放直接改变了原有土地的结构和功能,毁坏了原有的植物生态系统,使原有土地变成了寸草不生的“石质荒漠”;另外煤矸石多为灰黑色,且大部分煤矸石山山体高大,有的甚至高达100多米,巨大的光秃秃的黑色煤矸石山成了煤矿区最主要的标志物,与矿区周围山体、植被、农田等自然景观极不协调;自燃煤矸石山还冒着白色的烟雾,严重破坏了矿区的自然景观(图1-10)。
图1-10 煤矸石对矿区景观的破坏
煤矸石山的风蚀扬尘、尘埃等颗粒物覆盖在建筑、植物、道路等之上,使其失去原来色调;煤矸石扬尘降低了空气的清洁度和光照度;煤矸石山流水和经雨水冲刷带下的煤矸石风化物,破坏水体景观。煤矸石堆放产生的粉尘、自燃产生的有毒有害气体等对植物生长存在很大的影响,如植物叶色变黄、生长速度降低、草地植被种类减少等,对矿区的生态系统和植被景观产生了严重破坏(图1-11)。
图1-11 煤矸石山对矿区景观的破坏
I. 煤矿酸性水水化学特征及其环境地球化学信息研究
摘 要 以水化学数据为依据,应用相关分析,结合地质、水文勘探资料,对煤矿酸性矿排水( AMD) 的水化学特点及其成因进行了研究。煤矿 AMD 在一定的物质条件和环境条件下形成,只要条件适宜,不管是高硫煤还是低硫煤均可产生酸性水; 低 pH、高 Eh、高 TDS 及高硬度是煤矿 AMD 的重要特征,水中的 SO42 -与其 EC 之间以及 Fe3 +/ Fe2 +比值与其 Eh 值走势具有良好的一致性,水中微量元素及重金属来源较复杂,如 Ni、Cu、Co、Zn 等来源于黄铁矿的氧化溶解,但 Pb、Sr 等主要来自 AMD 对煤系地层中煤及岩石中矿物的淋滤作用。
任德贻煤岩学和煤地球化学论文选辑
一、引言
煤矿在开采过程中,因含煤地层中所含硫化物( 主要为黄铁矿) 的赋存环境变化而自发进行氧化还原反应,可导致产生酸性矿排水( AMD) 。AMD 的低 pH 值和较高的矿化度特征,说明其有很强的溶解性和侵蚀性,这种矿排废水能携带大量的重金属及有害化学物质进入环境。煤矿酸性矿井水在我国分布广泛,北方主要分布在陕、晋、鲁和内蒙等省区,南方分布在川、桂、贵、浙、闽等省区。目前,对 AMD 的研究多集中在金属矿床、矿尾库等的酸性矿排水治理方面,而对含煤地层环境下产生的 AMD 的水化学数据中所蕴含的丰富环境地球化学信息的解读还不多见。煤矿 AMD 的化学特征在一定程度上反映了相应地区的物质组成、主要水—岩反应和水中组分的相互作用等环境信息,对这些信息的研究可了解煤矿AMD 的产生、变化过程及可能产生的环境效应,为煤矿环境治理及模拟预测提供可靠依据。笔者通过对福建省永安及上京两个矿区的井下现场勘查,系统采集和测试了煤层、顶底板岩石、黄铁矿以及矿井中的酸性水样品,通过综合分析这些数据,试图总结煤系酸性水的水化学特征,并探讨其中所反映的环境信息。
二、研究区地质环境
区内地层主要由上石炭统船山组、下二叠统栖霞组、文笔组、童子岩组、上二叠统翠屏山组及第四系残坡积物层组成。下二叠统童子岩组为主要含煤地层,由一套海陆过渡相岩性组成,以泥质岩为主,次为粉砂岩和砂质岩,砂岩多为钙质胶结。普遍含形态各异、含量不等的菱铁矿和黄铁矿结核。童子岩组内由下而上分为第 1、第 2、第 3 段,其中第 1 和第 3 段为含煤段。在永安矿区,第 3 段为主要含煤段,自上而下有 0 ~11 号煤层,其中 1 号、2 号、5 +6 号、9 号为主采煤层。在上京矿区,第 1 段为主要含煤段,煤层自上而下为 22 ~ 49 号煤,其中 33、34、38、45、48 等 16 层煤层为可采煤层。
研究区沟谷发育,植被茂盛,海拔最高点标高为809m,最低点为300m。本区为亚热带潮湿气候区,年平均降雨量和气温分别为1565mm、18.9℃,气温最高39.2℃,全年相对湿度平均79%。水文地质条件属简单—中等类型,下部栖霞灰岩富水性较强,但远离煤层(距煤层200m左右),正常情况下对煤层没有影响。大气降水是矿坑水的直接或间接补给水源。另外煤系构造裂隙发育,但富水性弱,岩性为砂岩,钻孔涌水量Q=0.57~4.5L/s,渗透系数K=0.073~0.15m/d。裂隙水水质为HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,总矿化度0.016~0.15g/L,属低矿化度具侵蚀性水。
三、样品采集与检测
为全面了解永安矿区童子岩组内整个含煤地层酸性水的情况,在永安矿区东坑仔矿的0号、1号、9号和上京矿区小华煤矿的34、38、48号等主采煤层的顶底板、煤和水及部分黄铁矿进行采样。在井下现场测定了水样温度、Eh值和pH值,其余水质项目按取样标准处理后送核工业北京地质研究院测定。用等离子质谱法(ICP-MS)测定水中阳离子及痕量元素含量;离子色谱法(IC)测定氯离子、氟离子、溴离子、硝酸根离子和硫酸根含量;采用容量法测定碳酸根、重碳酸根、氢氧根的浓度。对煤样、煤层顶底板岩样及黄铁矿样品进行了X射线衍射(XRD)分析和等离子质谱分析。
四、结果与讨论
1.井下AMD的环境特征
在井下调研时发现,大量褐红色氧化铁沉淀物与酸性水伴生,可视其为存在酸性水或曾经有酸性水产出的标志。酸性水常常出现在松散、破碎的煤层顶板处及平巷上部的采空区下方,这些现象表明酸性水明显受环境条件的控制,这可能与含氧水的进入有关。在无破碎区,地表水中有限溶解氧在缓慢的下渗过程中,被浅部地层中的物质消耗,不足以氧化较深部的含硫矿物而产生酸性水。
地质勘探资料表明,本区煤系由以铝、硅酸盐矿物为主的泥岩、粉砂岩及砂岩组成,地层中碳酸盐岩组分相对很少,CaCO3仅以脉状或钙质胶结物形式产出。有关黄铁矿氧化动力学实验表明[1],在有碳酸盐岩存在时,产酸能力受到抑制。Holmstrom[2]等的研究表明,尾矿是否产生酸性排水和释放重金属主要取决于碳酸盐矿物的含量,而不是硫化物的含量。永安矿区煤中总硫含量小于1%,为低硫煤,但却产生了pH值低达2.75的酸性水,这一事实表明不管是高硫煤还是低硫煤均可产生酸性水。
2.煤层AMD的水化学特征
所取水样有3种类型:煤层酸性水样、煤层非酸性水样、地表水样。各水样的化学组成检测结果见表1,样品中除JS8为地表水外,其余为井下矿排水。
根据矿井原钻孔资料,未经淋滤的地层裂隙水的水质为HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,总矿化度0.016~0.15g/L。而经淋滤煤层后形成的酸性水的组成变化很大,按库尔洛夫表达式计算后,水质类型变为SO4-Ca-Mg(如DS2)和SO4-Mg-Fe-Ca(如HS5)型水,TDS为1.64~4.398g/L,为高矿化度水。
表1 永安矿区煤层矿井水水化学常量组分含量w单位:mg·L-1
注:-为未检出;表中硬度以CaCO3计。
由表1可以得出本区煤矿酸性有如下特点:
(1)pH值变化范围较大,可从5点几至2点几,而在pH≤3.00的水中,HCO-3含量均为未检出。根据水中碳酸系统平衡关系,此时水中的碳酸盐组分以H2CO3或游离CO2形式存在,即水的总碱度趋于零,具有较强的侵蚀性。
(2)酸性水具有SO42-高、总硬度高和TDS高的三高特征。SO2-4含量在阴离子中占绝对优势,表1中HS7水样硫酸根离子浓度达3239.9mg/L,煤矿酸性水水化学类型一般为SO2-4-Ca、Mg(Fe、Al)型。酸性水使地层中碳酸盐类及铝硅酸盐类矿物大量溶解,而造成水的高硬度和高TDS,TDS>1g/L。如,HS7的TDS达4398.5mg/L。酸性水中硫酸盐是其矿化度主要贡献者,水中SO2-4离子浓度与其电导率(EC)具有良好的对应关系(图1)。
(3)煤矿酸性水的Eh范围在600~800mv,是一种高氧化态水,水中的多价态元素以高价态存在,如Fe3+、V5+、Mn4+、Cr6+等。检测结果表明,Fe3+/Fe2+比值在多数情况下与环境的Eh值有良好的相关性(图2),Eh随Fe3+/Fe2+值增加而增加,Fe3+/Fe2+比值在井下酸性水环境中起到决定电势作用。
图1 电导率与SO42-含量走势相关图
图2 Eh与Fe3+/Fe2+走势相关图
3.AMD中微量组分来源分析
造岩矿物及矿石矿物中的微量元素通常以类质同象形式存在,而天然水中微量元素的分布通常受环境中水—岩相互作用控制。对永安矿区酸性矿坑水样中50多种微量元素进行了ICP—MS测定。对7个矿井水样中含量100×10-9以上的微量元素与水样中的主要特征元素进行了相关分析(表2)。综合分析上述数据,并结合煤、岩及黄铁矿样品的XRD分析结果,可得出以下初步结论:
(1)pH值与大多数组分呈负相关,说明各组分的溶解度随介质pH的降低而增大,尤其对Fe和Al溶解度影响较大。同时也可能与它们在pH增大时易形成氢氧化物胶体而沉淀有关。胶体形成后对其他微量元素的吸附产生共沉淀是pH对微量元素含量的一个间接影响。
(2)Ni、Co、Zn、Y等与Fe、SO2-4高度相关,相关系数大于0.94,说明它们的来源与黄铁矿的氧化溶解密切相关。Ni、Co、Zn均为过渡元素,常在黄铁矿中与铁形成类质同象替代,而在黄铁矿风化过程中被释放进入溶液;与Fe、SO2-4有较高相关性的还有Na、Cu、Mg、Mn元素,这些元素在地球化学上与铁元素常亲密共生,说明黄铁矿是其部分来源,或是黄铁矿的氧化溶解对它们的释放迁移有重要影响。
(3)水中Pb-K和Pb-Al的相关系数分别为0.77和0.64,而与Fe和SO2-4的相关系数较低,分别为0.39和0.41。ICP-MS对煤、岩、矿的分析结果表明,大多数煤样品中的Pb含量高于同层位中黄铁矿的Pb含量,且由于本区为低硫煤,因此黄铁矿对矿井水中Pb的贡献相对较小,即本区酸性水样中的Pb除来源于黄铁矿的氧化溶解外,还来源于地层中的含铅矿物,如钾长石、黑云母的水解反应:
任德贻煤岩学和煤地球化学论文选辑
(4)锶是广泛存在于地下水中的一种微量元素。它在造岩矿物中的分配主要受钙和钾的互带性控制[3],Sr2+主要是以类质同象的形式存在于含钙、钾的铝硅酸盐矿物中,随着含锶的钙长石、钾长石、白云母等矿物的水解,锶被释放而进入地下水中。
本研究水样中锶含量在几百~上千μg/L,Sr与Ca呈正相关,相关系数为0.79,与K的相关系数仅为0.27。本水样中的锶可能主要来源于钙长石的水解反应。赵广涛(1998)[4]对崂山矿泉水的研究得出Ca-Sr的相关系数为0.6636,而K-Sr的正相关则不明显。这一结论与本文结果较为吻合,但是否具有代表性还有待研究。
表2 永安酸性煤矿坑水中特征组分及微量元素间的相关系数矩阵
五、结论
(1)煤矿AMD可产生于高硫煤或低硫煤层中,含氧水沿破碎带入渗和地层中相对少量的碳酸盐岩是产生煤矿AMD的重要条件。
(2)低pH、高矿化度和高硬度是煤矿AMD的水化学的典型特征。水中的硫酸盐是其矿化度的主要贡献者;煤矿酸性水中的SO2-4含量与其电导率具有良好的对应关系;Eh随Fe3+/Fe2+比值的增加而增加,Fe3+/Fe2+比值决定着煤矿酸性水的电势。
(3)煤矿AMD中含有众多重金属及其他微量元素。其中Ni、Co、Zn、As等主要有害微量元素来源于黄铁矿的氧化分解,而Pb、Sr等则来源于酸性水对地层中物质的溶滤作用。煤矿酸性水的酸度大大增加了环境中有害化学物质的出溶率和迁移性。
参 考 文 献
[1] Nicholson R V,Gillham R W,Reardon E J. Pyrite oxidation in carbionate buffered solution: 1. Experimental Kineti- ca. Geochim Cosmochim Acta,1988,52: 1007 - 1085
[2] Holmstrom H,Salmon U J,Carlsson E et al. Geochemical investigations of sulfide-bearing tailings at Kristineberg,north- ern Sweden,a few years after remediation. The Science of the Total Environment,2001,( 273) : 111 - 133
[3] 文冬光,沈照理,钟佐 . 水-岩互相作用的地球化学模拟理论及应用 . 中国地质大学出版社,1998
[4] 赵广涛,李玉瑛,曹钦臣等 . 青岛西北地区矿泉水的水化学特征与形成机理 . 青岛海洋大学学报,1998,28( 1) :135 - 141
The environment geochemistry information of the coal mine acid mining drainage
YUE Mei1,2,ZHAO Feng-hua1,REN De-yi1
( 1. Department of Resource & Earth Sciences,University of China Mining & Technology( Beijing) ;
Key Laboratory of Coal Resource,Ministry of Ecation,Beijing 100083,China;
2. Anhui University of Sciences & Technology,Huainan 232001,China)
Abstract: The chemical characteristic and its formation of the coal acid mining drainage are discussed in this paper based on the spot investigation,samples examination,applied the cor- relation analysis method,and combined w ith the geology and hydrogeology background informa- tion. Coal AMD formed in the specific substance and environment condition. And w hen the con- dition is meet,the AMD can be proced in both high or low sulfur in the coal. Low pH and high Eh,TDS,hardness are the important characteristic of coal AMD. There are good relation betw een SO2 -4and EC,Fe3 +/ Fe2 +radio and Eh. Some trace elements and harmful heavy metal such as Ni、Cu、Co、Zn in the AMD come from pyrit dissolution w hile some others like Pb、Sr are mainly come from the AMD eluviation to the coal and rocks.
Key words: coal AMD; chemical characteristic; trace elements; correlation analysis
( 本文由岳梅、赵峰华、任德贻合著,原载《煤田地质与勘探》,2004 年第 32 卷第 3 期)
J. 矿山环境治理现状
1.2.1 项目实施及资金投入
20世纪90年代以前,由于体制、管理和历史等方面的原因,我国的矿产资源开发一直处于粗放管理状态,大部分矿山以牺牲环境为代价,致使矿山环境问题日益突出,矿山地质灾害频繁发生,不仅威胁到矿区居民的生产、生活安全,而且造成了巨大的经济损失,严重影响和制约了我国矿业经济的可持续发展。90年代初期,矿山环境屡遭受破坏和不断恶化的趋势引起中央及各级政府的广泛重视,矿山环境治理和生态恢复建设工作逐渐提到日程。原国家土地管理局先后在全国建立了煤炭、石油、有色金属、黄金等矿山开采和燃煤发电、烧制砖瓦等20多个不同类型的土地复垦试点。国家环保总局结合全国的生态示范区建设试点,在马鞍山、淮北、迁安等10多个市、县开展了以矿区环境保护和生态重建为主要内容的生态示范区试点建设工作。冶金、煤炭、化工、有色金属等部门也从本行业的实际出发,开展了矿山环境恢复治理试点工作。如神华集团公司自1986年开发神府东胜矿区以来,坚持开发建设与污染治理同步实施,先后建起了污水处理厂、选煤厂煤泥水处理系统等一批环保设施,营造了矿区防护林,不仅使矿区水环境、大气环境质量得到有效改善,而且,在矿区治理区内植被覆盖率也由原来的14%提高到39%。又如马鞍山南山铁矿是一个有80余年开采历史的老矿,地表植被破坏殆尽。为了做好土地复垦工作,该矿专门成立了复垦工作领导小组,组建了专职复垦队伍,通过几年的努力,废弃土地的复垦率已达到70%。山西潞安矿务局王庄煤矿采用人工造林绿化新技术,为矸石山的绿化探索出一条新路子,不仅治理了矿山“三废”,复垦了土地,恢复了生态,而且树立了样板,为推动全国矿区环境保护工作作出了贡献。
2001~2002年,财政部、国土资源部利用探矿权、采矿权使用费和价款投资2350万元,地方自筹资金3052.16万元,在全国范围内选择矿山环境问题突出的湖北、江西、黑龙江、四川、北京、辽宁、河北、山西、内蒙古、河南、湖南、山东、江苏、浙江、新疆、甘肃16个省(区、市),安排18个国有老矿山进行矿山环境治理试点(山东和湖南安排2个试点项目,其余省(区、市)各安排1个试点项目)。治理矿区种类包括铁矿、煤矿、铅锌矿、铜矿和石材矿等,治理对象包括矿山环境恢复治理和矿区地质灾害治理等。项目验收结果表明,由于中央和地方配套资金的相互支持,90%的项目超额完成设计工程量,18个项目工程质量均达到预期要求,全部验收合格。通过项目的实施,老矿区内长期威胁居民生产、生活安全的地面塌陷、泥石流等地质灾害得到治理,久弃荒废的土地得以复垦,千疮百孔的矿区生态环境重现生机。良好的经济效益和社会效益,为后续项目的顺利开展奠定了坚实的基础。
在试点取得经验的基础上,2003年11月10日,财政部、国土资源部下发《探矿权采矿权使用费和价款使用管理办法(试行)》通知,正式启动两权专款用于矿山环境治理工作。主要治理对象是计划经济时期建设的国有矿山,重点开展:①因采矿活动造成的地面开裂、沉降、塌陷等矿山地质环境破坏的治理;②因采矿活动引起的区域性地下水水位下降、地下水干枯、危损尾矿坝等的治理;③因采矿活动形成的矿山尾矿的治理和综合利用。
近年来,财政部、国土资源部逐年加大对矿山环境治理投入力度。2003年,在全国22个省(区、市)批复实施矿山环境治理项目74个,中央财政投资1.72亿元。2006年,在全国31个省(区、市)批复实施矿山环境治理项目339个,中央财政投资13.16亿元。在项目的批复数量上,2004年和2006年的增加幅度较大,分别增加了129.73%和75.77%;中央财政对项目投入呈稳步增加趋势,年平均增幅达66.30%。2003~2007年底利用两权专款,在全国31个省(区、市)共批复实施矿山环境恢复治理项目1118个,中央财政累计投入37.10亿元。
同时,随着我国综合国力的增强,根据各省(区、市)矿山环境治理目标,并按照国家有关要求和保障经济持续发展的需求,地方财政向矿山环境治理投入力度也呈现逐年增加趋势。再由于国家出台了一系列鼓励参与矿山环境治理的优惠政策,极大地调动了企业和个人投资矿山环境治理的积极性。据不完全统计,自2000年以来,全国用于矿山环境治理的地方财政资金达4.00亿元,企业自筹资金达15.51亿元。
1.2.2 治理成效
随着我国关于矿山环境保护与监督管理的法律法规逐步健全、完善和进一步贯彻落实,以及国家和省(区、市)各级行政主管部门的重视程度和监管力度的日益加大,随着社会公众及矿山企业对矿山环境保护意识的不断提高,矿山开发者重开发轻保护、肆意破坏污染矿山环境的势头已被有效遏制,在保护矿区生态环境、治理恢复被占用破坏的土地、防治地质灾害和矿山“三废”综合治理利用等方面取得了显著的成果。特别是财政部、国土资源部正式启动两权专款用于矿山环境治理工作以后,在全国范围内的矿山地质环境综合治理工作得以有序开展,一些计划经济时期建立的国有大中型矿山、闭坑矿山和无法找到责任人的矿山的地质环境逐步得到恢复治理,收到了良好的经济效益、社会效益和环境效益。同时,已实施项目的示范作用,以及有关鼓励政策的出台,极大地鼓舞和激发了企业和个人参与矿山环境保护治理的积极性,使矿山环境保护治理的资金投入更趋于多元化,治理范围更广泛、治理成效更显著。
1.2.2.1 矿山占用破坏土地恢复治理
截至2007年底,全国累计恢复治理矿山占用破坏土地面积约15.50万公顷,治理率达9.35%。现阶段,我国在矿山占用破坏土地恢复治理过程中,普遍遵循生态效益、经济效益、社会效益相统一的原则,要求土地的复垦规划与土地利用总体规划和基本农田保护区规划相协调,复垦后的土地应优先用于农业,宜粮则粮、宜林则林、宜牧则牧、宜渔则渔。其次用于建设主题公园、人工湖等生态景观的恢复和其他建设用地。
(1)采空塌陷区治理现状
我国采矿塌陷区主要集中分布在煤矿,其次是石膏矿、金矿等。塌陷区的治理措施根据塌陷规模区别对待:对深度较大的常年积水区,一般采取清淤扩建、淤泥造地等措施,建设成人工湖、鱼藕塘、水田;对季节性积水区,实行挖沟排水,修建台、条田,发展特色种植;对塌陷变形地,采取削高垫洼、回填整平、复耕复林复草或用作其他建设用地。例如甘肃省华亭县对东华煤矿塌陷区进行复平整治,改造成面积达86400平方米的人民广场,成为县城居民集会、休闲场地。黑龙江省七台河市对煤矿塌陷积水洼地进行综合整治,治理塌陷地9.26公顷,建成了具有休闲和娱乐功能的落燕湖景区。山东省枣庄市针对石膏矿塌陷,坚持以挖塘造地为突破口,发展名优水产养殖,扩大植桑种田面积,创造了种、养、加工相结合的立体高效塌陷治理示范区。累计治理塌陷地3000余亩,开挖鱼塘133处,面积近900亩,改造良田整平耕地2700余亩,整个石膏矿区已开始步入资源开发与环境保护协调发展的轨道。
(2)露天采场治理现状
随着生态省(区、市)建设活动的开展,各级行政主管部门开展了对“三区二线”(即城市规划区、风景区、地质遗迹保护区、重要公路或铁路沿线、沿海岸线)可视范围内的已损山体和废弃的采石坑的治理工作。
对露天采场治理的原则是减少引发崩塌、滑坡等突发性地质灾害的可能,保证矿区居民的生命、财产安全;恢复采场范围内被破坏的地表植被,使之与周边环境相协调。目前采取的主要治理措施首先是对不稳定岩土体进行卸载,消除引发灾害的隐患,再对土质开采坡面和矿坑清理、平整,便于复垦绿化;对石质边坡进行打坑回填客土或者进行覆网客土喷播等技术,使裸露的开采作业面迅速复绿。治理效果较好的江苏省苏州旺山露天采场,在清理不稳定岩体的前提下,针对土质贫瘠、坚硬、坡比较大的基岩坡面采用客土喷播法,对土质较好、坡比小的山体采用厚层基质法等施工工艺和复绿技术,使原来裸露的边坡得到有效的防护,减少水土流失和滑崩灾害隐患,迅速改变了地貌景观。经过三年的治理,形成一个乔、灌木及地被混交的自然种群,植被生长旺盛、根系盘结,生物保护作用明显。改造后的露天采场成为苏州吴中经济开发区一道亮丽的风景线。山东省威海市按照自然环境条件,因地制宜地采取了土石方工程、植物工程和喷涂工程相结合的综合治理方法用于露天采场治理。2000年共喷涂陡峭坡面30万平方米,垒堰总长度9000米,填土量1.8万立方米、石方量9000立方米,栽植常攀藤植物15万株,各类乔木、灌木3万棵。福建省龙岩市上杭紫金矿业按照矿山每年编制的植被恢复计划,遵循稳定一块、恢复一块的原则逐步恢复。目前已采用草、灌、乔、藤相结合,通过人工种植、机械喷播等方法进行植被恢复工作。2001年金矿区种植草皮4.5万平方米,种树8万株,成活率均在85%以上。在2001年底,紫金矿业为实施“在保护中开发,在开发中保护”的矿山可持续发展战略,开始实施紫金山工业旅游项目,经1年多的开发建设,先后投入2000万元,建设成为福建省独具特色的一个新兴旅游区。2002~2003年度,共接待游客6.8万人次,累计实现旅游收入815万元。
(3)尾矿库、固体废弃物堆放场地治理现状
为了减少扬尘、净化矿区空气环境,预防污染水土环境、引发水土流失、发生泥石流等地质灾害,增加矿区土地的可利用率,建设环境优美的绿色矿山,对尾矿库、固体废弃物堆放场地进行治理,成为目前矿山环境治理的主要工作。
现阶段,我国对尾矿库、固体废弃物堆放场地的治理原则是多元开发、变废为宝,提高利用、减少囤积,复垦占地,恢复生态。在现有经济技术条件下,尾矿和固体废弃物大量用于建筑业、发电等行业,如加工成新的建筑材料或制砖、铺路、充填塌陷区等。湖北省武钢矿山大冶铁矿利用尾矿砂制成微晶玻璃花岗岩新型建材及仿古陶瓷工艺品,利用矿石粉碎的细石灰石粉尾矿生产高标号的水泥。安徽铜陵有色金属公司所属的五公里尾矿库已经建成无土复垦示范场,昔日尘沙飞扬的尾“沙滩”,今日已草树成荫,成为沿江绿化带。云南锡业集团有限公司左山采矿厂尾矿库,已复垦成225亩的竹林。对于无法利用的尾矿、固体废弃物可就地回填采场和采坑,覆土后用于人工造林、恢复成耕地等,或充分利用微生物技术直接在矿渣堆上复垦。通过多种形式的治理措施控制水土流失,改善生态环境,修复自然景观。如山西孝义和广西平果铝土矿在矿山固体废物复垦中,采取一系列加速生土熟化技术,建立了剥采、排土与复垦联合新工艺,使用了内生菌根真菌微生物工程技术,使土壤活性增加,将工程复垦与生物复垦有机结合,成功实现了排土场的植被恢复。
1.2.2.2 矿山废水废液治理
目前,我国矿山平均年废水废液产出量约为60.88亿立方米,年处理量16.81亿立方米,年综合利用量为17.44亿立方米,综合利用率为28.64%。
矿山废水按生产过程可分为采矿作业废水和选矿作业废水;按废水pH值可分为酸性废水、碱性废水等。矿山酸性废水主要来源于矿坑水、废石堆淋滤液等;矿山碱性废水主要产生于选矿作业。矿山废水中的主要污染物包括重金属、酸、有机污染物、油类污染物、氰化物、氟化物和可溶性盐类等。重金属污染和酸类污染是废水污染中最普遍的,废水中的重金属元素主要有铅、锌、镍、铜、汞、铬、镉、钴、锰、钛、钒和铋等。目前我国对矿山废水的治理方法主要有中和法、微生物法、人工湿地法等。处理工艺较为先进、成熟,例如甘肃省金川公司针对采、选、冶以及化工动力等各生产环节不同生产工艺所排放的废水,先后建成了镍等贵金属离子、硫酸、氯碱、锅炉、高含盐等废水的处理站,年处理废水达500万吨,并将未被利用的废水排入尾矿库,减轻了对矿区附近水体、土体的污染和破坏。
1.2.2.3 矿山地质灾害治理
自20世纪80年代以来,我国共发生由于矿山开采而诱发的崩塌、滑坡、泥石流、地面塌陷、地面沉降、地裂缝等地质灾害12000余起,影响面积33.98万公顷,已治理面积6.79万公顷,治理率为19.98%。
根据我国矿山各类地质灾害的发育状况、致灾机理、危害程度,结合国民经济发展水平和技术条件,现阶段我国矿山地质灾害治理的原则及工程措施是:①对于危害较严重、治理难度较大、治理投入回报不理想的地质灾害,一般采取搬迁、避让的措施。2003年6月,国务院总理温家宝在辽宁考察期间对矿山地质环境治理连下“四道军令”:要尽快实施、要公开透明、要责任到人、要增加投入。不久,国家有关部门就开始对东北煤炭城市沉陷区治理安排专项资金,东北三省政府全力以赴投入到采煤沉陷区治理工程之中,治理总面积超过900平方千米。治理项目包括建设小区住宅、维修加固住宅、新建学校、医院、幼儿园等配套设施,对部分受破坏的学校、医院、道路、供(排)水管线、供热管线进行维修加固等。目前,辽宁已安置沉陷区受灾居民2.8万户,超过安置户数的70%,已建成居民楼房住宅240多万平方米,建成学校、医院等配套设施25万平方米。吉林省采煤沉陷区新建楼房住宅小区竣工面积为82万多平方米,安置居民1.36万户,各项配套建筑设施也同步进行。黑龙江省治理面积超过400平方千米,截至2006年5月底,已开工新建住宅223万平方米,占下达计划的78%,项目建成后预计可安置沉陷区搬迁居民33112户,约占下达计划的70%。②对于崩塌、滑坡、泥石流等呈点状分布的突发性地质灾害,采取部署群测群防的监测体系,实施治理工程,开展重点区域专门性监测等措施。例如甘肃省小厂坝铅锌矿1138平硐不稳定斜坡(潜在滑坡)变形面积约10万平方米,其主要诱发因素是汛期地下水水位上升导致高陡基岩坡面残坡积碎石土变形蠕动。在对其进行坡面位移定期监测的基础上,采取格构加固、修建挡土墙、地表排水等工程措施及植树育草生物措施,有效地抑制了坡体蠕动变形的进一步发展。
1.2.3 存在的问题
近年来,虽然我国矿山环境恢复治理工作取得了一定的成效,但由于工作刚刚起步,无论政策法规、管理机制、资金保障,还是技术标准都有待健全和完善,主要存在以下问题:
1.2.3.1 矿山环境保护与治理尚未步入法制化轨道,管理机制不健全
近年来,我国虽然制定出台了一系列涉及矿山环境保护和治理的法律、法规,但这些法律、法规大多局限于原则性的要求,可操作性较差,具体实施时存在一定难度。在管理体制上各执法单位之间时有交叉重叠,时有空白。特别是治理的主体单位与上级主管部门及相关单位,在法律上和经济上多方面的关系均缺乏明确界定。矿山环境治理过程中,各方责、权、利的关系应遵循怎样的原则加以确立?治理之后的成果,即环境产权和复垦土地的所有权、使用权等应如何确立和保护?这些问题在原有法律中均未涉及,急需加以完善。
1.2.3.2 我国矿山开采历史悠久,环境破坏严重,治理难度增大
长期以来由于环境保护意识淡薄,矿山环境保护法律、法规不健全,管理滞后,加之受开采条件、开采方式、生产工艺、技术水平、装备条件等综合因素的影响,致使我国矿山环境遭到了严重的破坏。造成全国矿山环境问题广泛分布,且类型复杂、致灾几率大、突发性强、隐患多、灾情严重。不仅严重影响和制约着国民经济的发展,甚至威胁人民生命财产的安全,引发了一系列社会问题和矛盾。而我国矿山环境恢复治理起步晚、规模小、投入资金有限,随着矿山采掘规模和强度的增大,矿山环境问题将日益突出,治理难度也将越来越大。
1.2.3.3 矿山环境保护和治理资金短缺,投资机制不完善
目前,我国矿山环境保护和治理资金主要来源于三个部分:一是中央财政从两权使用费和价款中安排一定的资金,因历史欠账太多,远远不能满足矿山环境治理的需要。二是地方财政从收取的价款和矿产资源补偿费中安排部分资金,主要用于矿产资源勘查等方面支出,用于矿山环境治理的费用极为有限。三是矿山企业交纳的矿山环境恢复治理保证金。由于矿山环境治理工程投入大,其经济效益不凸显或滞后,再由于缺乏矿山环境治理相关的鼓励政策措施,造成矿山环境治理投资回报率不大,因此极少有其他资金投入,投资机制不畅,多元化、多渠道的矿山环境治理投资机制尚未形成。
1.2.3.4 矿山环境保护与治理的技术标准、规范急需制定
虽然国内已进行过不同层次的矿山恢复治理方面的零散研究工作,也开展过不同类型废弃矿山恢复治理的示范工程,但这些工作所积累的经验和数据资料距离形成系统的标准、规范还有很大差距,造成目前我国矿山环境恢复治理工作的目标、任务不很明确,治理成效界定缺乏依据,治理技术不规范。因此,出现矿山环境恢复治理工程布设较随意、技术含量低,部分治理工程的治理成果不显著,很难实现预期的效益。为了尽快提高我国矿山环境保护与治理的技术水平,规范恢复治理工程的技术路线选择、工作量布设、质量监控、预算编制、预期成果目标设定等,建议国家有关部门设立专项资金,集中一批技术力量,尽快研究制定矿山恢复治理的方法、标准或规范,用以指导全社会矿山的恢复治理工作。
1.2.3.5 重前期治理,轻后期管理,影响了矿山环境治理效果
自2001年大规模、有计划地开展矿山环境恢复治理工作以来,相继开展了大量的矿山环境治理项目。大多数项目在前期的治理阶段,由于有资金保障,主管单位和实施单位的积极性都很高,不仅严格按照设计施工,而且监管力度大。而项目评审验收后,因没有后续资金支持,部分治理工程后期的维护工作处于停滞状态,行政监管也出现空当,在一定程度上影响了治理效果。