㈠ 废水中氨氮去除,有什么方法
化学法——废水中氨氮的去除方法
废水中氨氮的去除在污水中直接投加一种可以降低氨氮的浓度的药剂——氨氮去除剂;氨氮去除剂是一种含有特殊架状结构的高分子无机化合物,通过强氧化作用,分解水中的氨氮;加药后不会产生沉淀物,对氨氮的去除率达96%以上,无2次污染。
生物反硝化——废水中氨氮的去除方法
生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。
生物硝化——废水中氨氮的去除方法
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。
㈡ 废水中氨氮应该如何去除
高氨氮废水处理方法:
一、物化法
1. 吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持"假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。"遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法
传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
1.A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。其特点是缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。
2.两段活性污泥法能有效的去除有机物和氨氮,其中第二级处于延时曝气阶段,停留时间在36小时左右,污水浓度在2g/l以下,可以不排泥或少排泥从而降低污泥处理费用。
3.强氧化好氧生物处理其典型代表有粉末活性炭法(PACT工艺)
粉末活性碳法的主要特点是向曝气池中投加粉末活性炭(PAC)利用粉末活性炭极为发达的微孔结构和更大的吸附能力,使溶解氧和营养物质在其表面富集,为吸附在PAC 上的微生物提供良好的生活环境从而提高有机物的降解速率。
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。
5. 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。
全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。
6. 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
7.超声吹脱处理氨氮
超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的吹脱方法的基础上,引入超声波辐射废水处理技术,将超声波和吹脱技术联用而衍生出来的一种处理氨氮的方法。将这两种方法联用不仅改进了超声波处理废水成本较高的问题,也弥补了传统吹脱技术去除氨氮不佳的缺陷,超生吹脱法在保证处理氨氮的效果的同时还能对废水中有机物的降解起到一定的提高作用。技术特点(1)高浓度氨氮废水采用90年代高新技术--超声波脱氮技术,其总脱氮效率在70~90%,不需要投加化学药剂,不需要加温,处理费用低,处理效果稳定。(2)生化处理采用周期性活性污泥法(CASS)工艺,建设费用低,具有独特的生物脱氮功能,处理费用低,处理效果稳定,耐负荷冲击能力强,不产生污泥膨胀现象,脱氮效率大于90%,确保氨氮达标。
㈢ 水性涂料产生的废水带来的危害及如何进行有效的
水性涂料生产与涂装过程都可能产生废水,生产过程的废水主要来源是设备、容器和场地的清洗废水;涂装过程的废水不仅有设备和容器的清洗废水、电泳涂膜清洗用水,还有涂装过程除漆雾时产生的废水。
这些废水如果不经处理直接排入下水道,会造成一系列后果:其中的固体颜料会增加水的浑浊度,阻碍阳光在水中的透射,进而影响水中植物的光合作用;
固体颜料进入河水,会在鱼类的鱼鳃上凝结,从而影响鱼类的呼吸;废水中的表面活性剂及纤维素增稠剂的生物降解都会增加氧的消耗量,降低水中氧气的浓度,而这会对鱼类及其他水生生物的生存造成威胁。
对于废水中树脂含量较低的体系,可以通过超滤、纳滤及反渗透等方式对其进行处理后循环利用。
电泳涂装过程采用超滤净化废水且回用,但仅有此部分回收水是不能够将涂膜冲洗干净的,还需采用纯水多次清洗,产生的废水量大,涂料含量少,此时需要采用超滤/纳滤加反渗透的组合方式将此部分废水回收利用。
当水中有机物含量的增多,分离膜很容易被污染而导致分离膜通量迅速下降,需要及时更换分离膜而导致成本提高,此时需要利用其他方法或这些方法的组合对废水进一步处理。
对于有机物含量较高的废水,一般先进行高级氧化处理,然后再进行生化处理。
㈣ 怎么去除废水氨氮用哪种氨氮去除剂
主要包括:生化法、絮凝沉淀法、吸附法、离子交换法、臭氧氧化法、膜分离技术等,实际应版用时权,都是多种处理方法相互配合,以达到最佳的处理效果,同时可以最大限度的节约处理成本。
在废水絮凝沉淀工序中,使用的多是希洁氨氮去除剂;而在污泥脱水处理中要根据水质情况进行选型。
㈤ 废水中氨氮去除,用什么方法
1)折点氯化法:
该方法通过投加过量氯或次氯酸钠,使废水中的氨氧化为N2。折点氯化内法对氨氮的去除率高容,处理效果稳点,且不受水温的影响,不过在处理过程中,运行费用较高。
2)空气吹脱法:
在碱性条件下,氨氮主要以NH3的形式存在,让废水与空气充分接触,水中挥发性NH3将由液相向气向转移。其受废水的PH、温度、水力负荷、结垢控制等因素的影响。
㈥ 废水中的氨氮怎么去除
吹脱法:吹脱法在含氨氮废水处理中应用比较常见,即向废水内通入气体,促使废水中溶解性气体以及易挥发性溶质气液进行充分接触,通过 pH
值的调节将废水内离子氨转化成分子氨,最后利用通入的空气或者蒸汽将其吹出,降低废水内氨氮含量;
化学沉淀法:应用化学沉淀法来进行废水脱氨氮,即向含氨氮废水投加适量的 Mg2+ 与 PO43- 药剂,促使其与废水内含有的NH4+
反应生成难溶复盐磷酸氨镁 MgNH4PO4·6H2O 结晶沉淀,最后对废水中剩余的氮磷进行回收处理;
离子交换法:应用离子交换法处理含氨氮废水,最为常见的就是以沸石作为交换载体,提高氨氮脱除率;
膜吸收法:1)反渗透处理氨氮废水的原理,即以超过溶液渗透压的压力作用,通过半透膜选择溶质的截留作用,对溶质和溶剂进行可靠分离,实际应用中具有能耗低、无污染、工艺先进以及维护简单等特点;
2)电渗析技术。通过设置外加直流电场,基于离子交换膜选择透过性特点,促使电解质溶液将离子分离出来;
生物处理法:硝化反硝化技术,传统生物硝化反硝化脱氮技术可以应用到含氨氮废水处理中,分为硝化和反硝化两个阶段
㈦ 废水中氨氮的去除
折点氯化法:
该方法通过投加过量氯或次氯酸钠,使废水中的氨氧化为N2。折点氯化法对氨氮的去除率高,处理效果稳点,且不受水温的影响,不过在处理过程中,运行费用较高。
2
/5
2)空气吹脱法:
在碱性条件下,氨氮主要以NH3的形式存在,让废水与空气充分接触,水中挥发性NH3将由液相向气向转移。其受废水的PH、温度、水力负荷、结垢控制等因素的影响。
3
/5
3)生物硝化:
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮。温度、PH值、溶解氧等因素会对处理效果产生影响。
4
/5
4)沸石选择性吸附:
利用沸石的三维空间结垢中,具有规则的孔道结构和空穴,进行筛分、交换吸附。该方法受溶液的PH值影响较大。
5
/5
在众多的氨氮废水处理工艺中,物化法运行成本相对较高,易造成二次污染等问题,实际运用受到一定的限制,不过生物法处理氨氮废水因比较经济且处理效果佳,其运用较广。废水中氨氮去除过程中,处理效果受温度、PH、出水等因素影响,其处理结果可能存在与排放标准有一定差距的现象。遇到这种现象,建议投加氨氮处理药剂辅助处理,其可把氨氮降到排放标准以下,该药剂是专门针对低浓度废水处理的功能药剂,操作方便,在排放口前段投加即可,无需改变原有的处理工艺。
㈧ 污水氨氮超标原因及去除方法有哪些
可能是以下几种原因
1、供气量不足或硝化菌不够;
2、工艺设计的设施规模过小,处理负荷太小;
3、没有控制好水力停留时间;
4、营养成分比例达不到设计标准,需要外加营养投加系统;
5、曝气系统设计不负荷规范,偏小;
6、硝化反应没有控制好,要控制好PH值、温度、溶解氧、C/N比等条件。
去除方法:采用生物法,新型HNF-MP高效硝化工艺采用高效硝化菌种,接种抗逆性较好的菌种的同时强化反应器内微生物的数量,大大提高了反应速率。
㈨ 污水处理氨氮高怎么办
含有氨氮污水的处理:
进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。
整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法。
生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。
二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。
(9)涂料清洗废水有氨氮扩展阅读:
生活污水处理:
1、农村生活污水治理方法
生活污水→化粪池→厌氧池→人工湿地(种植根系发达、喜湿、吸收能力强的美人蕉、水葱、菖蒲等植物)经“过滤”后排放的方法进行处理,主要适用于农村分散生活污水处理,建成后运行费用基本为零,使用寿命在10年以上。
2、城市生活污水治理方法
将城市生活污水输送到城市周围的农村,利用农村广阔的土地来净化城市生活污水。将是一劳永逸与一举多得的好方法。以日供应生活用自来水100W立方的大中型城市为例:普通的污水处理设施造价1000元/立方。
建设成本10亿,年运营成本100W立方/天×365×0.5元/立方=1.8亿.采用土壤净化法建设成本1000元/立方,年运营成本100W立方/天×365×0.1元/立方=0.4亿.同时年节约农用水资源3.6亿立方,节约化肥约1万吨/年,减少农药用量5吨/年。
3、生活污水处理新技术:分散式处理
生活污水分散式生物集成处理系统是针对生活污水的一种新型、经济环保的处理系统。该系统具备设备投资少、运行成本低、安装简便等优势,利用生物强化技术对污染物进行高效降解,可实现对生活污水就地、就近处理,并达到水资源循环再生利用的目的。
分散式污水处理技术具有设备占地面积小、无须铺设管网、设备集成度高等特点,因此基础设施费用及土建费用在整体投资中占比较小,仅30%左右,而约有70%的投资主要用于对污水处理设备的采购和安装。
㈩ 工业废水处理出水氨氮超标应该怎么解决
在进行工业废水的处理过程中要有规律地对出水进行必要的指标检测,对出水氨氮指标异常情况要建立科学合理的应急处理预案。
首先,在进行工业废水的处理时,由于处理氨氮时要消耗大量的氧气来进行氨的氧化和亚硝酸盐的氧化,从而实现水体中氨氮的有效去除,然而在进行废水处理时并不是氧气的浓度越高越好,当需氧量有较高的浓度时,其氧气的传质水平不高。因此,在工业废水处理时要合理控制氧的浓度来达到氨氮的高效率去除。
其次,在进行工业废水的氨氮处理时主要是发生硝化反应,通过添加硝化促进剂来推动硝化菌进一步发挥其活性,从而最大程度实现氨氮的有效去除,并且硝化促进剂的添加量、种类及添加方式都要根据微生物的生长环境及营养生理来进行系统、科学、合理地调配。第三,尝试降低工业废水处理进水的氨氮负荷,可以通过把控进水的氨氮浓度或者减少废水的进水水量。如果废水有来源于一些精细化工厂的废水,通常情况下氨氮的浓度就会高一些,这时可以通过调节系统来把控进水氨氮的浓度达到适当的水平而避免造成废水氨氮处理的难度过大而致使氨氮的超标。同时对于废水进水的监测水平和力度也要进一步提高,这样才能在废水处理的进水源头上把控氨氮的合适浓度。
此外,合理控制进水的水量是利于硝化菌恢复的关键,可以通过进水水量的有效控制来达到自养型硝化菌的繁殖和恢复,进而达到硝化菌的最强活性来发挥硝化代谢反应,最终实现废水中氨氮的有效去除。