导航:首页 > 污水知识 > 啤酒废水uasbcass

啤酒废水uasbcass

发布时间:2022-05-07 00:55:25

Ⅰ 求啤酒废水处理工艺中 UASB+SBR法的范例

摘 要

处理规模:总设计规模3500m3/d。

2、设计水质:CODCr=1200mg/L;BOD5 =800mg/L;
SS=150mg/L;pH=6~9。

3、排放标准 CODCr≤100mg/L;BOD5≤20mg/L;SS≤70mg/L;
pH=6~9。

4、工艺流程概况:

废水 格栅井 调节池 UASB反应罐 SBR反应池 达标排放

5、工程投资:239.51万元;
6、工程占地:1632m2;
7、运行成本:0.91元/m3
8、劳动定员:2人
9、建设工期:3个月

1.概 述
啤酒生产主要以大麦和大米为原料,辅以啤酒花和鲜酵母,经长时间发酵酿造而成。
该公司在生产过程中产生的废水主要来源于玉米洗涤浸泡等工艺过程。该污水具有污染物浓度较高、pH值低等特征,若不经处理直接排入水体中,会导致水体严重富营养化,破坏水体的生态平衡,对环境造成严重污染。
公司领导和员工本着发展经济促进企业效益与治理污染、保护环境协调发展的思想,为树立企业良好的社会形象,消除企业健康发展的隐患,决定在上级环保部门的监督管理和支持下,按照我国环境管理的要求,委托专业环保公司,选择技术先进、运行稳定、投资合理的污水处理技术治理其生产污水。

2.废水水质水量
2.1 设计水量
本工程设计规模:3500m3/d,平均流量:146m3/hr;

2.2 设计水质
参考同类工程的数据和业主提供的水质指标,确定本工程设计水质如下:
CODCr=1200mg/L;BOD5 =700mg/L; SS=400mg/L;
PH=5~6。

3.排放标准
根据当地环保部门要求,处理后的水质要求达到《污染物综合排放标准》(GB8978-1996)一级排放标准。即:
CODCr≤100mg/L;BOD5≤20mg/L;SS≤70mg/L,PH=6~9。

4.编制依据
业主提供的相关资料和要求
《污染物综合排放标准》(GB8978-1996)
《室外排水设计规范》 (2000年版)
《给水排水设计手册》
《混凝土结构设计规范》GB50010-2002

5.工艺方案选择与论述
5.1废水水质分析
啤酒生产以大麦和大米为原料,辅以啤酒花和鲜酵母,经较长时间发酵酿造而成,废水主要来源于麦芽制造、糖化、发酵、洗瓶及灌装等工序。啤酒废水富含糖类、蛋白质、淀粉、果胶、醇酸类、矿物盐、纤维素以及多种维生素,是一种中等浓度的有机废水,可生化性好。废水连续排放,水质水量有一定波动。

5.2工艺选择
啤酒废水属中高浓度有机废水,有很好的可生化性,但生产季节性较强,排放不连续,尤其是地面冲洗水,水量和浓度波动较大。该厂将各车间的废水汇集到一起,因无机负荷并不高,不适合目前国内常用的“厌氧+好氧”方法中对原水COD>6000mg/L的要求。
啤酒废水中含有大量有机碳而氮源含量较少,在进行传统的生化处理中,其含氮量远远低于BOD:N:100:5(质量比)的要求,致使有些啤酒厂采用传统活性污泥法时,在不补充氮源情况下处理效果很差,甚至无法运行。经多种方案比较,确定采用CASS法处理啤酒废水。
在好氧单元中,经过对膜法工艺和普通活性污泥法的综合比较后我们认为:较膜法工艺来说,由于CASS法省去了沉淀池,它们的总投资和运行成本基本相同,但应用于工程中,CASS工艺较膜法工艺更加稳定可靠,而且其使用寿命长;而较普通活性污泥法,SBR应用在此工程中不管在投资还是运行费用等方面的优势更加明显,因此我们选择CASS工艺。
循环活性污泥系统简称为CASS(Cyclic Activated Sludge System)工艺,是一种在SBR工艺和氧化沟技术的基础上开发出的新工艺。CASS池是系统的核心。污水中的大部分污染物在此降解、去除。它将生物反应过程和泥水分离过程集中在同一个池内进行。CASS反应池分为生物选择区、兼氧区和好氧区。选择区的基本功能是防止污泥膨胀,污水中溶解性有机物能够通过酶反应而被污泥颗粒吸附除去,回流泥中的硝酸盐可在该选择区内得以反硝化;在兼氧区内,有微量曝气,基本处于缺氧状态,有机物在此区内得到初步降解,同时也可除去部分硝态氮;好氧区为曝气区,主要进行硝化和降解有机物,同时也进行硝化反硝化过程。CASS池是一个间歇反应器,在此反应器内不断重复地进行曝气与非曝气过程。污水按一定周期和阶段得到处理,每一循环有下列各个阶段组成:进水/曝气/污泥回流阶段——完成生物降解过程;非曝气/沉淀阶段——实现泥水分离;滗水/剩余污泥排除阶段——排出上清液;闲置阶段——恢复活性污泥活性。
上述各阶段组成一个循环操作周期,根据污水水量和浓度,它的运转方式可采取6周期/天、4周期/天、3周期/天的形式,每周期运行时间分别为4、6、8小时。循环过程中,首先进行充水、曝气和污泥回流,CASS池内的水位随进水而由初始的设计最低水位逐渐上升至最高设计水位。当经过一定时间曝气与混合后停止曝气,在静止的条件下使活性污泥絮凝并进行泥水分离。沉淀结束后通过移动堰表面滗水器排出上清液并使水位恢复至设计最低水位,然后重复运行。为保证系统在最佳条件下运行,必须定时排泥,排出剩余污泥的过程一般在沉淀结束后进行,污泥浓度可高达10g/L,所排出的剩余污泥量要比传统的活性污泥处理工艺少得多。

5.3工艺流程框图
栅渣 鼓风机

啤酒废水 格栅机 集水井 提升泵 调节池 CASS反应池 接触池

泥饼外运 污泥脱水机 螺杆泵 污泥贮池

图1 污水处理工艺流程方框图

5.4工艺流程说明
废水经格栅除去粗大杂物后,进入集水池内,经水泵提升进入CASS反应池中,使废水中的大部分污染物在池中得到降解和去除。废水在这里得到生化处理,处理后的废水排入接触池,经消毒后排人水体。CASS反应的剩余污泥排人污泥贮池中,经污泥泵打入污泥浓缩脱水一体机脱水,脱水后的干污泥外运,压滤机滤出水返回集水池内。
5.5处理效果预测
污水从调节池进入CASS池,再由CASS池出水,几乎所有的污染物均在CASS池内去除,结果见表4。
表1 主要构筑物进出水水质及去除率
名称 水质 进水mg/L 出水mg/L 去除率%
CASS池 生物选择吸附区 CODcr 1200 450 63
BOD5 700 200 71
SS 400 180 55
兼氧区 CODcr 450 200 56
BOD5 200 150 15
SS 180 140 22
主曝气区 CODcr 200 70 65
BOD5 150 30 80
SS 140 70 50
接触池 CODcr 80 40 50
BOD5 30 10 67
SS 70 30 57
总去除率 CODcr 1200 70 94以上
BOD5 700 10 98以上
SS 400 30 92以上
6.电气自控
6.1 动力配电
污水处理站总装机容量约219.87kW,其中运行功率约为134.0kW。动力线由厂区内配电房引入至污水处理站内配电柜。
6.2 自控系统
污水处理站采用PLC自动控制和就地按钮箱手动控制。在操作台上设有转换开关,当转换开关处于自动位置时,由PLC按预先编好的程序自动控制;当转换开关处于就地按钮箱手动位置时,可在机旁人工控制。
各提升泵可据液位高低利用自控系统控制水泵开启与关闭,当池内的污水量较小由一个水泵运转或间歇运转,当池内的污水量较大由两个水泵运转或其中一个间歇运转避免因无水而损坏水泵或因单个水泵的流量不足而引起的污水外溢。
CASS池利用PLC及电动阀根据时间控制自动切换工作状态,实现进水、曝气、滗水等一系列动作,从而两池自动交替运行,也可以根据情况切换到手动状态,进行人为干预以便调整两池的运行状态。

7. 主要建构筑物设备一览表
7.1主要构(建)筑物一览表
序号 构(建)筑物名称 工艺尺寸(m) 主要设计参数 数 量
1 集水井 L*B*H=2.0×2.0×4.0 总容积:16m3
结构形式:地下式钢混 1座
2 格栅间 L*B*H=3.0×2.0×3.0 总容积:18m3
结构形式:半地上式钢混 1座
2 调节池 L*B*H=16.2×9.0×4.5 总容积:656m3
结构形式:半地上式钢混 1座
3 CASS反应池 L*B*H=19.0×9.0×5.0 总容积:855m3
结构形式:半地上式钢混
容积负荷:
0.24kgBOD/m3·d 2座
4 污泥贮池 L*B*H=4.0x3.0x3.0 总容积:36m3
结构形式:半地上式钢混
HRT = 16hr 1座
5 接触池 L*B*H=6.0x3.0x3.0 总容积:54m3
结构形式:半地上式钢混
HRT = 15min 1座
6 污泥脱水机房 建筑面积:27m2 结构形式:砖混结构 1座
7 工房 建筑面积:60m2 结构形式:砖混结构 1座
说明:本设计不含站区围墙、地面绿化及道路硬化。

7.2主要设备一览表

序号 设备名称 设备型号 主要参数 单位 数量 备注
1 机械细格栅 RAG-500 栅条间隙10mm
功率:0.37kW 套 1 不锈钢
2 污水泵 CT-5-11-100 功率:11kW 套 2 配自耦
3 潜水搅拌器 QJB15/4 功率:15kw 台 2
4 污水泵 CT-5-11-100 功率:11kW 台 2 配自耦
5 污泥回流泵 CT-51.5-65 功率:1.5kW 台 4 配自耦
6 鼓风机 SSR200 风量:32m3/min
电机功率:45kW 台 3 2用1备
7 曝气器 KKI215/D90 / 套 1200 含空气支架、管件
8 滗水器 XPS-560 滗水能力560m3/h 套 2
9 污泥泵
10 浓缩压滤脱水一体机
11 电控系统 / / 套 1 含电气仪表

8.工程投资估算及经济技术分析
8.1 工程投资估算

8.1.1 土建投资估算

表8.1 土建投资估算表
序 名 称 单位 数量 型 号 规 格 总 价 备 注
号 ( m ) (万元)
1 格栅井 座 1 2.5×1.0×3.0 0.56 钢砼
2 集水井 座 1 2.0×2.0×4.0 1.20 钢砼
3 调节池 座 1 16.2×9.0×4.5 49.20 钢砼
4 CASS反应池 座 2 16.0×9.0×5.0 54.00 钢砼
5 污泥贮池 座 1 4.0×3.0×3.0 2.70 钢砼
6 污泥脱水机房 m2 1 27 2.16 砖混
7 工房 m2 1 60 4.80 砖混
8 小计(T1) 114.62

8.1.2 设备投资估算

表8.2 设备投资估算表
序号 设备名称 设备型号 单位 数量 单价 总价 备注
1 机械细格栅 BG4820-5 台 1 0.97 0.97 不锈钢
2 污水泵 CT-51.5-65 台 2 0.41 0.82 含自耦
3 污泥泵 CT-51.5-65 台 1 0.31 0.31
4 污水泵 CT-52.2-80 台 2 0.46 0.92 含自耦
6 污泥泵 CT-52.2-80 台 2 0.46 0.92 含自耦
7 水下鼓风机 WRC-100 台 2 5.10 10.20 含消音器等配套附件
8 曝气器 KKI215/D90 套 400 0.02 6.00 含空气支管、管件
9 滗水器 200m3/h 台 2 4.76 9.52
10 螺杆泵 I-1B2' 台 1 0.38 0.38
11 带式压滤机 XMY25/6300 台 1 2.86 2.86 含配套附件
12 加药系统 / 套 2 2.47 4.94 含计量泵
13 电控系统 / 套 1 11.60 11.60 含电气仪表
小计(T2) 157.48

8.1.3 工程总投资估算

表8.3 工程总投资估算表
号 项 目 名 称 构 成 方 式 费 用 备 注
(万元)
一 土建工程 114.62
二 工艺设备 157.48
三 设备配套、运杂费 (二)×3% 4.72
四 安装工程 (二)×13.5% 21.26
五 本工程直接费合计 (一)+(二)+(三)+(四) 211.64
六 本工程直接费税金 (五)×3.4% 5.51
七 本工程间接费
1 工程设计费 (五) ×5% 10.58
2 工程调试、培训费 (五) ×5% 10.58 含技术培训
3 本工程间接费合计 1+2 21.16
八 工程税金 [(七)]×5.6% 1.19
九 本工程总投资估算 (五)+(六)+(七)+(八) 239.51

备注:
1.本工程总投资只包括污水处理站内部分;
2.土建投资估算不包括除主体构筑物之外的其它附属设施及措施费等相关费用,预算以施工图纸为准;
3.标准排放口按当地环保部门要求,业主自行解决;
4.化验仪器由业主根据工程需要自行采购;
8.2 运行成本分析
8.2.1 运行成本计算
电费
本工程装机容量约为219.87kW,其中运转功率为134.0kW,电费按0.62元/kW计,处理水量按3500 m3/d计:
E1=134.0×24×0.62÷3500=0.57元/m3污水
(2)药剂费
每天投加PAM的量为5.95kg,单价为30元/kg;
则加药费用为:0.05元/m3污水。
(3)人工费
人均工资福利按20元/天·人计,定员3人,则
E3=20×3÷3500=0.02元/m3污水
(4) 自来水耗
用于配药及实验室的自来水量每天约为20吨,吨水费用约为2.0元,则每天水费约为:
E3=20×2.0÷3500=0.01元/m3污水
(5)总运行费用为:
E4=E1+E2+E3 =0.57+0.05+0.02+0.01=0.65元/m3污水(不含折旧费及维修费)
8.2.2 经济效益分析
经核算,沼气的产生量约为2250m3/d,按热值计算,每10000m3相当于8吨标煤,每吨标煤按400元计,则全年沼气产生的效益约为:
2250×365×10-4×8×0.04=26.28万元/年

8.3工程实施计划
工程实施计划表
工程阶段 11月 12月 1月 2月 3月
可行性研究
施工图设计
土建施工
安装工程

9.质量保证
9.1确保处理水达标排放;
9.2处理系统运行稳定、安全、可靠;
9.3按环保样板工程设计,达到优质工程质量标准;
9.4终身有偿服务;终身提供免费技术咨询。

表8.2.1 电耗一览表
序号 设备名称 功率(kW) 运转时间(h) 单位 数量 备注
1 机械细格栅 0.12kW 6 台 1
2 污水泵 1.5kW 24 台 2 一用一备
3 污泥泵 1.5kW 2 台 1
4 污水泵 2.2kW 24 台 2 一用一备
5 污泥泵 2.2kW 1.5h 台 2
6 水下鼓风机 11kW 18h 台 2
7 滗水器 1.1kW 3h 台 2
8 螺杆泵 2kW 3 台 1
9 带式压滤机 4.0kW 3 台 1
10

SBR是Sequencing Batch Reactor的简称,我国通常称为序批式活性污泥法。1969年荷兰国立卫生工程研究所将处理医院污水的连续流氧化沟改为间歇运行,取得了令人注目的效果。从中得到启发,世界各国学者开始着手间歇式活性污泥法的研究开发。1979年美国R. Irvine等人根据试验结果首先提出SBR工艺。
近年来,伴随着监控与测试技术的飞速发展和SBR法专用设备滗水器的研制成功,以及电动阀、气动阀、电磁阀、水位计、泥位计、自动计时器,特别是计算机自动控制系统的应用,使监控手段趋于自动化,SBR工艺的优势才充分显露出来,引起广泛重视,得以迅速推广应用。
SBR法工艺简单,不设二次沉淀池,间歇(或连续)进水,间歇排水。在单一反应池中完成进水、反应、沉淀、滗水、闲置五道工序。
与传统活性污泥工艺比较,SBR法具有下述工艺特点:
1.工艺流程简单,节省投资。
2.生化反应推力大,处理能力强。研究表明,SBR反应器中的活性污泥具有较高的生物活性,其微生物核糖核酸(RNA)是普通活性污泥的3~4倍。在SBR反应器中,随着曝气进行有机物(F)逐渐减少,而生物固体(M)逐渐增加,污泥负荷(F/M)随时间减小,生化反应在时间上呈推流状态,F/M梯度也达到理想的最大,具有较强的污染物去除能力。
3.不会发生污泥膨胀,运行效果稳定。污泥膨胀多为丝状细菌过剩繁殖,绝大多数丝状菌,如球衣菌属等都是专性的好氧菌。在SBR反应池中,沉淀滗水阶段的缺氧或厌氧环境与反应阶段的好氧环境不断交替,能有效抑制专性好氧细菌的过量繁殖,因此能形成以絮凝性微生物为主体的生物絮体,不发生污泥膨胀,运行效果稳定。
4.耐冲击负荷,操作弹性大。
5.SBR法停曝后在理想静止状态下进行沉淀,泥水分离效果好。
5.5废水处理效果分析
各工艺阶段的处理效果预测如下:
表5-2:处理效果分析表
名称 单位 竖流沉淀池 UASB反应池 SBR反应池 总处理率
进水 出水 进水 出水 进水 出水
CODcr mg/L 12000 <10000 10000 <1000 1000 <100 >99%
BOD5 mg/L 8000 <7000 7000 <400 400 <20 >99.7%
悬浮物 mg/L 2500 <750 750 <500 700 <70 >97%

Ⅱ uasb工艺处理啤酒废水,镜检会有什么微生物,出现什么微生物是污泥性状好或坏的标志

通常厌氧反应器很少用镜检结果来评价运行好坏,因为厌氧反应进行的不同阶段,微生物种类也是不同的,如题,你应测定挥发性脂肪酸的浓度,来评测反应器运转情况。
补充一下:还要看你的种泥用的是什么,如果是普通活性污泥做种泥,那你就不要着急了,因为UASB从开始调试到完全正常需要的时间较长

Ⅲ 急求啤酒废水处理方案

你面试环境工程师??
可用 厌氧(如UASB)+ 活性污泥法(如接触氧化、SBR、MBR、CASS、AO等工艺)设计的参数你上面有,自己算。
设备根据工艺来选择!

Ⅳ 啤酒厂污水经过UASB池后的处理有什么好的方法除P和N

污水经UASB池到A/O池,A/O池有什么作用,A/O池的池体结果是什么样的设计结构?到活性污泥爆气池,400t的水需几小时的爆气?爆气是否可以采取间歇爆气?活性污泥少于20%是否对处理有影响,水的PH值在多少有利水的处理?什么情况会引起污泥膨胀?污泥膨胀有什么好的方法控制?A/O池就是硝化和反硝化工艺,该工艺主要用来去除废水中的氨氮和总氮(N)。废水先流经缺氧段(A),与二沉池回流水(回流比与废水中除氮的要求有关通常100-400%)混合,进行反硝化反应,即废水中的硝氮或亚硝氮(NO3--N,NO2--N)在反硝化菌利用碳源的作用下反应生成氮气,从水中脱出。然后混合液流入好氧段(O段)曝气,在好氧活性污泥的作用下BOD得到有效的去除,例外废水中的氨氮在好氧硝化菌的作用下生成硝氮或亚硝氮(NO3--N,NO2--N)。通常缺氧段(A)采用搅拌,好氧段设置曝气系统。容积比:A段:O段=1:(3-5)曝气量通常与废水的水量,水质,出水要求以及曝气池内活性污泥浓度有关系,(书上的公式:O2=a′QSr+b′VΔX),所以单纯的水量是算不出来曝气量的。间歇式曝气处理氮磷确实可以,因为SBR,CASS,CAST等工艺就是通过间歇式曝气去除氮磷的。但是这些工艺的设计思路就是利用不同时间段池内的含氧量控制不同的菌群处理废水中的污染物,而A/O法则是利用不同空间段内的不同污泥种类去除水中的污染物。所以不建议间歇式曝气。为满足硝化菌的最佳处理,pH建议在7.5~8.6,较好污泥膨胀分为非丝状菌膨胀和丝状菌膨胀 非丝状菌膨胀主要发生在废水水温较低而污泥负荷太高 污泥膨胀的时候,此时细菌吸附了大量有机物,来不及代谢,在胞外积贮大量高粘性的多糖物质,使得表面附着物大量增加,很难沉淀压缩。丝状菌膨胀在日常实际工作中较为常见,成因也十分复杂。1、低负荷易导致污泥膨胀,2.低曝气量影响污泥膨胀。丝状菌由于具有较大的比表面积和较低的氧饱和常数,在低DO浓度下比絮状菌增殖得快,从而导致丝状菌污泥膨胀。3.当污水中N、P不足时,易引起污泥膨胀的发生。N、P的合适比例为BOD5:N:P=100:5:1。很多研究表明许多丝状菌对营养物质N、P有着较强的亲和力,这可能就是缺乏营养物质导致污泥膨胀的原因。4.一般认为pH偏低易引起丝状菌的大量繁殖。而温度的对丝状菌的影响也是很普遍的。 解决方法1.临时应急主要方法是投加药物增强污泥沉降性能或是直接杀死丝状菌。投加铁盐铝盐等混凝剂可以直接提高污泥的压密性保证沉淀出水。另外,投加一些化学药剂,如氯气,加在回流污泥中也可以达到消除污泥膨胀现象。投加过氧化氢和臭氧也可以起到破坏丝状菌的效果。2.改善生化环境 污水厂发生污泥膨胀的时候,一般无法从工艺流程、池型和曝气方式的改变来解决,只能在正在运行的流程基础上通过改变生化池内的微生物生长环境来抑制或消除丝状菌的过度繁殖。3.污水性质的控制 首先应该检查和调整pH值,当pH值低于5以下时,不仅对污泥膨胀会有利,而且对正常的生化反应也会有一定的危害,所以当pH值偏低时应及时调整。另外在北方寒冷地区一定应注意冬季时的水温,若水温偏低应加热,因为低温也会导致污泥膨胀的发生。采用鼓风曝气能有效的在冬季较高的水温。 当污水中营养成份不足或失衡时,应补充投加。N、P含量应控制在BOD:N:P=100:5:1左右。

Ⅳ 急求一篇关于啤酒废水处理的中文摘要,谢谢

不知道你的正文内容,没法给摘要阿。。。。
=====================================

啤酒废水属于较高浓度的有机污染废水,主要污染来源于糖化、主酵、灌装清洗等生产工序,且因生产规模、设备和管理而异。
啤酒废水USAB+CASS联合处理工艺,采用UASB反应器,将高浓度废水单独进行厌氧处理后,与中低浓度废水混合采用CASS生物反应池进行好氧处理。
根据啤酒废水的特点,采用USAB+CASS联合处理工艺,可使啤酒废水具有可回收性,产生一定经济效益,做到生化与物化、循环性与收益性相结合。

Ⅵ 急啊,帮我把下面这段摘要翻译成英文吧!!!!万分感谢。

With the rapid development of the beer instry, a large quantity of wastewater is proced which poses great threat to the environment. This design is aiming to dispose of the wastewater of Yandangshan Beer in Leqing so as to discharge it up to standard since there are plenty of organic compound in the wastewater. The paper analyse the links where the wastewater is proced, the pollutants as well as the main sources of pollution and choose the UASB-CASS process to treat the wastewater after which the outlet water quality will reach COD≤80 mg/L,BOD5≤20 mg/L,SS≤70 mg/L,pH6~9 and up to the Discharge Standard of Pollutants for Beer instry (GB19821-2005). 手工翻译,语法正确,楼上两位就不多说了,望楼主采纳

Ⅶ 污水处理中容积负荷、停留时间怎么判断

一般情况下,负荷和水力停留时间都是污水处理池体设计的重要参数,而负荷版又分为污泥负荷,容积负荷,表面权负荷等等。 通常情况下根据经验按照水力停留时间就可以确定池体大小,而根据流量、水力停留时间、容积等又可以确定响应的污泥负荷

Ⅷ 啤酒废水的主要成分

啤酒生产主要以玉米和大麦为原料,假如啤酒花和鲜酵母进行发酵酿造而成。废水主要包括浸麦废水、糖化废水、废酵母液、洗涤废水和冷却排水等。污水
的主要成分
为糖类和蛋白质,主要水质指标为:cod=1000~25000mg/l;bod=700~1500mg/l;ss=300~600mg/l;tn=30~60mg/l;ph=5~6。属于中等浓度可生物降解的有机废水,不含有毒物质,在各股废水中,糖化废水和废酵母液的有机物浓度较高,cod达到1000mg/l以上。作为啤酒厂的综合废水,由于加入了大量冷却水和生活污水,使总排放口的浓度有所降低。
啤酒的生产工艺决定了废水排放的间歇性,生产一吨啤酒的废水量为12~20m
3
,耗水量的大小与生产规模和管理水平有关。

啤酒废水
具有较好的可生化性,瀑布采用生物处理方法,根据废水间歇排放、各股废水水质变化较大的特点,在处理前对水质水量进行调节是必要的。在废水中含有不易生物降解的漂浮物酒糟,影响观感,必须在生物处理前设置滤网加以去除。在生物处理方面,过去以好氧生物处理工艺为主,近十几年来,厌氧生物处理工艺以其耗能低、对中高浓度有机废水处理效果好等优点,在
啤酒废水
处理中的应用日益广泛。随着我国对污水排放的要求日趋严格,为确保出水达标排放,目前,最常用的工艺主要包括厌氧与好氧串联生物处理工艺和两级好氧生物处理工艺。
工艺流程主要为下列几种方法:
(1)污水→集水调节池→提升泵→水力筛→cass→出水排放
(2)废水→调节池→uasb反应器→中回水池→塔式生物滤池→混凝池→出水排放
(3)废水→格栅沉砂池→回转固液分离机→调节池→uasb反应器→接触氧化池→气浮装置→出水达标排放

Ⅸ 啤酒废水处理 哪种工艺组合处理效果最好

啤酒废水,用UASB/IC+SBR/CASS工艺,这是现在最成熟和通用的工艺,可保证COD,氨氮和TP稳定达标。

Ⅹ 求用UASB和CASS法处理啤酒厂污水的工艺流程图。DWG格式的

已上传,笑纳!

阅读全文

与啤酒废水uasbcass相关的资料

热点内容
液相用溶剂过滤器 浏览:674
纳滤水导电率 浏览:128
反渗透每小时2吨 浏览:162
做一个纯净水工厂需要多少钱 浏览:381
最终幻想4回忆技能有什么用 浏览:487
污水提升器采通 浏览:397
反渗透和不发渗透净水器有什么区别 浏览:757
提升泵的扬程 浏览:294
泽德提升泵合肥经销商 浏览:929
饮水机后盖漏水了怎么办 浏览:953
小型电动提升器 浏览:246
半透膜和细胞膜区别 浏览:187
废水拖把池 浏览:859
十四五期间城镇污水处理如何提质增效 浏览:915
怎么测试空气净化器的好坏 浏览:519
提升泵是干嘛的 浏览:744
布油做蒸馏起沫咋办 浏览:252
广州工业油烟净化器一般多少钱 浏览:204
喜哆哆空气净化器效果怎么样 浏览:424
油烟净化器油盒在什么位置 浏览:582