导航:首页 > 污水知识 > 废水中铝测定实验报告

废水中铝测定实验报告

发布时间:2022-04-13 18:21:18

⑴ 铝合金电解抛光

YB-66环保型铝和铝合金电解抛光添加剂
YB-66环保型铝和铝合金电解抛光添加剂新工艺

一、特点
1、抛光液不含铬酸,符合当今环保要求,节省环保设备投资及废水处理费用。
2、抛光电流密度较传统工艺要小,因此不仅电耗低,抛光液使用寿命长,而且更适合大型铝和铝合金件的表面抛光。
3、适用范围广,适用于纯铝及除硅含量大于2%的各种型号的铝合金。
二、抛光液组成和操作条件
浓磷酸(比重 1.74) 70%(重量)
YB-66添加剂 30%(重量)

温度 55–65℃ 最佳60℃
阳极电流密度,DA 2–8 A/dm2 (无搅拌)
12–20 A/dm2 (搅拌)

电压 10–15 伏
抛光时间 3–5 分钟
阴极材料 铅或不锈钢
阴极面积∶阳极面积 2–3∶1

三、开槽步骤
1、该抛光液在使用前的比重在1.50–1.52的范围内。根据所欲配制的抛光液容积、抛光液比重及抛光液中磷酸所占的重量比,计算出所要加入的磷酸量并加入之。
2、同样计算出所需YB-66添加剂的重量并加入之。
3、加热至操作温度。
四、操作指导
1、抛光时是否采用搅拌(阴极移动、空气搅拌)主要取决于抛光件的形状:若抛光件形状简单,横向宽度较窄,则不采用搅拌;反之,若抛光件形状不规则或横向宽度较大,尤其当抛光件某些部位阻碍气体逸出形成“气袋”而影响表面抛光的情况下则必须采用搅拌方式。在采用搅拌的状况下,必须相应提高阳极电流密度,否则抛光表面难以达到高光亮。
2、抛光时大部分杂质沉积于阴极表面,但仍有部分因抛光生成的固体污泥留在抛光液内,因此需定期过滤抛光液把杂质除去。
3、在抛光过程中,由于磷酸盐的产生,水的电解及挥发以及抛光液的夹带损失,故需不断补充磷酸和YB-66添加剂。
4、磷酸与YB-66添加剂的添加比例一般仍按70%∶30%添加,但在每次添加后应测定抛光液比重,根据测定结果再予以适当调整。
5、该抛光液在配制后未经使用前的原始比重在1.50–1.52的范围内,在抛光槽运转过程中,抛光液的比重应控制在1.50–1.65的范围内。抛光液比重过高说明抛光液含水量不足;反之,抛光液比重过低,表明抛光液水含量过高,磷酸含量偏低。经常用比重计测定抛光液比重是控制抛光液组分浓度及抛光质量的有效手段。
6、在较高阳极电流密度下长时期抛光有可能造成抛光液中铝含量过高(抛光液顶部出现半融状物质就是铝含量过高的标志),此时必须用新抛光液部分更换之,以降低抛光液中的铝含量。
五、镀前处理与镀后处理
1、镀前处理
铝或铝合金件在抛光前须先经除油处理。根据抛光件表面油泥沾污程度,一般可选择以下两种除油工艺中的一种进行处理。
第一种工艺:铝件表面油泥沾污轻微且分布较均匀,通常采用弱浸蚀碱性除油液,其成分与操作条件如下:
无水碳酸钠 25 g/L
磷酸三钠 25 g/L
温度 60–70℃
浸渍时间 1–3 分钟

第二种工艺:铝件表面油泥沾污较重,常用无浸蚀碱性除油液,其成分与操作条件如下:
无水碳酸钠 40–60 g/L
磷酸三钠 40–60 g/L
硅酸钠 20–30 g/L
温度 50–70℃
浸渍时间 15–30 分钟

硅酸钠是缓蚀剂,它可抑制铝的浸蚀,但使用这种缓蚀剂时铝件表面会生成一层硅酸铝膜,因此,在除油及清洗后必须接着在含有氟离子的溶液内进行去污泥处理(常称出光)。铝及铝合金去污泥处理液的成分及操作条件如下:
硝酸(含量65 %) 500–700 ml/L
氟化氢铵 50–120 g/L
温度 20–25℃
浸渍时间 30秒

2、后处理
多数铝及铝合金在电解抛光及清洗后即可施加各种镀涂层,如阳极氧化、电泳涂漆及各种金属镀层。但某些铝合金,如高铜含量的铝合金在电解抛光及清洗后尚需进行去污泥处理以提高其表面光亮性。

⑵ 云南铜业有什么消息未披露啊说是媒体已经披露的嘛,我在网上没找到相关新闻。。

标题:中铝重组云南铜业 经济日报消息
2008-01-18 09:47
本报讯 记者杨国民报道:中国铝业公司日前宣布,2007年公司实现营业收入1317亿元,同比增24.1%,实现利润连续两年保持在200亿元以上,公司资产规模突破2000亿,达2014亿元。中铝公司副总经理吕友清表示,2007年中铝的利税近500亿元,已经超过一些进入全球500强的企业,中铝正在向更具国际竞争力的大企业集团不断迈进。

吕友清介绍,2007年中铝氧化铝产量同比增8.8%,突破1000万吨,居世界第二;铝及铝合金产量增20.7%;铝加工材增27.4%;阴极铜产量增20.6%;铜加工材增13.8%。同时,2007年公司氧化铝综合能耗同比降低1.24%;铝锭综合交流电耗同比降低1.38%;铝材综合能耗同比降低9.37%;铜材综合能耗同比降低8.14%。与2006年相比,全年累计节能59万吨标煤,二氧化硫减排率5.3%,烟尘减排率14.2%,工业废水减排率3.9%,COD(化学需氧量)减排率15.7%。

2007年,国务院国资委批准中铝公司对主业进行调整,调整后中铝公司主业范围扩大到铝、铜、稀有稀土及其他有色金属的采选、冶炼、加工、贸易和相关工程技术服务。中铝的发展战略已转型为打造多金属国际化矿业公司。为实现这一目标,中铝重组云南铜业(集团)有限公司,实现了强强联合,在创办一流铜业的进程中迈出了重要一步。重组东北轻合金有限责任公司,完善了公司产品结构和铝加工战略布局。吸收了长沙有色冶金设计研究院和长沙勘察设计研究院,增强了公司矿山设计和工程技术的实力。重组中国稀土开发公司、中国有色新金属有限公司,与沈阳市签订沈阳有色金属加工厂重组协议,为公司稀有稀土板块的发展创造了条件。

同时,中铝积极实施“走出去”战略,海外开发取得重大成果。中铝澳大利亚奥鲁昆项目获得矿产开发证,标志着项目开发进入启动阶段;成功收购秘鲁铜业,获得铜当量金属资源量1200万吨,为公司调整主业,做大做强铜产业提供了资源保障;获得沙特100万吨电解铝项目许可证,标志着公司正式拉开了调整产业结构向资源、能源富集地区战略转移的序幕。这三个项目的成功,实现了公司海外开发的重大突破,为发展壮大铝、铜业务板块,参与全球有色金属资源竞争打下了基础。

⑶ 分析化学实验的5图书信息

书名:高等学校教材--分析化学实验
出版社:化学工业出版社
定价:24
条形码:9787502572365
ISBN:ISBN 7-5025-7236-8
作者:佘振宝,姜桂兰
印刷日期:2006-1-1
出版日期:2006-1-1
精装平装_开本_页数:平装16开,206页
中图法:bookJC02
中图法一级分类:教材
中图法二级分类:本科生教材
书号:B10031881
简介:内容提要
本书为分析化学(含仪器分析)理论课程的配套实验教材。全书分为上、下两篇,主要介绍化学分析实验基础知识。定量分析仪器和基本操作、分析化学中常用的样品前处理技术和分离富集技术,以及化学分析和仪器分析的基础实验、选做实验和设计实验等方面的内容。其中的实验从分析内容上涉及无机分析和有机分析、成分分析和结构测试;从分析方法上涵盖了化学分析和仪器分析中常用的分析方法,所使用的仪器既有一般分析化学实验室配备的常规分析仪器,也有现代仪器设备,因而适合具备不同实验条件的院校选做。
本书的特点是立足基础训练,密切联系实践,突出对学生综合实验能力的培养。
本书可作为高等院校非化学化工类专业本科生的分析化学(含仪器分析)实验课教材,也可供各行业分析测试人员参考。
前 言
分析化学是生命科学、环境科学、医药学、食品、材料、农业和地质类等专业的主要基础课程之一。分析化学实验是分析化学课程教学中的重要环节,在培养学生基本技能、实践能力、科学素质以及增强学生的创新意识等方面都起着重要作用。因此,加强分析化学实验教学已成为全面提高学生素质的重要途径之一。而分析化学实验教材是搞好实验教学的重要依据。
吉林大学五校合并后,针对近化学类专业分析化学实验教学体系等的改革问题进行了较全面深入的研究和探讨,并对实验教学内容和新实验项目进行了探索,在总结近五年的教学实践经验的基础上,结合非化学化工类分析化学实验教学实际情况和可能,将化学分析实验与仪器分析实验按上下两篇合编。
《分析化学实验》编写的宗旨是:以基本操作技能为主线,突出量的意识、能力和素质培养,适应学生个性化发展。
在内容上,力求既结合实际,又面向未来;既以生物、环境类专业为主,又照顾到其他类专业的需要。
在实验项目的编排上,尽力做到实验原理阐述清晰、实验步骤和注意事项叙述详细,利于学生选课预习和独立完成实验。
本书分为两篇,章次按全书排序。上篇为化学分析实验部分,分为五章。第一章介绍化学分析实验安全常识和化学分析实验基础知识;第二章介绍化学分析实验中的器皿洗涤、天平称量及容量瓶、移液管、滴定管等的基本操作方法和要求;第三章为化学分析基础实验部分,包括10个实验;第四章为化学分析选做实验部分,包括13个实验;第五章为化学分析设计实验部分,包括20个实验。
下篇为仪器分析实验部分,分为六章。第六章主要介绍地质、环境、生物等各种样品的前处理技术,包括微波及超声溶样等新方法;第七章介绍分析化学中常用的分离富集技术,包括膜分离、固相微萃取等新技术;第八章为仪器分析基础实验部分,包括24个实验;第九章为仪器分析选做实验部分,包括12个实验;第十章为仪器分析设计及综合实验;第十一章为多媒体化学实验数据处理。
上、下两篇实验内容涵盖多种实验方法,而且选取了生物、食品、药物、地质、土壤、水体等方面的多种样品作为分析对象,因此,本实验教材可用于非化学化工类多种专业本科生的实验教学。
参加本书上篇的编写人员和编写的内容如下:余振宝(第一章的部分内容,第四章中实验十一、十二、十八、二十至二十三和第五章)、郑克岩(第一章、第二章的主要部分)、宋乃忠(第三章)、季桂娟 (第二章的部分内容,第四章实验十三至十七、十九)。上篇由余振宝修改定稿。
参加本书下篇的编写人员和编写的内容如下:姜桂兰(第七章,第八章实验十、十三至十六、十八、二十三,第九章实验三十、三十五至三十六和第十章)、鲍长利(第六章,第八章实验五、七、二十一、二十七、三十一、三十二)、田玉美(第八章实验六)、张凯(第八章实验一、四,第九章实验二十八、二十九)、季桂娟(第八章实验二、三、十一、十二,第九章实验二十六)、余振宝(第八章实验八)、宋乃忠(第八章实验九)、周伟红(第八章实验二十)、马玖彤(第八章实验十七)、李增文(第八章实验十九,第九章实验三十四)、詹从红(第八章实验二十二)、蒋曼(第八章实验二十四)、张蛮、赫奕(第九章实验二十五)、牟凤田(第九章实验三十三)、许海、宋乃忠(第十一章)。下篇由姜桂兰修改定稿(其中第十一章由余振宝整理定稿)。
参加本书附录部分的编写人员和编写的内容如下:郑克岩、余振宝(附录一至十一)、张凯(附录十二至十七),最后由余振宝整理定稿。
本教材的出版得到化学工业出版社的大力支持,在此深表谢意。
限于时间及编者水平,本书难免存在疏漏之处,请读者批评指正。
编 者
2005年6月
目录:分析化学实验课的要求1
上篇 化学分析实验
第一章 化学分析实验基础知识3
一、学生实验守则3
二、实验室安全规则3
三、纯水的制备和检验5
四、化学试剂规格6
五、玻璃仪器的洗涤6
六、定量和定性分析滤纸的规格8
七、分析化学中常用的干燥剂9
八、原装酸、碱的含量、密度和浓度10
九、常用溶液的配制方法10
十、实验数据的记录、处理和实验报告11
第二章 定量分析仪器和基本操作15
一、分析天平称量15
二、重量分析基本操作19
三、滴定分析基本操作25
第三章 化学分析基础实验33
实验一 常用容量器皿的校准33
实验二 化学分析基本操作35
实验三 酸碱滴定练习38
实验四 有机酸摩尔质量的测定40
实验五 EDTA标准溶液的配制与标定42
实验六 水的硬度和钙镁总量的测定45
实验七 Na2S203标准溶液的配制与标定46
实验八 维生素C含量的测定(碘量法)48
实验九 风干样品水分的测定(土壤、植物重量分析)50
实验十 钡盐含量的测定(硫酸钡重量法)52
第四章 化学分析选做实验54
实验十一 果品总酸度的测定54
实验十二 铵盐中氮含量的测定55
实验十三 铋、铅含量的连续测定57
实验十四 过氧化氢含量的测定58
实验十五 水样中化学耗氧量(COD)的测定(高锰酸钾法)59
实验十六 铁矿中全铁含量的测定(无汞定铁法)60
实验十七 间接碘量法测定铜合金中铜的含量62
实验十八 胆矾中铜含量的测定(间接碘量法)64
实验十九 钢铁中镍含量的测定66
实验二十 补钙制剂中钙含量的测定(高锰酸钾间接滴定法)67
实验二十一 水样中氯化物的测定(硝酸银滴定法)69
实验二十二 含碘食盐中碘含量的测定71
实验二十三 蛋壳中Ca、Mg含量的测定72
第五章 化学分析设计实验76
一、实验目的76
二、要求76
三、实验方案设计参考选题76
下篇 仪器分析实验
第六章 分析化学中常用的样品前处理技术79
第一节 试样处理技术79
一、干灰化法79
二、湿式消解法80
三、熔融分解法82
第二节 复杂样品预处理示例82
一、植物和生物样品的预处理82
二、岩石、土壤试样的预处理83
第七章 分析化学中常用的分离富集技术84
第一节 挥发和蒸馏分离法84
第二节 沉淀和共沉淀法84
一、沉淀分离法84
二、共沉淀法85
第三节 萃取分离法86
一、溶剂萃取86
二、固相萃取86
三、超临界流体萃取87
四、超声提取87
第四节 离子交换分离法87
第五节 色谱分离法87
一、气相色谱法88
二、高效液相色谱法89
三、离子色谱法90
四、超临界流体色谱法90
第六节 膜分离法90
一、膜渗析91
二、电渗析91
三、膜过滤91
四、液膜技术91
五、膜萃取91
第八章 仪器分析基础实验92
第一节 发射光谱分析法92
实验一 电感耦合等离子体发射光谱法(ICP-AES)测定食品中的多种微量元素92
实验二 地质样品的X射线荧光光谱定性、半定量分析94
实验三 X射线荧光光谱法测定地质样品中的常量、微量元素96
实验四 原子荧光光谱法检验矿物药石膏中的砷97
第二节 吸收光谱分析法99
实验五 原子吸收光谱分析中实验条件的选择99
实验六 原子吸收光谱法测定茶水中的钙101
实验七 石墨炉原子吸收光谱法测定土壤中的微量铅和镉102
实验八 Al3+-CAS二元络合物与Al3+-CAS-CPC三元络合物光吸收性质的比较和水样中铝的测定104
实验九 邻二氮菲吸光光度法测定水样中铁的条件选择和测定106
实验十 分光光度法测定食盐中的碘含量108
实验十一 分光光度法测定水样中的六价铬109
实验十二 紫外可见分光光度法测定水样中的苯酚111
实验十三 红外光度法测定水中的石油类和动植物油113
实验十四 傅里叶变换红外光谱法测定蛋白质多肽二级结构116
第三节 电化学分析法117
实验十五 电位法测定水溶液的pH值117
实验十六 离子选择电极法测定水中的氟离子120
实验十七 循环伏安法测定饮料中的葡萄糖122
实验十八 催化极谱法测定地下水中的铅124
实验十九 示波极谱法测定污水样中的铅125
实验二十 毛细管电泳/紫外检测阿司匹林中的水杨酸127
第四节 色谱法130
实验二十一 离子色谱法测定水中的阴离子130
实验二十二 高效液相色谱法测定茶叶、咖啡和可乐饮料中的咖啡因131
实验二十三 毛细管气相色谱法测定菊花茶中的木糖133
第五节 热分析134
实验二十四 硫酸铜的差热-热重分析134
第九章 仪器分析选做实验138
实验二十五 微波等离子体-发射光谱法(MPT-AES)测定水中的钙、镁138
实验二十六 X射线荧光光谱法测定硅酸盐中的主量元素139
实验二十七 原子光谱法测定生化样品中的微量元素140
实验二十八 矿物药石膏中汞、砷的同时测定142
实验二十九 紫外可见分光光度法测定人发中的微量铝143
实验三十 分光光度法测定水性涂料中的甲醛145
实验三十一 原子吸收光谱法中的化学干扰及其抑制147
实验三十二 高效毛细管电泳/电导检测法分离检测饮用水中的C1-、NO3-、S024-149
实验三十三 不锈钢在硫酸溶液中钝化曲线的测定及耐腐蚀能力的评价151
实验三十四 气相色谱法测定水样中的有机磷农药152
实验三十五 核磁共振波谱法测定多肽二级结构155
实验三十六 气相色谱法测定工业废水中的总硝基化合物157
第十章 仪器分析设计及综合实验160
实验三十七 番茄红素的提取及分离160
实验三十八 山楂多糖的提取及检测160
实验三十九 动、植物中有效组分的提取及分离161
第十一章 多媒体化学实验数据处理162
一、Origin简介162
二、曲线拟合164
附录一 元素的相对原子质量175
附录二 常用式量表176
附录三 常用酸、碱在水中的离解常数(25。C,I=0)177
附录四 难溶化合物的溶度积常数(18~25。C,I=0)180
附录五 金属-无机配位体络合物的稳定常数(25。C,I=0) 183
附录六 金属-有机配位体络合物的稳定常数(I≈0)188
附录七 EDTA的Igay(H)值 193
附录八 常用指示剂(18~25.C)194
附录九 常用缓冲溶液的配制197
附录十 常用基准物质的干燥条件和应用198
附录十一 常用试剂的配制199
附录十二 光谱分析中元素的分析线201
附录十三 某些元素K线系的谱线波长及相对强度202
附录十四 一些元素的氢化物参数(25.C)203
附录十五 原子吸收光谱分析中常用的保护剂和释放剂204
附录十六 极谱半波电位(25.C)204
附录十七 红外光谱中一些基团的吸收区域205
参考文献207

⑷ 一般工业废水和生活污水处理中pac和pam加药的百分比是多少

如果处理工艺为先生化后物化,则投加量PAC约0.1%(国标,10%有效含量),PAM约1-3ppm,即每万吨水分别投加版PAC约10吨,PAM10-30kg。

如果工艺为权先物化后生化,则将以上投加量加倍。
实际的投加量根据水质有所不同,需要根据现场微调。

PAC为聚合氯化铝,PAM为聚丙烯酰胺。前者为絮凝剂,后者为助凝剂。通常联合使用,一般情况下先加PAC,后加PAM,有时可能需要加酸或碱调节PH。两者主要用于混凝沉淀池,即物化处理工段,工业废水处理中常用。

⑸ 任务硅酸盐中三氧化二铝的测定

实训准备

岩石矿物分析

任务分析

一、硅酸盐中铝的测定方法简述

铝的测定方法很多,有重量法、滴定法、光度法、原子吸收分光光度法和等离子体发射光谱法等。重量法的程序繁琐,已很少采用。光度法测定铝的方法很多,出现了许多新的显色剂和新的显色体系,特别是三苯甲烷类和荧光酮类显色剂的显色体系的研究很活跃。原子吸收分光光度法测定铝,由于在空气-乙炔焰中铝易生成难溶化合物,测定的灵敏度极低,而且共存离子的干扰严重,因此需要笑气-乙炔焰,这限制了它的普遍应用。在硅酸盐中铝含量常常较高,多采用滴定分析法。如试样中铝含量很低时,可采用铬天青S比色法。

二、配位滴定法

铝与EDTA等氨羧配位剂能形成稳定的配合物(Al-EDTA的Pk=16.13;Al-CYDTA的Pk=17.6),因此,可用配位滴定法测定铝。但是由于铝与EDTA的配位反应较慢,铝对二甲酚橙、铬黑T等指示剂有封闭作用,故采用EDTA直接滴定法测定铝有一定困难。在发现CYDTA等配位剂之前,滴定铝的方式主要有直接滴定法、返滴定法和置换滴定法。其中,以置换滴定法应用最广。

1.直接滴定法

直接滴定法的原理是:在pH=3左右的制备溶液中,以Cu-PAN为指示剂,在加热条件下用EDTA标准溶液滴定。加热是为了加速铝与EDTA的配位反应,但操作更加麻烦。

滴定剂除 EDTA 外,还常采用 CYDTA。由于 Al -CYDTA 的稳定常数很大,而且CYDTA与铝的配位反应速率比EDTA快,因此,在室温和大量钠盐的存在下,CYDTA能与铝定量反应,并且能允许试液中含有较高量的铬和硅。

无论采用何种滴定方法,酸度是影响EDTA与Al3+进行配位反应的主要因素。铝与EDTA的配位反应将同时受酸效应和水解效应的影响,并且这两种效应的影响结果是相反的。因此,必须控制好适宜的酸度。按理论计算,在pH=3~4时形成配位离子的百分率最高。但是,返滴定法中,在适量的EDTA存在下,溶液的pH可大至4.5,甚至6。然而,酸度如果太低,Al3+将水解而生成动力学上惰性的铝的多核羟基配合物,从而妨碍铝的测定。为此,可采用如下方法解决:

在pH=3左右,加入过量EDTA,加热促使Al3+与EDTA的配位反应进行完全。加热的时间取决于溶液的pH、其他盐类的含量、配位剂的过量情况和溶液的来源等。

在酸性较强的溶液中(pH=0~1 )加入EDTA,然后用六亚甲基四胺或缓冲溶液等弱碱性溶液来调节试液的pH=4~5,而不用氨水、氢氧化钠溶液等强碱性溶液。

在酸性溶液中加入酒石酸,使其与Al3+形成配合物,即可阻止羟基配合物的生成,又不影响Al3+与EDTA的配位反应。

2.返滴定法

在含有铝的酸性溶液中加入过量的EDTA,将溶液煮沸,调节溶液pH=4.5,再加热煮沸使铝与EDTA的配位反应进行完全。然后,选择适宜的指示剂,用其他的金属的盐溶液返滴定过量的EDTA,从而得出铝的含量。用锌盐返滴时,可选用二甲酚橙或双硫腙为指示剂;用铜盐返滴时,可选用PAN或PAR为指示剂;用铅盐返滴时,可选用二甲酚橙作指示剂。返滴定法的选择性较差,需预先分离铁、钛等干扰元素。因此,该法只适用于简单的矿物岩石中铝的测定。

返滴定剂的选择,在理论上,只要其金属离子与EDTA的配合物的稳定性小于铝与EDTA的配合物的稳定性,又不小于配位滴定的最低要求,即可用作返滴定剂,例如Mn2+、La3+、Ce3+等盐。但是,由于Mn与EDTA的配位反应在pH<5.4时不够完全,又无合适的指示剂,因而不适用;同时,La3+、Ce3+等盐的价格较贵,也很少采用。相反,Co、Zn、Cr、Pb、Cu等盐类,虽然其金属离子与EDTA形成的配合物的稳定性比Al与EDTA形成的配合物接近或稍大,但由于Al-EDTA不活泼,不易被它们所取代,故常用作返滴定剂。特别是锌盐和铜盐应用较广。而铅盐,由于其氟化物和硫酸盐的溶解度较小,沉淀的生成将对滴定终点的观察产生一定的影响。

3.氟化铵置换滴定法

氟化铵置换滴定法单独测得的氧化铝是纯氧化铝的含量,不受测定铁、钛滴定误差的影响,结果稳定,一般适于铁高铝低的试样(如铁矿石等)或含有少量有色金属试样。此法选择性较高,目前应用较普遍。

向滴定铁后的溶液中,加入10mL 苦杏仁酸溶液(100g/L)掩蔽 TiO2+,然后加入EDTA标准滴定溶液至过量10~15mL(对铝而言),调节溶液pH=6.0,煮沸数分钟,使铝及其他金属离子和EDTA配合,以半二甲酚橙为指示剂,用乙酸铅标准滴定溶液回滴过量的EDTA。再加入氟化铵溶液使Al3+与F-生成更为稳定的配合物[AlF6]3-,煮沸置换Al-EDTA 配合物中的 EDTA,然后再用铅标准溶液滴定置换出的 EDTA,相当于溶液Al3+的含量。

该方法应注意以下问题:

(1)由于TiO-EDTA配合物也能被F-置换,定量的释放出EDTA,因此若不掩蔽Ti,则所测结果为铝钛合量。为得到纯铝量,预先加入苦杏仁酸掩蔽钛。10mL苦杏仁酸溶液(100g/L)可消除试样中2%~5% 的TiO2的干扰。用苦杏仁酸掩蔽钛的适宜pH为3.5~6。

(2)以半二甲酚橙为指示剂,以铅盐溶液返滴定剩余的EDTA恰至终点,此时溶液中已无游离的EDTA存在,因尚未加入NH4F进行置换,故不必记录铅盐溶液的消耗体积。当第一次用铅盐溶液滴定至终点后,要立即加入氟化铵溶液且加热,进行置换,否则,痕量的钛会与半二甲酚橙指示剂配位形成稳定的橙红色配合物,影响第二次第定。

(3)氟化氨的加入量不宜过多,因大量的氟化物可与Fe3+-EDTA中的Fe3+反应而造成误差。在一般分析中,100mg以内的Al2O3,加1g氟化铵(或10mL100g/L的溶液)可完全满足置换反应的需要。

三、酸碱滴定法综述

在pH=5左右时,Al(Ⅲ)与酒石酸钾钠作用,生成酒石酸钾钠铝配合物,再在中性溶液中加入氟化钾溶液,使铝生成更稳定的氟铝配合物,然后用盐酸标准溶液滴定,即可确定铝的含量。其主要反应如下:

岩石矿物分析

岩石矿物分析

该法可直接单独测定铝,操作较简便,但必须注意以下问题。

(1)本法存在非线性效率,即铝量达到某一数值时,盐酸消耗量与铝不成线性相关。铝量越高,结果越偏低。因此,必须用不同浓度的铝标准溶液来标定盐酸标准溶液的浓度,最好做出校正曲线,并使待测样品的铝量处于曲线的直线部分。

(2)

和铵盐对中和反应起缓冲作用,应避免引入。氟因严重影响铝与酒石酸形成配合物的效力,对测定有干扰。小于10mg的Fe(Ⅲ)不干扰测定。凡是能与酒石酸及氟形成稳定配合物的离子均有正干扰,例如,Th、Ti、U(Ⅳ)、Ba 和Cr 的量各为2mg时,将分别给出相当于0.5mg、0.5mg、0.35mg、0.36mg、0.05mg Al2O3的正误差。

四、铬天青S比色法

铝与三苯甲烷类显色剂普遍存在显色反应,且大多在pH=3.5~6.0的酸度下进行显色。在pH=4.5~5.4的条件下,铝与铬天青S(简写为CAS)进行显色反应生成1:2的有色配合物,且反应迅速完成,可稳定约1h。在pH=5.4时,有色配合物的最大吸收波长为545nm,其摩尔吸光系数为4×104L/(mol·cm)。该体系可用于测定试样中低含量的铝。

该方法应注意以下问题:

(1)在Al-CAS法中,引入阳离子或非离子表面活性剂,生成 Al -CAS -CPB 或Al-CAS-CTMAB等三元配合物,其灵敏度和稳定性都显著提高。例如,Al-CAS -CTMAB的显色条件为pH=5.5~6.2,λmax=620nm,ε620=1.3×105L/(mol·cm),配合物迅速生成,能稳定4h以上。

(2)Be(Ⅱ)、Cu(Ⅱ)、Th(Ⅳ)、Zr(Ⅳ)、Ni(Ⅱ)、Zn、Mn(Ⅱ)、Sn(Ⅳ)、V(Ⅴ)、Mo(Ⅵ)和U存在时干扰测定。F的存在,与Al生成配合物而产生严重的负误差,必须事先除去。Fe(Ⅲ)的干扰可加抗坏血酸消除,但抗坏血酸的用量不能过多,以加入2mL 抗坏血酸溶液(1%)为宜,否则会破坏Al-CAS配合物。少量Ti(Ⅳ)、Mo(Ⅳ)的干扰可加入磷酸盐掩蔽,2mL的磷酸二氢钠溶液(0.5%)可掩蔽100μg的SiO2。低于500μg的Cr(Ⅲ)、100μg的V2O5不干扰测定。

技能训练

一、直接法检测三氧化二铝

(一)检测流程

岩石矿物分析

(二)试剂配制

(1)氨水溶液(1+2)。

(2)盐酸溶液(1+2)。

(3)缓冲溶液(pH=3):将3.2g无水乙酸钠溶于水中,加120mL冰乙酸,用水稀释至1L,摇匀。

(4)PAN指示剂溶液:将0.2g 1-(2-吡啶偶氮)-2 -萘酚溶于100mL乙醇(95%,体积分数)中。

(5)EDTA-铜溶液:用浓度各为0.015mol/L的EDTA标准溶液和硫酸铜标准溶液等体积混合而成。

(6)溴酚蓝指示液:将0.2g溴酚蓝溶于100mL乙醇(1+4)中。

(7)EDTA标准溶液:C(EDTA)=0.015mol/L。

(三)操作步骤

1.EDTA标准溶液标定

标定方法见配位滴定法检测三氧化二铁:

TEDTA/Al2O3= C(EDTA)×50.98(mg/mL)

2.测定

将测定完铁的溶液用水稀释至约200mL,加1~2滴溴酚蓝指示剂溶液(2g/L),滴加氨水(1 +2)至溶液出现蓝紫色,再滴加盐酸(1 +2)至黄色,加入15mL pH=3的缓冲溶液,加热至微沸并保持1min,加入10滴EDTA-铜溶液及2~3滴PAN指示剂溶液(2g/L),用EDTA标准滴定溶液滴定至红色消失,继续煮沸,滴定,直至溶液经煮沸后红色不再出现并呈稳定的黄色为止。

3.计算

Al2O3的质量分数按下式计算:

岩石矿物分析

式中:w(Al2O3)为Al2O3的质量分数,%;T为EDTA标准滴定溶液对Al2O3的滴定度,mg/mL;V为分取试样溶液消耗EDTA标准滴定溶液的体积,mL;m为称取试料的质量,g。

实验指南与安全提示

用EDTA直接滴定铝,不受TiO2+和Mn2+的干扰。因为在pH=3的条件下,Mn2+基本不与EDTA配位。TiO2+水解为TiO(OH)2沉淀,所得结果为纯铝含量。因此,若已知试样中锰含量高时,应采用直接滴定法。

该法最适宜的pH范围为2.5~3.5之间。若溶液的pH<2.5,Al3+与EDTA的配位能力降低;当pH>3.5时,Al3+水解作用增强,均会引起铝的测定结果偏低。但如果Al3+的浓度太高,即使在pH=3的条件下,其水解倾向也会很大,所以,含铝和钛高的试样不应采用直接滴定法。

TiO2+在pH=3、煮沸的条件下能水解生成TiO(OH)2沉淀。为使TiO2+充分水解,在调整溶液pH=3之后,应先煮沸1~2min,再加入EDTA-Cu和PAN指示剂。

PAN指示剂的用量,一般在200mL溶液中加入2~3滴为宜。如指示剂加入太多,溶液颜色较深。不利于终点的观察。

EDTA直接滴定法测定铝,应进行空白试验。

技能训练

二、返滴定法检测三氧化二铝

(一)检测流程

岩石矿物分析

(二)试剂配制

(1)氨水溶液(1+2)。

(2)盐酸溶液(1+2)。

(3)EDTA 标准溶液(0.015mol/L):称取 1.4g EDTA 加水微热溶解,定容250mL。

(4)PAN指示剂(0.2%):称取0.2g指示剂溶于100mL乙醇中。

(5)HAc-NaAc缓冲溶液(pH=4.2):称取13.3g三水合乙酸钠溶于水中,加12.5mL冰醋酸,用水稀释至250mL。

(6)CuSO4标准溶液(约0.015mol/L):称取1.0g CuSO4·5H2O 溶于水中,加1滴H2SO4(1+1),用水稀释至250mL。

(三)操作步骤

1.标定

(1)EDTA标定。标定方法见配位滴定法检测三氧化二铁。

(2)EDTA标准滴定溶液与CuSO4标准滴定溶液的体积比的标定。用移液管准确吸取20mL EDTA标准溶液,置于锥形瓶中,加水稀至100mL,加10mL HAc -NaAc缓冲溶液,加热至沸,取下稍冷,加4~6滴PAN指示剂,用CuSO4标准溶液滴定至亮紫色。计算CuSO4溶液的准确浓度。

EDTA标准滴定溶液与CuSO4标准滴定溶液的体积比按下式计算:

岩石矿物分析

式中:K为每毫升CuSO4标准滴定溶液相当于EDTA标准滴定溶液的体积比;V1为加入 EDTA 标准滴定溶液的体积,mL;V2为滴定消耗 CuSO4标准滴定溶液的体积,mL。

2.测定

在滴定Fe3+后的溶液中,用移液管准确加入EDTA标准溶液20mL,摇匀。用水稀释至150~200mL。将溶液加热至70~80℃后,加数滴氨水(1+1)使溶液pH在3.0~3.5 之间,然后再加入10mL HAc -NaAc 缓冲溶液,煮沸,取下稍冷至90℃左右,加入4~6滴0.2% PAN指示剂,以CuSO4标准溶液滴定,溶液由黄色变为紫色即为终点。

3.计算

Al2O3的质量分数按下式计算:

岩石矿物分析

式中:w(Al2O3)为Al2O3的质量分数,%;T为EDTA标准滴定溶液对Al2O3的滴定度,mg/mL;V1为加入EDTA标准滴定溶液的体积,mL;V2为分取试样溶液消耗CuSO4标准滴定溶液的体积,mL;m 为称取试料的质量,g;0.64 为 TiO2对Al2O3的换算系数;w(TiO2)为TiO2的质量分数,%。

实验指南与安全提示

铜盐返滴定法选择性较差,主要是铁、钛的干扰,故不适于复杂的硅酸盐分析。溶液中的TiO2+可完全与EDTA配位,所测定的结果为铝钛合量。一般工厂用铝钛合量表示A12O3的含量。若求纯的A12O3含量,应采用以下方法扣除TiO2的含量:①在返滴定完铝+钛后,加入苦杏仁酸(学名:β-羟基乙酸)溶液,使其夺取TiY2-中的TiO2+,而置换出等物质的量的EDTA,再用CuSO4标准滴定溶液返滴定,即可测得钛含量;②另行测定钛含量;③加入钽试剂、磷酸盐、乳酸或酒石酸等试剂掩蔽钛。

在用EDTA滴定完Fe3+的溶液中加入过量的EDTA之后,应将溶液加热到70~80℃再调整pH 为3.0~3.5 后,加入pH =4.3 的缓冲溶液。这样可以使溶液中的少量TiO2+和大部分Al3+与EDTA配位完全,并防止其水解。

EDTA(0.015mol/L)加入量一般控制在与Al和Ti配位后,剩余10~15mL,可通过预返滴定或将其余主要成分测定后估算。控制EDTA过剩量的目的是:①使Al、Ti与EDTA配位反应完全;②滴定终点的颜色与过剩EDTA的量和所加PAN指示剂的量有关。正常终点的颜色应符合规定操作浓度比(蓝色的CuY2-和红色的 Cu2+-PAN),即亮紫色。若EDTA剩余太多,则CuY2-浓度高,终点可能成为蓝紫色甚至蓝色;若EDTA剩余太少,则Cu2+-PAN 配合物的红色占优势,终点可能为红色。因此,应控制终点颜色一致,以免使滴定终点难以掌握。

锰的干扰。Mn2+与EDTA定量配位最低pH=5.2,对于配位滴定Al3+的干扰程度随溶液的pH和Mn2+浓度的增高而增强。在pH=4左右,溶液中共存Mn2+约一半能与EDTA配位。如果MnO含量低于0.5mg,其影响可以忽略不计;若达到1mg以上,不仅是Al2O3测定结果明显偏高,而且是滴定终点拖长。一般对于MnO含量高于0.5%的试样,采用直接滴定法或氟化铵置换EDTA配位滴定法测定。

氟的干扰。F-能与Al3+逐级形成[AlF]2+,[AlF2,...,[AlF63-等稳定的配合物,将干扰Al3+与EDTA的配位。如溶液中F-的含量高于2mg,Al3+的测定结果将明显偏低,且终点变化不敏锐。一般对于氟含量高于5% 的试样,需采取措施消除氟的干扰。

技能训练

三、置换法检测三氧化二铝

(一)检测流程

岩石矿物分析

(二)试剂配制

(1)氟化钾溶液(100g/L):贮于塑料瓶中。

(2)EDTA标准溶液(0.015mol/L):1.4g用水溶解后稀释至250mL。

(3)二甲酚橙指示剂(0.2%):水溶液。

(4)HAc-NaAc缓冲溶液(pH=5.5):200g乙酸钠(NaAc·3H2O)溶于水中,加6mL冰乙酸,用水稀释至1 L。

(5)乙酸锌标准溶液(0.015mol/L):称取0.9g Zn(Ac)2·2H2O溶于水中,加冰乙酸(1+1)调整pH=5.5,用水稀释至刻度250mL。

(6)铝标准溶液(1.000mg/mL Al2O3):准确称取0.5293g高纯金属铝片(预先用盐酸(1+1)洗净表面,然后用水和无水乙醇洗净,风干后备用)置于烧杯中,加20mL盐酸(1+1)溶解,移入至1000mL容量瓶中,冷却至室温,用水稀释至刻度。

(三)操作步骤

1.乙酸锌对三氧化二铝的滴定度测定

准确移取10.00mL铝标准溶液于锥形瓶中,加入20mL EDTA(0.015mol/L)。在电热板上加热至80~90℃取下,加1 滴二甲酚橙指示剂,加NH3· H2O(1∶1)至溶液由黄刚变紫红色,再用盐酸(1+1)调回恰变为黄色,加入pH=5.5缓冲溶液10mL。加热煮沸并保持3min,取下冷却,补加1滴二甲酚橙指示剂,用乙酸锌标准溶液滴定至溶液刚变橙红色。该读数不记。然后加入10mL氟化钾溶液,加热煮沸保持3min,取下冷却,补加2滴二甲酚橙。用醋酸锌标准溶液滴至橙红色为终点,记下读数V,则T值:

2.硅酸盐中三氧化二铝的测定

准确移取25mL分离二氧化硅后的滤液置于250mL锥形瓶中,加入20mL EDTA(0.015mol/L),其余步骤如滴定度。

3.结果计算

岩石矿物分析

式中:w(Al2O3)为Al2O3的质量分数,%;T为乙酸锌标准滴定溶液对Al2O3的滴定度,mg/mL;V为分取试样溶液消耗EDTA标准滴定溶液的体积,mL;m为称取试料的质量,g;0.64为TiO2对Al2O3的换算系数;w(TiO2)为TiO2的质量分数,%。

实验指南与安全提示

氟化铵置换滴定法一般适于铁高铝低的试样(如铁矿石等)或含有少量有色金属试样。此法选择性较高,目前应用较普遍,在标准GB/T6730-1986铁矿石化学分析方法中被列为代用法。

其余注意事项参照任务分析方法简述。

⑹ 工业分析化学的张锦柱著图书

作者:张锦柱
出版时间: 2008-8-1
ISBN: 9787502443320
开本: 16开
定价: 36.00元 本书内容包括试样的采取和制备、硅酸盐分析、矿石分析、煤的工业分析、工业水质分析、钢铁分析、有色金属分析、稀土元素和贵金属分析、合成氨生产分析、硫酸生产分析、化学肥料分析、工业污染监测、有机定量分析、石油产品分析和农药分析。
本书可供相关科技人员参考,也可作为大学理工科教材。 1 绪论
1.1 工业分析化学的内容、任务和特点
1.2 误差产生的原因和减免方法
1.3 偶然误差的正态分布和区间概率
1.4 有限数据的统计处理
1.5 误差的控制与检验
1.6 有效数字及其运算规则
2 试样的采取、制备和分解
2.1 试样的采取
2.2 试样的制备
2.3 试样的分解
3 硅酸盐分析
3.1 概述
3.2 硅酸盐系统分析
3.3 二氧化硅的测定
3.4 三氧化二铝的测定
3.5 原子吸收分光光度法测定铁和锰
3.6 二氧化钛的测定
3.7 氧化钙、氧化镁的测定
4 矿石分析
4.1 概述
4.2 铁矿石中铁的测定
4.3 锰矿石中锰的测定
4.4 铬铁矿中铬的测定
4.5 铜矿石中铜的测定
4.6 铅矿石中铅的测定
4.7 锌矿石中锌的测定
4.8 钛矿石中钛的测定
5 煤的工业分析
5.1 水分的测定
5.2 灰分的测定
5.3 挥发分的测定
5.4 固定碳含量的计算
5.5 煤中全硫的测定
5.6 不同基准分析结果的换算
5.7 发热量的测定
6 工业水质分析
6.1 水质指标
6.2 水质指标间的关系
6.3 工业锅炉水质标准
6.4 悬浮固形物和溶解固形物的测定
6.5 pH值的测定(电极法)
6.6 硬度的测定
6.7 碱度的测定
6.8 氯化物的测定
6.9 溶解氧的测定
6.10 亚硫酸盐的测定
6.11 磷酸盐的测定
7 钢铁分析
7.1 概述
7.2 总碳的测定
7.3 硫的测定
7.4 磷的测定
7.5 硅的测定
7.6 锰的测定
8 有色金属及合金分析
8.1 金属镁中杂质含量的测定
8.2 金属镁中铝的测定
8.3 金属镁中铜的测定
8.4 金属镁中镍的测定
8.5 黄铜中锌的测定
8.6 铜及铜合金中铁的测定
8.7 铜及铜合金中铅的测定
8.8 铜及铜合金中磷、砷的连续测定
8.9 铝及铝合金的分析
8.10 铝及铝合金中铝的测定
8.1l 铝合金中镁的测定
8.12 铝合金中锌的测定
8.13 铝合金中锰的测定
9 稀土元素和贵金属分析
9.1 稀土元素分析
9.2 稀土和钍总量的测定(常量)
9.3 稀土总量的测定(微量)
9.4 铈的测定
9.5 贵金属分析
9.6 矿石中金的测定
9.7 钯精矿中钯的测定
9.8 贵金属合金中铑的测定
10 合成氨生产过程分析
10.1 半水煤气和变换气的分析测定
10.2 半水煤气中H2S的测定
10.3 铜洗液中铜比的测定
10.4 液氨成品分析
1l 硫酸生产过程分析
11.1 矿石或炉渣中有效硫的测定
11.2 矿石或炉渣中总硫的测定
11.3 净化气或转化气中SO2的测定
11.4 转化气和尾气中SO3的测定
11.5 产品硫酸的分析
12 化学肥料分析
12.1 氮肥的分析
12.2 碳酸氢铵分析
12.3 尿素分析
12.4 磷肥分析概述
12.5 磷肥分析试液的制备
12.6 磷矿石中全磷的测定
12.7 普通过磷酸钙的分析
12.8 钙镁磷肥的分析
12.9 钾肥的分析
13 工业污染监测
13.1 概述
13.2 工业废气的采集
13.3 工业废气中二氧化硫的测定
13.4 工业废气中氮氧化物的测定
13.5 工业废水的采取
13.6 工业废水中铬的测定
13.7 工业废水中铅的测定
13.8 工业废水中镉的测定
13.9 工业废水中氟化物的测定
13.10 工业废水中生物化学需氧量的测定
13.11 工业废水中化学需氧量的测定
14 有机定量分析
14.1 有机氮含量测定
14.2 有机物中卤素含量测定
14.3 烯基化合物含量测定
14.4 醇含量的测定
14.5 酚含量的测定
14.6 醛酮含量的测定
14.7 羧酸含量的测定
14.8 酯含量的测定
14.9 胺含量的测定
14.10 糖的测定
15 石油产品分析
15.1 油品基本理化性质的测定
15.2 油品蒸发性能的测定
15.3 油品腐蚀性能的测定
15.4 油品其他性能的测定
16 农药分析
16.1 商品农药采样方法
16.2 农药理化性状分析
16.3 农药有效成分分析
16.4 常用农药分析实例
附表
附表1 常用酸碱的相对密度和浓度
附表2 弱酸和弱碱的离解常数
附表3 难溶化合物溶度积
附表4 常用缓冲溶液的配制
附表5 国际相对原子质量表
参考文献

⑺ 求原子吸收发射光谱在环境分析与监测中的应用研究论文

原子吸收光谱法在环境常规监测中的应用
西南科技大学分析测试中心 张伟
〔摘要〕原子吸收光谱分析法(AAS)在环境分析化学中广泛使用。本文简述了近年来AAS在环境常规监测中的应用进展。
〔关键词〕原子吸收光谱法环境监测应用

原子吸收光谱法(AAS),因其灵敏度高、干扰小、精密度高、准确性
好及分析速度快、测试范围广等诸多优点,在环境分析化学中广泛使
用。20世纪80年代末,国家环保局在《环境监测技术规范》中的地表水
和废水、大气和废气、生物测定部分,就将原子吸收光谱法列为《环境监
测技术规范》中有关金属元素的标准分析方法。
1.水环境监测
适时地对地表水质量现状及发展趋势进行评价,对生产和生活设
施所排废水进行监视性监测是常规环境监测的两项基本任务。原子吸
收光谱分析主要应用于水环境中重金属的监测。龙先鹏[1]采用火焰原子
吸收光谱法直接测定水中微量铜、铅、锌、镉元素的含量,在0-1.00mg/L
范围内,被测元素浓度与吸光度呈线性关系,相关系数不小于0.9990;
最低检出限分别为0.001、0.01、0.0008、0.0005mg/L,相对标准偏差分别
为1.16%、1.22%、1.15%、1.16%;该方法对标准样品的测试结果与国家
标准方法基本一致,相对偏差均不大于7.0%。张美月等[2]以二乙胺基二
硫代甲酸钠为配位剂、Triton X-114为表面活性剂,采用浊点萃取-火
焰原子吸收光谱法测定水样中的痕量镉,检测限为0.238μg/L,富集倍
数为55,加标回收率为98%-102%;分离富集方法简单、安全、快捷,结
果令人满意。陆九韶等[3]利用Al3+与Cu(Ⅱ)-EDTA发生定量交换反应,
通过测定水相残余铜,从而间接测定水和废水中的铝。
在线富集是原子吸收光谱检测分析发展的热点之一。高甲友[4]用含
黄原脂棉的微型柱对试样中的Cd2+在线富集、盐酸洗脱后,采用火焰原
子吸收光谱法在线测定水中的镉离子。富集50 mL溶液时此方法灵敏
度可提高68倍。陈明丽等[5]用溴化十六烷基三甲胺(HDTMAB)改性的天
然斜发沸石微填充柱,建立了顺序注射在线分离富集电热原子吸收法
测定水中Cr(Ⅵ)及铬形态分布的方法;测定铬的检出限达到0.03μg/L,
精密度3.7%。用本法测定标准水样GBW08608中的铬,所得结果与标
准值相符。冷家峰等[6]对螯合树脂富集-火焰原子吸收光谱法测定天然
水体中痕量铜和锌的在线富集条件、干扰因素等进行研究,在线富集倍
数达到两个数量级,在灵敏度与石墨炉原子吸收光谱法相当情况下,提
高了测定准确度。
痕量金属元素化学形态的分析比单纯元素的分析要复杂、困难得
多,除要求测定方法灵敏度高、选择性好外,还要求分离效能高。联用技
术,特别是色谱-原子吸收光谱联用,综合了色谱的高分离效率与原子
吸收光谱检测的专一性的优点,是解决这一问题的有效手段。刘华琳等[7]
自行设计了一种紫外在线消解氢化物发生接口,并将高效液相色谱-紫
外在线消解-氢化物发生原子吸收联用仪器(HPLC-UV-HGAAS)用于
砷的形态分析,以砷甜菜碱、砷胆碱、亚砷酸盐(As(Ⅲ))及砷酸盐(As(V))
等进行了分离测定,实现了将分离后不能直接用于氢化物发生的大分子,
通过紫外“在线”消解成小分子砷化合物的目的。李勋等[8]采用电化学氢化
物发生与原子吸收光谱联用技术有效地实现了无机砷的形态分析。在
电流为0.6 A和1A条件下,As(III)和As(V)在0-40μg/L浓度范围内均呈
良好的线性关系。As(III)和As(V)检出限分别为0.3μg/L和0.6μg/L;该方
法成功应用于食用鲜牛奶中无机砷的形态分析。
2.土壤、底泥和固体物分析
景丽洁等[9]采用微波消解法预处理待测土壤,火焰原子吸收分光光
度法测定污染土壤消解液中的锌、铜、铅、镉、铬5种重金属。土壤中锌、
铜、铅、镉、铬的相对标准偏差分别为1.2%、1.9%、1.2%、5.2%和1.8%。
方法简便、灵敏、准确,适用于污染土壤中重金属含量的测定。卢卫[10]采
用悬浮液进样平台石墨炉原子吸收法测定土壤的痕量汞,精密度为
5.9%,检出限达到1.2×10-12g。宫青宇[11]采用直接固体进样、添加基体改
进剂技术测定土壤中重金属铅含量,避免了土壤中复杂基体的影响,实
现了土壤样品中铅的快速分析。王北洪等[12]采用了“硝酸-氢氟酸-过
氧化氢”三酸消化体系和密封高压消解罐法对土壤样品进行消化,以原
子吸收光谱法测定其中的铜、锌、铅、铬、镉。结果表明:采用该法测定土
壤中的重金属时,测定结果准确可靠,实验条件易于控制,能够满足环
境监测分析的要求,可以作为一种可行的土壤重金属元素分析方法。
程滢等[13]把河流底泥经过氢氟酸和高氯酸消化,用火焰原子吸收
法测定其中的铜,获得较好的结果。王畅等[14]利用流动注射系统中串联
的阴、阳离子交换微型柱分离、NH4NO3+抗坏血酸和H2SO4两种洗脱液
同时逆向洗脱,实现了对底泥可利用态铬中Cr(Ⅵ)和Cr(Ⅲ)同时在线分
离和原子吸收光谱法测定。在交换时间2 min,洗脱50 s,Cr(Ⅵ)和Cr(Ⅲ)
回收率分别为85.4%-94.8%和96.7%-106%。此法对实际样品中不同
价态铬进行测定,铬回收率可达95%。Cr(Ⅵ)和Cr(Ⅲ)的检出限和最大
相对标准偏差分别为0.9μg/L、6.4%和2.7μg/L、3.5%。王霞等[15]用冷
原子吸收光谱法测定固体废物浸出液中的汞含量,检出限为0.02μg/L,
回收率在91%-101%之间。方法简便快速,线性范围宽。
3.大气环境质量监测
邹晓春等[16]以微孔滤膜采样、钯或镍作改进剂,用石墨炉原子吸收光
谱法测定居住区大气中硒,检出限为3.45ng/mL,线性范围为0-50ng/mL,
回收率94.6%-102.0%;其中砷对测定硒有一定干扰,其它金属元素对
测定无干扰。邹晓春在此基础上又对居住区大气中的镍进行了测定,检
出限为0.12 ng/mL,线性范围为0-35 ng/mL,回收率为95.1-102.1%,其
他金属元素对测定镍未见明显干扰[17]。
冯新斌等[18]对原有的光谱仪器进行简单改装,建立了两次金汞齐-
冷原子吸收光谱法测定大气中的微量气态总汞的方法,检出限达到
0.05ng;100μL饱和汞蒸气连续测定结果表明其相对标准偏差<1.41%。
在0-2.0ng汞量范围内标准工作曲线线性关系良好。并且运用该法,对
贵州省万山汞矿、丹寨汞矿、清镇汞污染农田、省农科院和中国科学院
地球化学研究所等地大气气态总汞进行了测定。
综上所述,原子吸收光谱法在环境监测分析中应用取得了不少成
果,但在应用范围上还有待扩大,如在污染物的化学形态研究上尚待深
入等。总之,随着环境监测事业的发展,原子吸收光谱法因具有其它方
法所不能比拟的优势,必将在环境化学分析中展现广阔的应用前景。
参考文献
〔1〕龙先鹏.火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、
镉〔J〕.化学分析计量,2008,17(1):53-54.
〔2〕张美月,李越敏,杜新等.浊点萃取-火焰原子吸收光谱法测定
水样中的痕量镉〔J〕.河北大学学报(自然科学版),2009,29(4):407-411.
〔3〕陆九韶,覃东立,孙大江等.间接火焰原子吸收光谱法测定水和废
水中铝〔J〕.环境保护科学,2008,34(3):111-113.
〔4〕高甲友.流动注射在线富集-火焰原子吸收光谱法测定水中痕
量镉〔J〕.冶金分析,2007,27(1):61-63.
〔5〕陈明丽,邹爱美,仲崇慧等.改性沸石填充柱在线分离富集电热原
子吸收法测定水中铬(Ⅵ)及铬的形态分布〔J〕.分析科学学报,2007,23(6):
627-630.
〔6〕冷家峰,高焰,张怀成等.在线鳌合树脂富集火焰原子吸收光谱法
测定天然水体中铜和锌〔J〕.理化检验-化学分册,2005,41(8):556-560.
〔7〕刘华琳,赵蕊,韦超等.高效液相色谱-在线消解-氢化物发生
原子吸收光谱联用技术〔J〕.分析化学,2005,33(11):1522-1526.
〔8〕李勋,戚琦,薛珺等.电化学氢化物发生与原子吸收光谱联用对鲜
牛奶中无机砷的形态分析〔J〕.食品研究与开发,2007,28(11):121-123.
〔9〕景丽洁,马甲.火焰原子吸收分光光度法测定污染土壤中5种重
金属〔J〕.中国土壤与肥料,2009,(1):74-77.
〔10〕卢卫.悬浮液进样平台石墨炉原子吸收法测定土壤中痕量汞〔J〕.
化学工程与装备,2009,(3):100-101.
〔11〕宫青宇.直接固体进样-石墨炉原子吸收法测定土壤中铅含
量〔J〕.内蒙古科技与经济,2009,6:69.
〔12〕王北洪,马智宏,付伟利.密封高压消解罐消解-原子吸收光谱
法测定土壤重金属〔J〕.农业工程学报,2008,24(Supp.2):255-259.
〔13〕程滢,张莘民.火焰原子吸收分光光度法测定鱼内脏及河流底
泥中的铜〔J〕.环境监测管理与技术,2003,15(2):28-30.
〔14〕王畅,谢文兵,刘杰等.流动注射分离-原子吸收光谱法测定底
泥中生物可利用态Cr(Ⅵ)和Cr(Ⅲ〔)J〕.分析化学,2007,35(3):451-454.
〔15〕王霞,张祥志,陈素兰等.冷原子吸收光谱法测定固体废物浸出
液中汞〔J〕.光谱实验室,2008,25(5):981-984.
〔16〕邹晓春,李红华,徐小作.居住区大气中硒的原子吸收光谱法研
究〔J〕.现代预防医学,2004,31(6):879-880.
〔17〕邹晓春.石墨炉原子吸收光谱法测定居住区大气中镍〔J〕.职业
与健康,2000,16(6):36-37.
〔18〕冯新斌,鸿业汤,朱卫国.两次金汞齐-冷原子吸收光谱法测定
大气中的微量气态总汞〔J〕.中国环境监测,1997,13(3):9-11.

⑻ 2006年广东省初中毕业生学业考试化学试卷,急急急呀~~~

2006年广东省初中毕业生学业考试
化 学
可能用到的相对原子质量:C-12 H-1 0-16 N-14 Fe-56 I-137
第一卷
一、选择题(本大题共14小题,每小题2分共28分)。
1.下列变化中,属于化学变化的是( )
A.干冰升华 B.木条燃烧 C.活性炭吸收异味 D.冰撑破水缸
2.今年“世界环境日”的中国主题为:生态安全与环境友好型社会。下列措施能治理相关污染的是( )
A B C D
污染 温室效应 赤潮 酸雨 少尘暴
防治措施 使用无铅汽油 使用含磷洗衣粉 工厂废气直接排放 植树造林
3.“墙角数枝梅,凌寒独自开,遥知不是雪,为有暗香来”(王安石《梅花》)。诗人在远处就能闻到梅花香味的原因是( )
A.分子在不停地运动 B.分子分裂成原子
C.分子之间有间隙 D.分子很小
4.月球的土壤中吸附着数百万吨的氦(He-3),其原子核中质子数为2、中子数为1,下列关于氦(He-3)元素的说法正确的是( )
A.原子核外电子数为3 B.相对原子质量为2
C.原子的核电荷数为3 D.原子结构示意图为
5.下列装置操作图不能用于检查气密性的是( )

6.国家质检部门检出人们端午节包粽子的“返青棕叶”多以硫酸铜为添加物,长期食用有害健康,请问硫酸铜是一种 ( )
A.有机物 B.盐 C.碱 D.酸
7.去年年底哈尔滨一所化工厂发生爆炸,大量泄漏的硝基苯(化学式为C6H5NO2)造成松花江大面积水体污染。下列关于硝基苯的说法正确的是 ( )
A.硝革苯是氧化物
B.硝基苯由碳、氢、氮、氧四种元素组成
C.硝基苯分子由14种元素组成
D.硝基苯的相对分子质量为122
8.已知两种分子E和G反应生成另外两种分子L和M(如图)。则下列判断正确的是( )
A.G和M是单质 B.L可能是氯化物
C.这是一个复分解反应 D.这是一个是置换反应
9.某班同学就施用化肥的“利与弊”为题进行辩论,正方观点是施用化肥有利,正方的下列观点中不科学的是( )
A.化肥的肥效快
B.施用化肥可使农作物增产
C.施用化肥不会造成环境污染
D.复合肥能给农作物提供几种营养元素
10.下列实验操作能预期目的的是( )
A.用10mL的量筒量取9.0mL水
B.用向下排空气法收集纯净的氢气
C.用托盘天平称取10.58g碳酸钠粉末
D.用150mL酒精和50mL水精确配制200mL医用消毒酒精
11.某同学对所学部分化学知识归纳如下,其中有错误的一组是( )
A 物质性质与用途 B 日常生活经验
O2助燃—气焊切割金属
H2O2分解放出O2—实验室制O2 衣服上圆珠笔油—用汽油或酒精搓洗
区别棉和羊毛织物—取少量,点燃闻气味
C 安全常识 D 化学与生活
煤气泄漏—打110报警
皮肤沾上浓硫酸—用水冲洗,再涂稀醋酸 维生素C—缺乏时引起坏血病
糖类、蛋白质—必需摄取的营养素
12.研究表明,许多金属氧化物对氯酸钾的分解有催化作用。下表是不同金属氧化物作催化剂,氯酸钾剧烈反应时的温度
氧化物 氧化铁 氧化铝 氧化铜 氧化镁
剧烈反应的温度/℃ 490 540 350 546
实验室用氯酸钾制取氧气,如果不用二氧化锰作催化剂,最好选用( )
A.氧化铁 B.氧化铝 C.氧化铜 D.氧化镁
13.类推是化学学习中常用的思维方法。现有以下类推结果:①酸碱中和反应生成盐和水,所以生成盐和水的反应一定是中和反应;②碱的水溶液显碱性,所以碱性溶液一定是碱溶液;③氧化物都含有氧元素,所以含有氧元素的化合物一定是氧化物;④有机物都含碳元素,所以含碳元素的化合物都是有机物。其中错误的是( )
A.只有① B.只有①②③ C.只有②③④ D.全部
14.右下图中“—”表示相连的物质间在一定条件下可以发生反应,“→”表示甲在一定条件下可与某种物质直接反应生成丙。下表四组选项中,符合图中要求的是( )
甲 乙 丙 丁

A BaCl2 CuSO4 Ba(OH)2 HCl
B O2 CO Fe3O4 C
C Fe CuCl2 Mg HCl
C Cu HCl CuO Mg

第二卷
二、填空题(本大题5小题,共20分)
15.(3分)《三国演义》中的“赤壁之战”,曹操率百万水师乘船横渡长江,声势浩大,却被周瑜的火攻和孔明“借”来的东风弄得大败而逃。用燃烧三要素回答以下问题:
⑴周瑜使用了“火箭”射进曹军的连环木船一,“火箭”能使木船着火的原因是

⑵起火后曹军的部分船只逃脱,这些船没被烧的原因是 。
⑶孔明“借”来的“东风”不仅使火势吹向曹营,还为燃烧提供了
,使火势烧得更旺。
16.(3分)某农场附近新建了一座燃煤火力发电厂后该农场的小麦新课题急剧下降。经农场技术员测定:雨水pH约为4、土壤pH约为5。已知一些重要作物最适宜生长的土壤的pH如下表:
作物 ①水稻 ②小麦 ③玉米 ④油菜 ⑤马铃薯
pH 6~7 6.3~7.5 6~7 6~7 4.8~5.5
⑴根据上表数据,你认为这种土壤最适合种植的作物是(填编号) 。
⑵若继续种小麦,你认为最好选用以下(填编号) 试剂来改良土壤。
①工业盐酸 ②熟石灰 ③纯碱
⑶该地区形成酸雨的主要原因是 。
17.(4分)化肥的使用使农作物大幅增产,充足的农产品为人类提供丰富的营养物质。
请填空:⑴检验一种化肥是铵盐氮肥的方法是

⑵下列物质中,属于人类活动提供能量的物质是 ,人们需要通过食物的微量元素是
(选择编号填空):①氧气、②淀粉、③维生素、④铁。
温度/g 25 50 95
溶解度/℃ 0.17 0.95 6.8
18.(3分)苯甲酸是一种食品防腐剂,它是一种片状晶体,在水中的溶解度如下表:
某同学为的提纯某一苯甲酸样品(其中含有泥沙等难溶于水的杂质),进行了如下实验:
⑴取样品约1g放入烧杯中,加入50mL蒸馏水充分搅拌,发现样品几乎没有溶解,原因是 。
⑵将烧杯放在石棉网上加热,待样品充分溶解后,再加少量蒸馏水,然后趁热过滤。趁热过滤的目的是 。
⑶将所得滤液 ,使苯甲酸以晶体形式析出,然后过滤得到较纯净的苯甲酸晶体。
19.(7分)右下图是金属活动性顺序表中铜、锡、铁和铝元素被人类大规模开发、利用的大致年限。
⑴选择编号填空:铝的利用比铜和铁晚得多,原因是 ;目前
铝在多个领域替代易生锈的钢铁,
其主要原因是 。
①铝的硬度小 ②铝很活泼
③地壳中铝的含量高 ④铝的表面易生成致密的保护膜
⑵钢铁的冶炼是人类文明的一个重要标志。右图是实验室模拟炼铁的装置图,写出冶炼生铁的化学方程式 ;能证明产物中有铁粉的方法是: 。
⑶在组装仪器时,把玻璃管插入橡胶管的操作方法
是 。此装置有不完善的地方,请说出其中一种改进方法: 。
三、(本大题2小题,共15分)
20.(5分)一位同学取了一瓶井水进行实验,请和他一起完成实验报告:
⑴用烧杯分别取少量井水和蒸馏水,加入适量 ,搅拌。发现蒸馏水中泡沫、井水的泡沫少。结论:井水是硬水。
⑵另取井水加热煮沸,发现有难溶于水的固体生成。
⑶过滤,把得到的难溶固体置于试管中,加入过量的盐酸,现象是 , 并有气体产生;把生成的气体通入过量的澄清石灰水中,现象是 ,化学方程式是 。
结论:难溶物中含有碳酸盐。
21.(10分)某化工厂排出的废水透明、澄清、略显蓝色。一同学取少量废水,加入过量的盐酸,有不溶于稀硝酸的白色沉淀生成。过滤,所得的滤液分成两份,一份滤液中加入稀硫酸,也有不溶于稀硝酸的白色沉淀生成;另一份滤液中加入氢氧化钠溶液,产生蓝色溶液。试回答:
⑴用化学式回答:加入过量的盐酸,生成的白色沉淀是 ;生成的蓝色沉淀是 。
⑵废水中一定含有的物质是 (填编号)
A.氯化物 B.硫酸盐 C.硝酸盐 D.碳酸盐
⑶该同学设计了一个从废水中除去重金属离子的实验方案如下[已知白色的Fe(OH)2固体在潮湿的空
气中可生成红褐色的Fe(OH)3]:

①金属X为 ,固体A中一定含有的物质为(写化学式) 。
②B溶液中的溶质一定含有 和 (填序号字母)。
A.K2CO3 B.Fe(NO3)2 C.MgCl2 D.Ba(NO3)2
③第Ⅳ步反应的化学方程式为 。
四、(本大题2小题,共23分)
22.(10分)几位同学对蜡烛燃烧火焰的焰心进行了
以下探究,请你完成其中的步骤:
⑴点燃蜡烛,将一根小木条迅速平放入火焰中,约
1s后取出,现象如右图A,这证明焰心

⑵向焰心斜向插入一支细短玻璃管,发现玻璃管中无明显现象(如右图B),在玻璃管的上口点燃,上口产生火焰,这说明焰心物质的性质是 、 。
⑶猜想和验证
猜想 操作 现象 结论
假设①:焰心气体含CO2 在未点燃的短玻管上口
.
假设①不成立
假设②:焰心气体含CO 用表面烧黑的灼热钢丝迅速插入短玻璃管上口 烧黑的钢丝变成红色

假设③:焰心气体含石蜡蒸气 取一较长的细玻璃管,用湿冷毛巾包住中部,将玻璃管下端手入焰心,上端
假设③成立
试用火焰点燃。
取下长玻璃管,打开湿毛巾。

⑷若蜡烛的分子式用CxH4y表示,则其燃烧的化学方程式为:

23.(13分)化学反应往往伴随着一些现象发生,但二氧化碳与氢氧化钠溶液的反应没有明显的现象。某小组的同学为了验证二氧化碳确实与氢氧化钠溶液发生了反应,他们分别设计了如下图所示的两种装置。请回答:
⑴照装置A挤压胶头滴管,可观察到U形管中的红墨水液面左高右低,甚至红墨水被吸入集气瓶中,原因是
,化学方程式为:

⑵按照装置B,把胶头滴管中的NaOH溶液挤入烧瓶中,松开铁夹,此时可看到的现象是:

⑶现有石灰石、稀盐酸、NaOH溶液、澄清石灰水等药品,同学们设计了一个制取CO2、并证明CO2确实与NaOH溶液发生了反应的实验装置。请模仿右图的“图例”,在右图虚框中直接补画出完整的实验装置图。
图中试剂a是 ,能证明CO2确实与NaOH溶液发生反应的实验现象是 。
⑷为了进一步证实CO2与NaOH溶液已经发生了反应,同学们双设计了如下方案:
取⑶实验后的NaOH溶液, 第一组同学滴加 ,现象为 ;
第二组同学滴加 ,现象为 。
他们虽然看到的现象不同,但都能证实CO2与NaOH溶液发生了反应。
⑸通过本实验的探究,我们得到一个启示:保存氢氧化钠溶液时应该 。
五、(本大题2小题,共14分)
加碘盐
质量等级:二级
碘含量:20~50mg/kg
配料:食盐、碘酸钾、抗结剂
储存方法:防潮、防热、避光
食用方法:在汤、菜即将煮好时再加入碘盐、确保碘效
保质期:12个月
24.(4分)为了消除碘缺病,我国政府规定某地区居民的食用盐必须加碘。下图为广东盐业总公司生产的加碘盐的部分标签,请根据标签图回答:
⑴碘酸钾(KIO3)中碘元素的化合价为 。
⑵从“食用方法”推测,碘酸钾的一种化学性质是

⑶为确保碘盐中碘的最低含量,1kg碘盐中至少应加入
碘酸钾 mg(精确到0.1)。
25.(10分)某实验小组为了测定人体呼出的气体中C02的体积分数,设计如下实验:(1)收集5 L某同学呼出的气体样品,(2)在气体样品中加入过量的澄清石灰水,振荡,充分反应.(3)把反应后的溶液转移到烧杯中,慢慢滴入浓度为5%的盐酸,到不产生气泡为止。产生气体的体积与加入盐酸的质量的关系如右图。回答下列问题:(1)加入5.0 g盐酸前并没有气泡产生,原因是(用化学方
程式表示):
.
(2)加入盐酸产生C02的总质量是多少(溶于水中的二氧化碳忽略不计)?
(3)该气体样品中C02的体积分数是多少?(精确到0.1%。已知:常温下C02的密度为1.96 g/L。)

⑼ 急需初三化学方程式的计算题``!!

15.造纸是我国古代四大发明之一,它有效地推动了人类文明的发展。
(1)回收农田产生的秸秆作为造纸原料,可以减少焚烧秸秆带来的______污染。秸秆的主要成分是纤维素[(C6H1005)n],纤维素中C、H、O三种元素的质量比为______(用最简整数比表示)。
(2)造纸会产生大量含NaOH的碱性废水,需经处理呈中性后排放。
①检测废水呈碱性的简单方法是_____。
②若某造纸厂废水中NaOH的质量分数为l.6%,现有废硫酸9.8 t(H2SO4的质量分数为20%),可以处理的废水质量是多少?
(1)环境 36:5:30 (2)用玻璃棒蘸取该废水滴在pH试纸上,再与标准比色卡比较。
(2)解(1)硫酸的质量为:9.8 t ×2O% =196 t
(2)可以处理的废水质量为x
H2SO4 + 2NaOH=Na2SO4 + 2H2O
98 80 142
196 t x×16%
98/80 =196 t/x×16% x= 100 t
16.某兴趣小组为测定实验室中一瓶久置的过氧化氢溶液中溶质的质量分数,实验测得相关数据如下图所示:
(1)剩余的混合物中二氧化锰的质量为 g,反应生成氧气的质量为 g。
(2)计算该过氧化氢溶液中溶质质量分数。
(3)实验表明硫酸铜溶液在该反应中也能起到二氧化锰的作用。若用5.6g无水硫酸铜代替二氧化锰进行本实验,计算剩余的溶液中溶质的质量分数。(硫酸铜全部溶于水,计算时保留到0.1%)
(1)1.0, 1.6
(2)设68.0 g过氧化氢溶液中含有过氧化氢的质量为x。
2H2O2 2H2O+O2↑
68 32
x 1.6g
68:32 = x : 1.6g x = 3.4g
过氧化氢溶液的溶质的质量分数= 3.4g/68.0g ×100% = 5.0%
(3)硫酸铜溶液的溶质质量分数= 5.6g / (67.4g-1.0g + 5.6g) ×100% ≈ 7.8%
18.高温加热10g碳酸钙,一段时间后停止加热,测得剩余固体中钙元素的质量分数为50%。
(1)若10g碳酸钙全部分解可产生多少克氧化钙? (2)实际反应生成的二氧化碳是多少克?
⑴ 5.6g
⑵ 原碳酸钙中的钙元素质量为10g×40%=4g
剩余固体质量为 4g÷50%=8g
二氧化碳的质量为10g-8g=2g
23.为从定量角度认识中和反应,小明同学自行设计并进行了下面实验:
①在小烧杯中倒人8%的氢氧化钠溶液l0g,滴入2滴酚酞试剂后,溶液呈红色;
②另取10%的稀盐酸逐滴滴加到氢氧化钠溶液中,边滴边振荡,随盐酸滴入,溶液颜色逐渐变浅;
③在溶液红色消失瞬间,停止实验。
若停止实验时,两溶液恰好反应。请分析小明实验后回答:
(1)实验中酚酞试剂的作用是__________________________;
(2)计算出这时共用去稀盐酸的质量是多少?(精确到0.1)
(1) 判断反应进行和进行的程度
(2) 解:用去稀盐酸的溶质质量为x
NaOH+ HCl =NaCl+H2O
40 36.5
10g×8% x
40:36.5 =10g×8%: x x=0.73g
共用去稀盐酸的质量是: 0.73g÷10% =7.3g
24.国家规定,酿造食醋的总酸含量标准为3.5~5.0g/100mL(总酸含量即10 0mL食醋中含醋酸的质量)。某兴趣小组为测定一市售食醋的总酸含量,进行了实验。实验后,得知10.0mL该食醋样品与7.5g溶质的质量分数为4%的氢氧化钠溶液恰好完全反应。计算该市售食醋样品中的总酸含量,并说明是否符合国家标准。(食醋和氢氧化钠反应的化学方程式:CH3COOH+NaOH====CH3COONa+H2O假设该市售食醋样品中其它物质不与氢氧化钠发生反应)
解:10.0mL该食醋样品中醋酸的质量为x;
CH3COOH + NaOH====CH3COONa+H2O
60 40
x 7.5g×4%
60/40 = x/7.5g×4% x=0.45g
则100mL食醋样品中醋酸的质量为0.45g×100mL/ 10.0mL=4.5g
25.硅酸钠(Na2SiO3)是我国优先发展的精细化工产品,工业制备的反应为: 2NaOH+ SiO2 == Na2SiO3 + H2O 。现以125t石英砂(SiO2质量分数为96%)为原料,与足量的NaOH溶液反应。试计算:(1)125t石英砂中SiO2的质量。 (2)理论上得到硅酸钠的质量。
解:(1)石英砂中的SiO2的质量=125t×96%=120t (2)244t
26.小苏打(主要成分为NaHCO3)中常含有少量氯化钠。化学兴趣小组的同学为了测定某品牌小苏打中NaHCO3的质量分数。进行了以下实验:称量样品置于烧杯中,向其中慢慢滴加稀盐酸,至不再产生气泡为止,测得的有关数据如下表所示。
物 质 样 品 消耗稀盐酸质量 反应后溶液质量
质量(g) 9 75.4 80
试计算:(计算结果保留一位小数)
(1)样品中的NaHCO3质量分数;93.3% (2)所得溶液中NaCl的质量分数。8.1%
27.一瓶氢氧化钠固体,因不慎敞口放置了一段时间,已经部分变质。化学课外兴趣小组的同学决定测定该瓶试剂变质的程度,他们在知识回顾的基础上,依次进行了如下的实验操作:
知识回顾:氢氧化钠必须密封保存;氢氧化钠与二氧化碳反应生成Na2CO3和H2O;CaCO3不溶于水。
第一步:取该瓶中的试剂20g加水配制成溶液;
第二步:向上述溶液中加入足量的澄清石灰水;
第三步:过滤、干燥、称量,生成沉淀为5g。
(1)若该瓶试剂中的Na2CO3的质量分数为A,则氢氧化钠的质量分数 1-A(填大于、等于或小于),原因是 。
(2)计算该20g试剂中含有杂质Na2CO3的质量分数(结果精确到0.1%)。
(1)小于 试剂中含有水 (2)该20g试剂中含有杂质Na2CO3的质量分数为:
28.某校化学兴趣小组在老师指导下探究孔雀石(一种铜矿石)的组成元素。他们取50克孔雀石粉末,在密闭容器中加热,观察到孔雀石分解过程中有水和能使澄清石灰水变浑浊的气体产生,绿色的孔雀石逐渐变为黑色粉末(假设:孔雀石中的杂质不反应,生成的二氧化碳全部被石灰水吸收)。在此过程中他们测定了五次,相关数据如下表:
测定次数 生成沉淀的质量(g) 生成水的质量(g)
1 5 0.9
2 10 1.8
3 X 2.7
4 20 3.6
5 20 3.6
请分析数据,回答下列问题:
(1)组成孔雀石的元素有 。 (2)表中“X”的值为 g。
(3)实验最终生成二氧化碳的质量是多少克(写出计算过程)?
(1)Cu C O H (2)15 (3)8.8
29.实验室制取氧气所用的氯酸钾通常含一定量的杂质。小明同学称取6.00g样品与2.00g二氧化锰混合,加热使其完全反应,冷却至室温。将剩余固体与17.02g水充分溶解,过滤,得到的不饱和溶液中溶质的质量分数为14.9%。 若不考虑实验中药品的损耗,氯酸钾样品中的杂质不参与反应,也不溶于水。请回答下列问题。(结果精确到0.01g)
(1)要完全回收反应生成的氯化钾,还需进行的操作是____,可回收氯酸钾的质量为________;
(2)计算样品中氯酸钾的质量是多少? (可能用到的相对原子质量:O-16 Cl-35.5
(1)蒸发(或蒸发水、蒸发溶剂、蒸发结晶) 2.98g(2)解:设样品中氯酸钾的质量为2KClO3 2KCl+ 3O2↑
245 149
x 2.98g
245/149 = x/2.98g x=4.90g
30.人体胃液中含少量HCl,正常情况下胃液的pH为0.8~15,相应含HCl的溶质质量分数为0.2%~0.4%,胃酸过多与过少都不利于人体健康。某人出现反胃、吐酸水的症状,经检查其胃液中HCl的质量分数为1495%(胃液密度约为1g/cm3).
(1)若人的胃液总量约为100mL,请完成下列表格:
正常情况下胃液中HCl的质量范围
该患者胃液中HCl的质量
该患者至少要除去的HCl的质量是
(2)医生给该患者开了一瓶胃舒平(每片含氢氧化铝0.39g),并要求病人每次服用2片,请根据化学方程式计算在食用该药片后被出去的HCl的质量是多少?(发生反应的化学方程式为Al(OH)3+3HCl==AlCl3+H2O)
医生还提醒该胃药不宜过量服用,可能原因是 。
(1)0.2g~0.4g 1495g 1095g
(2)设食用该药片后被除去的HCl的质量为x
2Al(OH)3+6 HCl=2AlCl3+6 H2O
78 109.5
2×0.39g x
78:109.5 = 2×0.39g : x
X= 1.095g
(3)过多的胃药因消耗胃内过多盐酸,不利于健康(其它合理答案也可)
31某化工厂排放的废水中只含有盐酸和MgCl2两种物质。小明同学向采集来的62.8 g废水样品中,慢慢加入20%的NaOH溶液至恰好完全反应时,消耗NaOH溶液60g。将生成的沉淀物过滤出,经水洗、干燥后称重为5.8g。
⑴写出向废水中加入NaOH溶液发生反应的化学方程式: ;
⑵请求出上述废水样品完全反应后的溶液里溶质的质量分数(要有计算过程)
(1)HCl + NaOH === NaCl + H2O MgCl2 + 2NaOH === 2NaCl + Mg(OH)2↓ (2)15%
32.用“侯氏制碱法”制得的纯碱常含有少量的氯化钠(假定只含有氯化钠杂质)。某化学兴趣小组为了测量纯碱样品中碳酸钠的质量分数,做了如下实验:称量某纯碱样品12g,加入到足量的氯化钡溶液中,恰好完全反应。过滤干燥后,称得沉淀质量为 19.7g。
请计算:纯碱样品中碳酸钠的质量分数(计算结果精确到0.1%)。
解:设纯碱样品中碳酸钠的质量为x
Na2CO3+ BaCl2=BaCO3↓+ 2NaCI
106 197
x 19.7g x= 10.6 g
则该纯碱样品中碳酸钠的质量分数 10.6 /12×100%≈88.3%
33.某纯碱样品中含有少量氯化钠。为测定样品中碳酸钠的质量分数,现称取该样品11g,加入到盛有50g稀盐酸的烧杯中,恰好完全反应,最后称得烧杯中溶液的质量为56.6g。计算:
(1)完全反应后生成CO2的质量; (2)纯碱样品中碳酸钠的质量分数(结果精确到0.1%)
解:(1) 11g+50g—56.6g==4.4g
(2)设:样品中碳酸钠的质量为x
Na2CO3 + 2HCl == 2NaCl + CO2 ↑ + H2O
106 44
x 4.4g x= = 10.6 g
则该纯碱样品中碳酸钠的质量分数为: 10.62/11×100%≈96.4 %
34.某同学对某地工业废水(含有硫酸和盐酸)中的H2SO4 进行测定。取50g该废水于烧杯中,加入足量的BaCl2溶液,充分反应中,过滤、洗涤、干燥得到BaSO4固体1165g。通过计算回答下列问题:
(1)50g该废水中H2SO4 的质量
(2)若改用KOH溶液来测定50g该废水中H2SO4 的含量,结果会(填“偏高”、“偏低”、“不变”),理由是
解:(1) 设硫酸的质量为X
H2SO4 + BaCl2 = BaSO4 +2HCl
98 233
X 1165g X=4.9g
(2)偏高,说到盐酸跟氢氧钾反应即可。
35.将2.34gNaCl固体溶于103.4g水中得到不饱和溶液,再向所得溶液中小心滴入200g AgNO3溶液。实验过程中,生成的AgCl的质量与滴入的AgNO3溶液的质量关系如右下图所示(提示:NaCl + AgNO3 = AgCl↓+ NaNO3 )。
(1)计算A点处生成NaNO3的质量?3.4g
(2)计算B点溶液中AgNO3的溶质质量分数?(若最后结果不能整除,保留小数点后一位)
A点处生成NaNO3的质量为3.4g,B点溶液AgNO3的溶质质量分数为2.3%。
36.某环保小组监测到一湿法冶铜厂排放的废水中含有硫酸和硫酸铜两种污染物,为测定该废水中各污染物的含量,给冶铜厂提供处理废水的参考,环保小组的同学进行了以下实验。取废水500g,向其中加入溶质质量分数为20%的氢氧化钠溶液。测得沉淀质量与 所加入的氢氧化钠溶液的质量关系如下图:
根据所得数据计算: (1)500 g该废水中硫酸铜的质量。(2)该废水中硫酸的溶质质量分数。
解:设500g废 水中CuSO4的质量为χ,与CuSO4反应的NaOH溶液的质量为y,500g该废水中H2SO4的质量为z。
CuSO4+2NaOH=Cu(OH)2↓+Na2SO4
160 80 98
χ y×20% 19.6g χ=32g y=80g
H2SO4+2NaOH=Na2SO4+2H2O
98 80
z (120g一80g)×20% z=9.8g
废水中硫酸的质量分数为9.8/500g×100%=196%
37.请根据下图的示的实验过程和提供的数据,计算样品中钠元素的质量。 图示
分析:用流程图代替文字叙述和图像,新颖的题型,但是难度较低,基本没有任何挑战性。
生成沉淀的质量=22.3g+86.1g+100g-198.4g=10.0g
设混合固体中碳酸钠的质量为x
Na2CO3+ CaCl2=CaCO3↓+ 2NaCI
106 100
X 10.0g X=10.6g
则混合固体中氯化钠的质量=22.3g-10.6g=117g
混合物中钠元素的质量=10.6g×(46/106)+117g×(23/58.5)=9.2g
38.为测定一瓶敞口放置的浓盐酸的溶质质量分数,某同学量取20mL(密度为11g/mL)的该盐酸与大理石充分反应,共用去含碳酸钙85%的大理石7.1g。
(1)浓盐酸需要密封保存的原因是 。 (2)计算该盐酸的溶质质量分数。
(1)浓盐酸易挥发
(2)解:设该盐酸中溶质的质量为x。
CaCO3 + 2HCl === CaCl2 + H2O + CO2↑
100 73
7.1g×85% x x=4.4 g
盐酸的溶质质量分数= 4.4 /(20*1.1)*100%=20%
39.称取12.5g石灰石(主要成分是CaCO3,杂质不参加反应)放人烧杯中,向其中加入50g稀盐酸,二者恰好完全反应。反应结束后称量烧杯中剩余物质的总质量为58.1g(不包括烧杯的质量,且气体的溶解忽略不计)。试计算石灰石中杂质的质量分数。
解:生成CO2的质量为: 12.5 g+50 g-58.1g=4.4g
设石灰石中CaCO3的质量为x。
CaCO3+2HCl=CaCI2+CO2↑+H2O
100 44
x 4.4g x=10g
石灰石中杂质的质量分数为:(12.5-10 )/12.5×100%=20%
40.40g质量分数为36.5%的盐酸与25g大理石恰好完全反应(大理石中的杂质不参加反应) 。
(1)计算该大理石中碳酸钙的质量分数。
(2)将40g 质量分数为36.5%的盐酸稀释为质量分数为10%的盐酸,需要水的质量是多少?
解:设25g大理石中碳酸钙的质量为。
CaCO3 + 2HCl = CaCl2+H2O+ CO2 ↑
100 2×36.5
x 40g×36.5% x = 20g
(1)大理石中碳酸钙的质量分数为: ×100% =80%
(2)设稀释后盐酸溶液的质量为x。
40g×36.5%=x×10% x = 146g
需要水的质量=146g-40g=106g
41.某公司生产出的纯碱产品中经检测只含有氯化钠杂质。为测定产品中碳酸钠的质量分数,20℃时,称取该产品样品26.5g,加入到盛有一定质量稀盐酸的烧杯中,碳酸钠与稀盐酸恰好完全反应,气体完全逸出,得到不饱和NaCl溶液。反应过程用精密仪器测得烧杯内混合物的质量(m)与反应时间(t)关系如下图所示。
求:(1)生成CO2的质量。 (2)该纯碱样品中Na2CO3的质量分数。
(3)根据条件,此题还可求算出下列中的 (只填字母标号,不计算,可多选)。
A.该纯碱样品中NaCl的质量分数; B.反应所用稀盐酸的溶质质量分数;
C.反应后所得溶液中NaCl的质量分数; D.反应生成水的质量。
解:(1)生成二氧化碳的质量为172.5g-163.7 g = 8.8 g
(2)设:样品中碳酸钠的质量为x
Na2CO3 + 2HCl == 2NaCl + CO2 ↑ + H2O
106 44
x 8.8g x= = 212 g
则该纯碱样品中碳酸钠的质量分数为
212 /26.5×100%=80 %
(3)ABCD
42.我市有丰富的石灰石资源,为了测定某地石灰石中碳酸钙的质量分数,取7.5g样品放入烧杯,加入稀盐酸至恰好不再产生气体时消耗34.7g,放出的气体在常温下体积为11L。
(1)常温下CO2气体的密度为2.0g/L,则上述反应放出气体的质量为 g。
(2)如石灰石中的杂质均不溶于水且不与盐酸反应,计算石灰石中CaCO3的质量分数和反应所得溶液中溶质的质量分数(计算最终结果保留1位小数)。
(1) 2.2g
(2)解:设样品中碳酸钙的质量为x , 反应所得溶液中溶质的质量为y
CaCO3+2HCl = CaCl2+H2O+CO2↑
100 111 44
x y 2.2g
100/44 = x/2.2g x=5g
样品中碳酸钙的质量分数:5g/7.5g ×100%≈66.7%
111/44 = y/2.2g y=5.55g
反应所得溶液中溶质的质量分数为:5.55g/(5g +34.7g-2.2g )×100%≈14.8%
43.为测定某石灰石样品中碳酸钙的含量,取10.0克于烧杯中再向其中加入稀盐酸50.0克,恰好完全反应(杂质不反应),反应后烧杯中物质总质量为56.7克。
(1)生成CO2的质量 。(2)求石灰石样品中碳酸钙的质量分数(写出计算过程)。
(1) 3.3g
(2)解:设样品中碳酸钙的质量为x
CaCO3+2HCl = CaCl2+H2O+CO2↑
100 44
X 3.3g
100/44 = x/3.3 x=7.5g
样品中碳酸钙的质量分数:7.5/10 ×100%=75%
45.为测定某纯碱(Na2CO3)样品中(含有少量的氯化钠杂质)碳酸钠的质量分数,现称取6g试样放在烧杯中并滴入稀盐酸,当稀盐酸滴加至36.5g时,烧杯内溶液的总质量为40.3g(产生的气体全部逸出)。产生气体的质量与滴入稀盐酸的质量关系如图所示,试计算:
⑴ A点产生气体的质量为 ; ⑵ 试样中碳酸钠的质量分数(结果精确到0.1%);5.3g
⑶ B点时,烧杯内溶液中溶质的化学式 。
(1)2.2g (2)5.3g (3)NaCl、HCl
46》小明同学想测量某赤铁矿样品中氧化铁的纯度(假设其他成分不和酸反应,也不溶于水),进行如下实验:
称取10g赤铁矿样品,加入到烧杯中,再加入92.5g的稀硫酸,恰好完全反应。过滤得滤渣2.5g。试计算:
(1)赤铁矿样品中氧化铁的质量分数? (2)上述反应所得滤液中溶质的质量分数?
(1)赤铁矿样品中氧化铁的质量分数为75%
(2)反应所得滤液中溶质的质量分数为: ×100%=18.75%
47.早在西汉时期,我国就用铁与硫酸铜溶液反应制取铜,称为“湿法炼铜”。求:
(1)请写出“湿法炼铜”的化学方程式 。
(2)若用该方法制得铜32g,反应的铁的质量 g,若同时消耗了500g硫酸铜溶液,则该硫酸铜溶液中硫酸铜的质量分数为 %。
(1)Fe+CuSO4=FeSO4+Cu
(2)28 ,16
48.在烧杯中加入2.14g久置的铝箔,再滴加稀硫酸,放出气体的质量与所加稀硫酸质量的关系如右图所示。请回答下列问题:
(1)产生氢气 g,刚开始滴加稀硫酸没有氢气放出的原因是 。(2)所滴加的稀硫酸中溶质的质量分数。 (3)铝箔中铝元素的质量。
(1)0.2 盐酸与氧化铝反应 (2)10% (3)92.52%
49.某研究性学习小组为测定铜锌合金中铜的质量分数,进行如下实验:取合金10g,向其中不断加入稀硫酸,产生的气体与所加稀硫酸的质量关系如图所示。求:
①稀硫酸中溶质的质量分数。②合金中铜的质量分数。
①稀硫酸的溶质质量分数为:(4.9g / 20g)×100% == 24.5%
② 合金中铜的质量为:10g – 3.25g == 6.75g
合金中铜的质量分数为:(6.75g / 10g)×100% == 67.5%
50.(2011娄底市)(6分)化学兴趣小组的同学取10 g某锌样品(含少量杂质,且杂质不溶于水,也不与酸反应)于烧杯中,向其中加入一定量的稀硫酸,当加入稀硫酸的质量为93.7 g时,恰好完全反应,生成气体的质量与反应时间 的关系如下图所示,试回答下列问题:(提示:Zn+H2SO4¬=ZnSO4¬+H2↑)
(1)从右图中可以看出,完全反应后生成氢气的质量为 g。(2)样品中锌的质量为 g。
(3)反应后,所得溶液中硫酸锌的质量分数为多少?
(1) 0.2 (2) 6.5 (3)所得溶液中,硫酸锌的质量分数=16.1%
51.向16g黄铜(由锌、铜形成的合金)样品中加入稀硫酸充分反应,所加稀硫酸与生成气体的质量关系如图所示。求:
(1)样品中锌的质量。 (2)恰好完全反应时,所得溶液中溶质的质量分数。
(1)样品中锌的质量为13g。
(2)所得硫酸锌溶液中溶质的质量分数为20%。
52.(2011哈尔滨市)(5分)为了测定某粉末状黄铜(铜、锌合金)样品中铜的质量分数,洋洋同学取一定质量的黄铜样品放入烧杯中,再取40g稀盐酸分四次加入烧杯中,均充分反应,实验数据如下:
第一次 第二次 第三次 第四次
加入稀盐酸质量(g) 10 10 10 10
剩余固体的质量(g) 9.10 8.45 7.80 7.80
(1)上述反应的化学方程式为 ; (2)根据锌的质量列出求解第二次生成氢气质量(x)的比例式 ;
(3)所用稀盐酸中溶质的质量分数为 ;(4)用36.5%的浓盐酸配制40g上述稀盐酸,需要浓盐酸的质量为 ;(5)黄铜样品中铜的质量分数为 。
(1)Zn + 2HCl = ZnCl2 + H2↑ (2) (或 )
(3)7.3% (4)8g (5)80%
53.26g黄铜(Cu-Zn合金)与100g稀硫酸在烧杯中恰好完全反应,反应后测得烧杯中剩余物的总质量为125.8克。求:
⑴黄铜中铜的质量分数;⑵反应后所得溶液中溶质质量分数。(计算结果精确到0.1 %)
黄铜中铜的质量分数为75% 反应后所得溶液中溶质质量分数为15.1%
54.为测定某黄铜样品中锌的含量,某同学称取20g黄铜(铜和锌的合金)样品于烧杯中,向其中加入稀硫酸至不再产生气泡为止,共消耗100g质量分数为9.8%的稀硫酸,请计算:
(1)该黄铜样品中锌的质量。
(2)反应后所得溶液的溶质质量分数(计算结果保留0.1%)。
黄铜中锌的质量6.5g 反应后所得溶液中溶质质量分数为15.1%
55.黄铜是铜和锌的合金,可以用来制造机器、电器零件及日常用品。为了测定某黄铜样品中铜的质量分数,取20g该样品向其中加入一定量的10%的稀硫酸,恰好完全反应,产生氢气0.2g。
请解答问题:
(1)黄铜属于 材料;(2)该黄铜样品中铜的质量分数;(3)完全反应后所得溶液的质量分数。
(1)金属 (2)黄铜样品中铜的质量分数为67.5% (3)完全反应后所得溶液的质量为104.3g
56.钠与水反应生成NaOH和H2,现向95.6克水中加入4.6克钠,充分反应(有水剩余)。求:(1)生成NaOH的质量是多少?(2)反应后溶液中溶质的质量分数是多少?
解:设生成NaOH的质量为x,氢气的质量为y
2Na+2 H2O = 2 NaOH + H2↑
46 80 2
4.6g x y
46/80 =4.6g /x x=8.0g
46/2 =4.6g /y y=0.2g
溶液中氢氧化钠的质量分数:8.0g/(95.6g+4.6g-0.2g)×100% =8%
57.利用废铁屑与一定质量分数的稀硫酸反应制取硫酸亚铁。现有80g废铁屑与430mL20%的稀硫酸(密度为114g/cm3)恰好完全反应(假设废铁屑中除铁以外的物质不溶于水且不与稀硫酸反应)。我能完成下列计算(结果保留整数):
⑴稀硫酸中溶质的质量;⑵废铁屑中铁的质量;⑶恰好完全反应时所得溶液中溶质的质量分数。
解:(1)硫酸中溶质的质量:114g/cm3×430mL×20%=98g
(2)设80g废铁屑中铁的质量为x,生成硫酸亚铁的质量为y,生成氢气的质量为z。
Fe+H2SO4=FeSO4+H2↑
56 98 152 2
x 98g y z
56/98= x / 98g x =56g
98/152= 98g /y y =152g
98/2= 98g/ z z =2g
所得溶液中溶质的质量分数:152g/(114g/cm3×430mL+56g-2g)×100%≈28%
(或硫酸亚铁溶液的质量:114g/cm3×430mL-98g+152g=544g
所得溶液中溶质的质量分数为:152g/544g×100%≈28%
58.某补钙剂(有效成分为碳酸钙,其它成分不含钙元素)的说明中标明含钙量为30%.李琳同学为了检验该产品,取10 g补钙品放入100 g稀盐酸中,HCl与补钙品有效成分刚好完全反应(其它成分不与盐酸反应)。反应后剩余固体和液体的总质量比反应前减少了2.2g 。求:
(1)补钙品中实际含钙的质量分数是多少?(2)所用稀盐酸中溶质质量分数是多少?
解:设补钙品中碳酸钙的质量为x,稀盐酸中HCl的质量为y
CaCO3+2HCl=CaCl2+H2O+CO2↑
100 73 44
X y 2.2g
x= 5g y =3.65g
CaCO3中钙元素的质量分数是: 40/100 ×100% =40%
补钙品中钙元素的实际含量: 5*40%/10×100% =20%
所用稀盐酸中溶质质量分数为:3.65/100 ×100% =3.65%
59.某中学化学课外活动小组对某工厂排放的含少量硫酸的废水进行抽样检测。取一定量的废水,用质量分数为1%的氢氧化钡溶液中和(其它物质不与氢氧化钡反应),当恰好中和时,消耗氢氧化钡溶液的质量为171g,过滤后,测得滤液的质量为268.67g。(不考虑过滤时滤液质量损失)(计算结果保留二位小数)
求:①反应中生成沉淀的质量为多少? ②该工厂排放的废水中所含硫酸的质量分数为多少?
解 ①生成沉淀的质量为x,参加反应的硫酸的质量为 y
Ba(OH)2+ H2SO4===BaSO4↓+2H2O
171 98 233
171×1% y x
171/233=171 g×1%/x X=2.33 g
171/98=171 g×1%/y Y=0.98g
② 根据质量守恒定律知:所取废水样品质量为: 268.67g +2.33g-171g =100g
该工厂排放的废水中硫酸的质量分数为:0.98g/100g×100%=0.98%
60.某地一辆满载浓硫酸的罐车翻到,导致25t溶质的质量分数为98%的浓硫酸泄漏,并向路基两边蔓延,接到报警后消防官兵立即赶来并用石灰浆(主要成分为氢氧化钙)中和硫酸解除了险情。请回答:(1)25t溶质的质量分数为98%的浓硫酸中含H2SO4的质量为 ;
(2)计算:中和泄漏的硫酸,理论上需要多少吨氢氧化钙;
(3)处理一定量的硫酸,理论上既可用m1吨的氢氧化钙粉末,也可选用m2吨的氧化钙粉末,还可用m3吨碳酸钙粉末,则m1 、m2、 m3的数值大小关系为 。
(1) 24.5t
(2) 解:设理论上需要氢氧化钙的质量为x
H2SO4 + Ca(OH)2 === CaSO4 + 2H2O
98 74
24.5t x
x=18.5t
(3) m3>m1>m2

⑽ 分析化学实验的图书目录

第一章 分析化学实验基础知识
§1.1 分析化学实验的目的、要求和成绩评定
1.1.1 实验目的
1.1.2 实验要求
1.1.3 成绩评定
§1.2 分析化学实验室的规则、安全及“三废”处理
1.2.1 实验室规则
1.2.2 安全知识
1.2.3 “三废”处理
§1.3 分析化学实验室用水
1.3.1 实验用水规格
1.3.2 纯水的制备与使用
1.3.3 水纯度检验
§1.4 化学试剂的一般知识
1.4.1 试剂的级别
1.4.2 试剂的存放
1.4.3 试剂的取用
§1.5 常用玻璃仪器的洗涤和干燥
1.5.1 仪器的洗涤
1.5.2 常用洗涤液
1.5.3 仪器的干燥
§1.6 实验数据的采集和整理
1.6.1 误差
1.6.2 测定数据的取舍
1.6.3 有效数字及其运算规则
1.6.4 实验数据的采集处理
1.6.5 实验报告的基本格式
第二章 定量分析基本操作、仪器及实验
§2.1 定量分析的一般步骤
2.1.1 试样的采取和制备
2.1.2 试样的分解
2.1.3 分离和富集
2.1.4 分析测定方法的选择
2.1.5 分析结果的计算和评价
§2.2 分析天平
2.2.1 分析天平的称量原理
2.2.2 电光天平
2.2.3 电子天平
2.2.4 试样的称量方法
实验1 分析天平的称量练习
§2.3 滴定分析
2.3.1 移液管、吸量管及其使用方法
2.3.2 容量瓶及其使用方法
2.3.3 滴定管及其使用方法
2.3.4 容量器皿的校准
实验2 容量器皿的校准
2.3.5 酸碱滴定实验
实验3 滴定分析基本操作练习
实验4 盐酸溶液的配制与标定
实验5 氢氧化钠溶液的配制与标定
实验6 有机酸含量的测定
实验7 铵盐中氮含量的测定(甲醛法)
实验8 工业纯碱总碱度测定
实验9 混合碱的分析(双指示剂法)
实验10 磷酸的电位滴定
实验11 酸碱滴定法自拟实验
2.3.6 配位滴定实验
实验12 EDTA标准溶液的配制和标定
实验13 天然水硬度测定
实验14 铅铋混合液中Bi3+、Pb2+的连续测定
实验15 配位滴定法自拟实验
2.3.7 沉淀滴定实验
实验16 硝酸银标准溶液的配制和标定
实验17 氯化物中氯含量的测定
实验18 沉淀滴定法自拟实验
2.3.8 氧化还原滴定实验
实验19 高锰酸钾标准溶液的配制与标定
实验20 过氧化氢含量的测定
实验21 硫酸亚铁铵中铁含量测定(重铬酸钾法)
实验22 硫代硫酸钠标准溶液的配制和标定
实验23 硫酸铜中铜含量测定(间接碘量法)
实验24 氧化还原滴定法自拟实验
§2.4 重量分析法
2.4.1 滤纸和滤器
2.4.2 沉淀的生成
2.4.3 沉淀的过滤和洗涤
2.4.4 沉淀的烘干与灼烧
2.4.5 马弗炉
实验25 BaCl2·2H2O中钡含量的测定(硫酸钡重量法)
实验26 氯化钡中结晶水的测定(挥发法)
实验27 重量分析法自拟实验
§2.5 吸光光度法
2.5.1 吸光光度法基本原理
2.5.2 吸光光度法的方法和仪器简介
2.5.3 可见分光光度计
实验28 分光光度法测定铁含量
实验29 邻二氮菲合铁(Ⅱ)配合物组成的测定
实验30 分光光度法测定铬、锰的含量
实验31 分光光度法自拟实验
第三章 综合实验
实验32 洗衣粉中聚磷酸盐含量的测定
实验33 胃舒平药片中铝和镁的测定
实验34 铝合金中铝含量的测定
实验35 石灰石中氧化钙的测定
实验36 重铬酸钾法测定铁矿石中铁含量
实验37 城市污水中硫酸盐的测定
实验38 配合物的离子交换树脂分离及测定
实验39 亚甲基蓝分光光度法测定废水中硫化物
实验40 农药草甘膦含量的测定
实验41 光亮镀镍溶液中主要成分的分析
实验42 水泥熟料中SiO2、Fe2O3、Al2O3、CaO、MgO含量测定
第四章 外文实验
Exper-iment 1 Acid—Base Titration
Experiment 1 Acid-Base Titration
Experiment 2 Direct Titration of Tris with HCl
Experiment 3 EDTA Titration of Ca2+ and Mg2+ in Natural Waters
Experiment 4 Iodimetrie Titration of Vitamin C
Experiment 5 A Redox Titration Lab
Experiment 6 Gravimetric Determination of Iron as Fe2O3
Experiment 7 Determination of Quinine and Sodium Benzoate in Tonic Water by UV Absorbance Spectros
附录
附表1 定量分析实验仪器清单
附表2 市售酸碱试剂的含量和密度
附表3 弱酸在水中的解离常数(25℃)
附表4 弱碱在水中的解离常数(25℃)
附表5 配合物的稳定常数(18~25℃)
附表6 氨羧配位剂类配合物的稳定常数(18~25℃ I=0.1)
附表7 标准电极电位表(18~25℃)
附表8 几种常用的酸碱指示剂
附表9 常用酸碱混合指示剂
附表10 金属离子指示剂
附表11 氧化还原指示剂
附表12 常用缓冲溶液的配制
附表13 数据舍弃Q检验法
附表14 化合物的相对分子质量
附表15 相对原子质量(1981年国际原子量)
附表16 本书中所使用的量和单位
参考文献

阅读全文

与废水中铝测定实验报告相关的资料

热点内容
深度过滤器厂家 浏览:381
米家空气净化器2怎么拆开 浏览:917
工业润滑油过滤市场 浏览:495
医院污水池除臭排放标准 浏览:166
阴离子阳离子交换膜 浏览:123
戴森空气净化器滤芯怎么拆 浏览:928
净化器上面显示复位什么意思 浏览:999
净水器里有什么水可以做雾化 浏览:396
蒸馏石油的分馏 浏览:744
饮水机水桶为什么会变绿 浏览:803
饮水机热水往上出是什么意思 浏览:627
如何当好污水处理厂的班长 浏览:327
微动力污水处理器 浏览:729
四氯化碳如何蒸馏水 浏览:950
废水资源化问题与出路 浏览:705
树脂补牙还要打磨 浏览:189
什么叫做雨污水阴阳管 浏览:438
废水处理ph是什么意思 浏览:17
反渗透净水器有废水比是什么意思 浏览:507
净化器过滤芯怎么取出 浏览:837