『壹』 检测污水中重金属时,配制标准溶液怎样配
我们一般考虑抄3个因素:袭
1,金属化合物中阴离子对实验测定是否有影响,一般选择无影响的,避免干扰。
2,该化合物的稳定程度,不能选择在空气中或水中容易发生化学或物理反应的化合物
3,该化合物是否容易得到,就是考虑成本问题。
先参考一般文献,看别人是怎么设置浓度梯度的,然后仿照别人的做,这个至于配溶液楼主应该都会吧
然后看看效果怎么样,再具体进行浓度变大或变小的试验。
望采纳,谢谢
『贰』 电镀废水中的重金属用分光光度计测定方法是什么
分光光度计的测定方法为:用空白样放在第一个孔内,测量样放在其后的孔内回。调节相应答按钮使空白样的吸光度为0透射率为100。然后测量其他测量样的吸光度。从而可以在标准曲线上对应出他的浓度。从而换算出样品的实际浓度。
标准曲线由纯的相应金属盐的各种浓度的相应吸光度制的。最小值在0上,就是没有金属盐;最大值一般定为100。这要看具体金属相应具体浓度了。
在检验自来水中的重金属的时候,最常检验的是铅和汞,因为这两种物质在日常生活中最可能污染自来水。
『叁』 如何快速检测电镀废水中重金属离子含量
如何快速检测电镀废水中重金属离子含量
电镀废水的成分非常复杂,专除含氰废水和酸属碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬废水、含镍废水、含镉废水、含铜废水、含锌废水、含金(废水、含银废水等。
一般情况水的酸性强 也有少量呈碱性的 其中重金属含量随表面活性剂、光亮剂、以及生产工艺的不同而变化。 通常镀贵重金属的厂家都做金属回收,水也做了中水回用 镀塑料的一般重金属含量比较低是一种水 镀金属的要看加工的物品和数量 但通常电镀水中铬含量都比较高。
至于处理方法有下面几种,主要是根据成本和出水要求而定方法 化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。
『肆』 工厂想测定废水中重金属含量,买什么检测仪好
工厂想测定废水中重金属含量,买便携式水体重金属离子浓度快速检测仪好
『伍』 怎样快速检测水中的重金属含量
快速检测方法很多方法一,使用便携式仪器检测方法二,使用试纸法快速检测水内中重金容属方法三,检测重金属污染程度的可能性.在CA培养基内分别加入不同浓度的锌、铜、铅等重金属,再将水霉菌菌株移至此些培养基上培养.由实验结果得知,培养基内含500 ppm硫酸锌、40 ppm硫酸铜与500ppm硝酸铅时,皆会使水霉无法生长;而含有450 ppm硫酸锌、30 ppm硫酸铜与450ppm硝酸铅时,水霉虽生长不佳,但仍可生长、繁殖. 由于水霉菌在适当湿度、温度并提供适量光照的环境下生长十分快速,约1~2日,所以可以十分快速检验水中重金属的含量,加上菌株容易取得、培养材料十分便宜,因此,利用水霉或检测水中水霉含量即可作为检测重金属污染程度一项十分经济、快速、简便且准确的参考指标之一.至于有关水霉菌对各种重金属的灵敏度与如何推广应用水霉来检测水中,甚至土壤中重金属污染程度则有待进一步试验和改善.
『陆』 设计原子吸收分光光度法测定废水中铜离子含量的实验越简单越好
原理:将水样或消解处理好的试样直接吸入火焰,火焰中形成的原子蒸汽对光源发射的特征电磁辐射产生吸收。将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的含量。
方法的适用范围:
适用于测定地下水、地表水和废水中的铜。
试剂:
硝酸,优级纯
高氯酸:优级纯
去离子水
金属标准储备溶液:可以买
混合标准溶液:按金属标准储备溶液说明配制
样品预处理:
取100ml水样放入200ml烧杯中,加入硝酸5ml,在电热板上加热消解(不要沸腾)。蒸至10ml左右,加入5ml硝酸和2ml高氯酸,继续消解,直至1ml左右。如果消解不完全,再加入硝酸5ml和高氯酸2ml。再次蒸至1ml左右,取下冷却,加水溶解残渣,用水定容至100ml。
样品测定:
分析波长228.8nm。仪器用0.2%硝酸调零,吸入空白样和试样,测量其吸光度。扣除空白样吸光度后,从校准曲线上查出试样中的金属浓度。一般可以直接从仪器上读出结果。
校准曲线:
吸取标准溶液0、0.50、1.00、3.00、5.00、10.00ml,分别放入6个100ml容量瓶中,用0.2%硝酸稀释定容。浓度分别为,0、0.25、0.50、1.50、2.50、5.00mg/L。按测定步骤测量吸光度,用经空白校正的各标准的吸光度对相应的浓度作图,绘制校准曲线。
计算:
cu(mg/L)=m/v
『柒』 可通过测量哪些指标来确定水体重金属污染种类
水体污染会引起水质的恶化。水污染常规分析指标是反映水质状况的重要指标,是对水体进行监测、评价、利用以及污染治理的主要依据。环境保护机构和其他有关部门通常按照不同的要求制定各种水质标准,以及相应的测定方法。对于水体污染的指标有哪些分类,下文围绕此问题做了具体的分析,主要内容有:
水污染的指标按照性质可分为化学性、物理性及生物性三类:
一、化学性的污染指标意义及影响
(l)pH值:pH值大于7为碱性,小于7为酸性,一般以pH测定计测定或以太酚、甲基橙等指示剂判定。pH值影响生物的生长、物质的沉淀与溶解、水及废水的处理等。
(2)酸度:表示水中和碱的能力。水中酸度的形态及大小,可推知水质的好坏,废水处理加药的多少,并影响水体的自净作用。
(3)碱度:碱度可指示废水处理的加药量,水的腐蚀性、生物处理操作的效果等。
(4)氯化物:指水中的氯离子[Cl-],具有腐蚀性,高浓度时对农作物有妨碍。若水中氯化物升高,可能因海水入侵污染或工业废水的排入。
(5)固体:废水经103-105度C蒸干后的残余物,称为总固体物(TS),可再分为悬浮固体物(SS)与溶解固体物(DS)。水样过滤后的滤液蒸干所得的重量为溶解固体物。悬浮固体可影响水体的外观。有机性固体如水生物及有机物耗用水中溶氧降低水体溶氧量。无机性颗粒会发生沉积作用。
(6)化学需氧量(CODcr):化学需氧量代表水中可破强氧化剂氧化的有机物量。测定时取定量的废水,以重铬酸钾在酸性下氧化有机物产生CO2及H2O,再计算氧化消耗的氧量。CODcr的测定,广泛用于工业废水及家庭污水之有机物含量分析。
(7)生化需氧量(BOD):BOD之定义为细菌在好氧情况下使分解的有机物所需的氧量。在好氧情况下,家庭与工业废弃物排入水沟中所造成污染的程度,可用BOD试验根据其需氧量来决定。一般所称的BOD为五天2O度情况下试验所得的结果。BOD是测定生物性可氧化有机物的唯一方法,并可用于控制河川污染的主要基准。
(8)溶氧(DO):水中的溶氧可能来自空气中或人为曝气,植物光合作用产生,其溶解度受温度的影响很大,自O度C的14.6mg/l到35度C时的7mg/l。氧的低溶解度为自然水净化能力受到限制的主因。溶氧的测定可用来控制河流污染程度,以维持鱼类或其它水中生物的繁殖与生长的最适情况。
(9)氮:氨氮是生物活动及含氮有机物分解的产物:可指示污染。氮在污水中的主要状态有氨氮(NH3-N),亚硝酸氮(NO2-N),硝酸氮(NO3-N),有机氮等,其中氨氮及有机氮的和称为纯凯氏氮。通常可藉氮的测定,以控制生物处理净化的程度。
(10)磷:污水中的磷一般以正磷酸监及聚磷酸盐存在。若水中浓度高,表示可能受工矿废水、家庭污水、清洁剂、肥料等污染。湖泊、水库的藻类滋生,亦受到磷的影响。
(11)硫化合物:硫酸盐为原水中最主要的一种阴离子,在厌氧状态下,硫酸盐常被微生物还原为硫化氢气体,更进一步和氧反应成硫酸腐蚀下水道管渠。
(12)重金属:最常见之有害重金属包括镍、锰、铅、铬、镉、锌、铜、铁、汞等。若含量太高,对生物有急性或慢性的毒性,产生味道及影响水体外观,并且减少河川的自净作用。
(13)放射性物贸:可立即分裂产生放射线物质,如α、β、γ射线等以达稳定的物质称为放射性物质。水中生物可累积微量的放射物质,若食用之将导致癌症及遗传上的突变,其放射性强度单位为居里(Curie)或伦琴(Roentgen)。辐射线与生物体或水作用,会产生许多游堆的粒子是极具反应性,因此会继续与蛋白质反应,降低的活性,阻止细胞分裂、破坏细胞膜或破坏细胞的功能。
(14)清洁剂:清洁剂的主要成份为一种阴离子表面活性剂,其产生的泡沫及磷会影响净水作用及产生富营养化现象。
二、生物性的水污染指表标之意义及影响
(1)大肠菌类:大肠菌类系大肠菌与大肠茵类似性质细菌之总称。细茵学上定义为普通栖于人畜盲肠管内之格兰姆染色阴性,无芽孢之杆菌类,能分解乳糖而生成酸及气体。大肠菌类有下列几种特性,常用于给水之污染指模。a.数量大,易检出。b.大肠菌较一般致病菌生存力强可显示污染的久暂。c.检验简单且很快得到结果。d.极少量即可检出。e﹒大肠菌类可为粪便污染的指标。
(2)细菌总数:细菌总数指平面培养上之聚落数,常以此为水质判定的标准,细菌总数愈多表示污染愈严重。
(3)水生物:水中生物对水质有不同的敏感度,一般洁净的水中生物种类多而数量少,而受污染的水生物种类减少但数量增多,但若受到严重污染时,较高等的水生物无法生存。
(4)富营养生物:若水中含有过多的养分,致藻类、岸生植物水草的繁殖,形成富营养化,间接影响动物性浮游生物、鱼及底栖生物等的采殖,因水的营养程度不同,各生物的种类及数量也不同。因此可藉此特性判断水的营养态及污染的程度。
三、物理性的水污染指标之意义及影响
(1)水温:表示水的冷热程度,常用°C表示。水温可影响水的密度、粘度、蒸气压、表面张力等。物理特性在化学方面可影响水中的溶解度、化学反应速率及气体交换率,在生物方面可影响生物的活动及生化反应速率。热污染为水温受废水影响所形成的。
(2)外观:可凭视觉、嗅觉等感官的直觉反应来判断,包括色度、浊度、臭味、沉淀物等。
(3)臭味:臭味可能来自有机物及无机物质、污水及工业废水的排放,自然界的有机物经厌气分解,皆可产生臭味,可由舌头感觉出或鼻子之嗅觉闻出,发出臭味的物质大部分为挥发性物质。
(4)色度:分真色度及表色度,前者是除去水中悬浮固体测得的色度,后者是水样直接测得的色度。自然水多呈淡黄色,一般采用铂氯酸钾及氯化亚钴溶液为标准。色度虽对某些特殊工业,如造纸、染整、食品等会着色于成品而影响其品质,但在卫生上的问题较小,仅于美观土、视觉上的不适。
(5)浊度:浊度表示水对光的反射及吸收性质。在供水方面、浊度量测的结果,具有特殊的重要性,对于水生植物的光合作用鱼类的生长及繁殖亦有影响。
综上所述,水体污染的指标有哪些分类主要有生物、化学、物理三大类的水污染,另外还对此给人类生产生活所造成的影响做出了精确的对照,希望人们能够引起重视,采取相应的措施进行处理,以便能够更好的发展。若还有想要了解的,敬请关注大禹网,我们再次提供了丰富的信息资源。
『捌』 废水六价铬的检测
ROHS--EPA7196A六价铬检测方法-比色法
原子吸收分光光度法只能检测什么金属,不能检测价态,所以不严密
一、方法概要
在无特定高浓度的钼、钒和汞干扰物质下之酸性溶液中,六价铬与二苯基二氨 (Diphenylcarbazide)反应生成紫红色物质,此反应相当灵敏,在波长540 nm下每摩尔铬原子约有40,000吸收指数,产生之紫红色物质在波长540 nm测其吸光度定量之。
二、适用范围
本方法适用于事业废弃物毒性特性溶出程序(TCLP)处理后萃出液中六价铬之检测。本方法检测六价铬浓度范围为0.5至50 mg/L,超过检量线范围,需稀释至适当倍数再行检测。
三、干扰
(一) 六价铬与二苯基二氨反应少有干扰,但当铬含量相对较低时,某些特定物质如六价钼或汞之盐类与试剂反应亦产生颜色而造成干扰;在特定之pH值下,此干扰并不太严重,钼及汞的浓度超过200 mg/L,才可能产生干扰效应。钒之干扰较强,但当浓度10倍于铬时,尚不至造成问题。
(二) 铁浓度大于1 mg/L会产生黄色,形成干扰,若选择适当的波长三价铁的颜色干扰较不严重。
四、设备
(一) 比色装置:可选择光径1 cm(含)或以上的540 ± 20 nm波长之分光光度计;或使用在波长约540 nm光径1 cm(含)或以上具有最大透光率的绿-黄色滤光镜之滤光光度计。
(二) pH计:能精确测量至 ± 0.2单位者。
五、试剂
所有检测时使用的试剂化合物除非另有说明,否则必须是分析试药级。若须使用其它等级试药,在使用前必须要确认该试剂的纯度足够高,使检测结果的准确度不致降低。 (一) 试剂水:参照「事业废弃物检测方法总则」之规格。除非特别指定,否则本方法所指的水皆为试剂水。
(二) 六价铬储备溶液:溶解0.1414 g之重铬酸钾(已干燥处理)于水中,稀释至1,000 mL(1 mL = 50 μg Cr),亦可使用经确认之市售储备溶液。
(三) 六价铬标准溶液:取10.00 mL储备溶液以水稀释至100 mL(1 mL = 5 μg Cr)。
(四) 硝酸,10 %(v/v):取适量试剂水加入10 mL浓硝酸,最后定量至100 mL。
(五) 二苯基二氨 (Diphenylcarbazide)溶液:溶解250 mg 1,5-二苯基二氨 于50 mL丙酮,储存于棕色瓶中。溶液如褪色应弃置不用。
(六) 丙酮:避免使用以金属或金属衬垫瓶盖之容器盛装之丙酮,否则应经再蒸馏后使用。
六、采样及保存
(一) 样品采集均须依照采样方法执行与保存,参考「事业废弃物采样方法」。
(二) 样品已经「事业废弃物毒性特性溶出程序」所得萃出液应尽速分析,否则应以 HNO3 酸化至 pH < 2,贮存于4 ± 2℃最长仅可保存 24 小时;惟若萃出液酸化时会产生沉淀,则应取未经酸化萃出液尽速分析。
七、步骤
(一) 颜色形成及测定:取已经适当稀释或原萃出液95 mL置于100 mL量瓶中,加入硝酸溶液直至pH值为2.0 ± 0.5后,再加入2.0 mL二苯基二氨 溶液均匀混合,以试剂水稀释至100 mL。静置5至10分钟使完全呈色后,移入1 cm样品槽内,在540 nm测其吸光度,以试剂水为对照样品,吸光度读数应扣除制备空白吸光值。样品本身之色度应藉由一个含有除发色剂外所有试剂之样品溶液(色度空白)加以扣除,由校正后之吸光度对照检量线求得六价铬之浓度(mg/L)。 <注意> 若经上述步骤稀释至100 mL溶液呈色或混浊,则在加入发色剂前读取吸光度,并自最终颜色溶液之吸光度读取中扣除而予校正。
(二) 检量线之制备: 1、 为了校正六价铬在分析操作上的漏失,铬(VI)之标准溶液与样品相同步骤处理,标准溶液之浓度范围约在0.05至1.0 mg/L之间。
2、 将标准溶液依样品相同方式发色。发色完全后移至1 cm吸收槽内于540 nm测其吸光度。以试剂水作为对照,扣除试剂空白吸光值后得标准溶液之吸光度,以校正后之吸光度对六价铬浓度mg/L做图,求得检量线。
(三) 验证: 1、 对每一被分析之样品基质中,是否存在还原条件或化学干扰影响呈色反应,可以分析六价铬之添加样品加以验证。添加样品中六价铬之添加量,必须是原样中浓度之两倍但不得低于30 μg/L。回收率必须在85~115 % 之间表示无干扰存在。
2、 添加样品之浓度若超过检量线范围,则以空白液稀释,使之落入范围中,并换算求其浓度值。
3、 若验证结果显示抑制性干扰存在,则样品必须稀释后再重新分析。
4、 样品经稀释后干扰仍存在,则选用螯合萃取或其它方法分析。
(四) 酸性萃出液其回收率低于85 %必须再测试是否因残留还原剂所造成。首先将萃出液以1 N氢氧化钠调整至碱性(pH=8.0~8.5),再添加后分析,若该原先测得Cr(VI)含量小于5 mg/L之酸性萃出液,其碱性溶液之回收率在85~115 %之间,则表示此分析方法已经通过验证。
(五) 所有事业废弃物毒性特性萃出液添加回收率小于50 %,且其浓度未超过溶出标准但为溶出标准之80 %以上,都必须使用标准添加法分析。
八、结果处理
由检量线、直接从仪器的吸收度读值或标准添加法决定六价铬浓度,所有稀释倍数必须列入计算。
九、品质管制
略
十、精密度及准确度
略