Ⅰ 核废水可以冰冻处理吗,或者蒸发处理
不能蒸发处理。
水被辐照以后本身也有放射性,水里溶解的放射性核素也都是非常微量的,蒸发以后他们还是会和水蒸气混合,蒸馏和冷冻的方法都不能去除放射性。
可以查看当年美国三哩岛核事故的处理情况,使用了蒸发法,但是实际上,这种方法只是为了安抚人们。当时,美国还想采用直接排放的方法,直接排入河中,且排放量相对较小,但是它仍然遭到外界的一致反对。
最终,美国政府花了很多钱,并使用了蒸发的方法,所产生的污染仍然是相同的。但是一个排放到大气中,另一个排放到水中。对于放射性元素氚,目前尚无可行的方法,并没有一种切实可行不会在世界范围内造成任何污染的方案。
放射性废水来源、分类及危害
我国放射性废水按放射性活度高低分为高、中、低和弱放射性废水,废水来源包括核电站废水、铀矿选冶废水、乏燃料后处理废水以及医院、科研等单位产生的废水。铀矿选冶产生的废水主要含有的核素包括U、Ra以及微量的Po和210Pb,属于低放射性废水。
核电站废水主要包括主设备和辅助设备排空水、反应堆排放水、第二回路废水、清洗废液、离子交换装置再生废水和专用洗涤水等,主要为中低放射性废水。乏燃料后处理废水主要包括乏燃料后处理和放射性物质分离制造过程产生的废水等,代表核元素包括137Cs、90Sr及铀、钚、超铀元素等,这两种废水放射性浓度都很高,危险性极大。
以上内容参考:网络-放射性废水处理
Ⅱ 日本的核辐射污水蒸发成水蒸气还有辐射性吗
有辐射。
放射性核素,其最本质概念就是带有放射性的原子,辐射水中带有放射性的东西是氚,氢的同位素,蒸发只是一个物理过程 ,改变的只有相态,对于分子并没有破坏,所以带有放射性的水蒸发完了就是放射性蒸汽。
放射性物质会随着水蒸气蒸发及风的传输扩散,总体来说,核污染物扩散主要有两个条件,一个是空气,核污染物进入空气当中,随着空气的流动扩散。
核辐射主要是α、β、γ三种射线:
α射线是氦核,外照射穿透能力很弱,只要用一张纸就能挡住,但吸入体内危害大;
β射线是电子流,照射皮肤后烧伤明显。这两种射线由于穿透力小,影响距离比较近只要辐射源不进入体内,影响不会太大;
γ射线的穿透力很强,是一种波长很短的电磁波。γ辐射和X射线相似,能穿透人体和建筑物,危害距离远。宇宙、自然界能产生放射性的物质不少但危害都不太大,只有核爆炸或核电站事故泄漏的放射性物质才能大范围地对人员造成伤亡。电磁波是很常见的辐射,对人体的影响主要由功率(与场强有关)和频率决定。
以上内容参考:网络-核辐射
Ⅲ 中低放射性废物的处置
铀矿开采,有地下挖掘、露天开采和地浸三种方式。地浸是将酸性溶液通过钻孔灌入地下溶解铀于其中,再抽取溶液,达到采铀目的。该方法的优点是成本低,污染主要在地下。应当严格控制灌入地下酸性溶液数量。露天采矿剥离的废石,可就地覆盖,或回填采坑,然后覆土造田或植草植树。
地下采矿带出的矸石,一般是每采1 t铀矿要产生废石1~6 t。目前我国堆积的铀矿山废石总量约28×106 t,占地2.5×106m2。这些属于低比活度放射性废物,含铀量平均为(1~3)×10-4g/g,比一般土壤高出4~10倍;其表面氡析出率约为(7~200)×10-2Bq/m2·s,比地面高5~7倍。它们不断向大气排放氡和细粒状颗粒物。根据放射性废物分类标准,这些大都处于低固体放射性废物标准的下限,按规定可以不算放射性废物,但应作为特殊废物妥加保管。即对放射性比活度在(2~7)×104Bq/kg的废石和尾矿,应建坝存放。超过上述放射性水平的应建库保存,或回填矿井采空区。与放射性核素伴生的其他金属非金属矿山废渣,也应参照上述放射性水平进行类似的处置。
选矿产生的尾矿,我国已经累积有数千万吨。尾矿处置的关键在于尾矿库的选址和尾矿坝的建设,应该保证底不渗漏,坝(堤)不垮塌,不产生灾难性的事故,氡析出率要低。美国规定尾矿设施:稳定期要保持100 a,至少保持20 a不维修,覆盖尾矿后氡析出率平均不超过0.75Bq/m2·s,地下水中放射性核素不超过国家规定。我国的尾矿库退役后覆盖黄土厚度0.5~1.5m,近年测量结果:氡析出率0.2~0.3Bq/m2·s,平均射线吸收剂量率为(8~10)×10-2μGy/h,基本符合要求。
其他放射性研究、应用和生产的中低放射性废物(虽然不如矿石废石那样多),比活度较大,尤其是核电站产生的中低放射性废物,包括受污染的废弃设备、化学试剂、树脂、过滤芯、防护品以及其他杂件等。通常是对废液体进行蒸发收取残渣,对固体进行焚烧、压缩减小体积,然后装入容器,进行地下埋藏,储存于近地表的土壤层中,称为地层处置。
地层埋藏固体中低放射性废物地区称作处置场,地区设若干个单元,每单元之间是分离的,可以是地上坟堆式或地下壕沟式。如图9-6-1所示。要有地表排水系统、渗析液收集系统、监测井和覆盖层,均应满足环保要求保证安全。
图9-6-1 低放射性固体废物处置单位剖面图
按我国《低中放射性固体废物的浅地层处置规定》(GB 9132—88)要求,浅地层是指50 m深度以上,符合环境要求的地层。例如,应在300~500 a内,埋藏的放射性物质不向环境扩散,对公众个人造成的年有效剂量当量不得大于0.25 mSv。
处置场的选择,首先是进行区域调查,主要是地质稳定性调查,包括地震可能性、地质构造、工程地质、水文地质以及气象条件和经济、人文社会条件的调查。然后进行试验测试,确定是否符合建场要求。
对入场废物应该严格监督检测。放射性废物半衰期应小于30 a;比活度Am≤3.7×1010Bq/kg;不产生有毒气体,不腐蚀,不爆炸,包装要有足够的机械强度,符合规定的体积等(表9-6-3)。
处置场按照设计进行埋藏,达到负荷后进行关闭。处置场在运行和关闭的相当长时间内都要进行定期的监测、管理,保证环境安全。
Ⅳ 钢筋混凝土放射性废水衰变池如何做防辐射处理
常用的方法是前三种。放射性废水的处理效果,通常用去污系数(DF)和浓缩系数(CF)表示。前者的定义是废水原有的放射性浓度C0与其处理后剩余放射性浓度C之比,即DF=C0/C;后者的定义是废水的原有体积与其处理后浓缩产物的体积之比,即CF=V原水/V浓缩。蒸发法、 离子交换法和化学沉淀法的代表性去污系数的数量级分别为104~106、10~103和10。
化学沉淀法使沉淀剂与废水中微量的放射性核素发生共沉淀作用的方法。最通用的沉淀剂有铁盐、铝盐、磷酸盐、 高锰酸盐、石灰、苏打等。对铯、钌、 碘等几种难以去除的放射性核素要用特殊的化学沉淀剂。例如,放射性铯可用亚铁氰化铁、亚铁氰化铜或亚铁氰化镍共沉淀去除;也可用粘土混悬吸附──絮凝沉淀法去除。放射性钌可用硫化亚铁、仲高碘酸铅共沉淀法等去除。放射性碘可用磺化钠和硝酸银反应形成碘化银沉淀的方法去除;也可用活性炭吸附法去除。沉淀污泥需进行脱水和固化处理。最有效的脱水方法是冻结-融化-真空或压力过滤。
离子交换法放射性核素在水中主要以离子形态存在,其中大多数为阳离子,只有少数核素如碘、磷、碲、钼、锝、氟等通常呈阴离子形式。因此用离子交换法处理放射性废水往往能获得高的去除效率。采用的离子交换剂主要有离子交换树脂和无机离子交换剂。大多数阳离子交换树脂对放射性锶有高的去除能力和大的交换容量;酚醛型阳树脂能有效地除去放射性铯,大孔型阳树脂不仅能去除放射性阳离子,还能通过吸附去除以胶体形式存在的锆、铌、钴和以络合物形式存在的钌等。
无机离子交换剂具有耐高温、耐辐射的优点,并且对铯、锶等长寿命裂变产物有高度的选择性。常用的无机离子交换剂有蛭石、沸石(特别是斜发沸石)、凝灰岩、锰矿石、某些经加热处理的铁矿石、铝矿石以及合成沸石、铝硅酸盐凝胶、磷酸锆等。
离子交换剂以单床(一般为阳离子交换剂床),双床(阳树脂床→阴树脂床串联)和混合床(阳、阴树脂混装的床)的形式工作。
蒸发法用蒸发法处理含有难挥发性放射性核素的废水可以获得很高而稳定的去污系数和浓缩系数。此法需要耗用大量蒸发热能。所以主要用于处理一些高、中水平放射性废液。用的蒸发器有标准型、水平管型、强制循环型、升膜型、降膜型、盘管型等。蒸发过程中产生的雾末随同蒸汽进入冷凝液,使其中的放射性增强,因此需设置雾末分离装置,如旋风分离器、玻璃纤维填充塔、线网分离器、筛板塔、泡罩塔等。此外还要考虑起沫、腐蚀、结垢、爆炸等潜在危险和辐射防护问题。
用上述方法处理后的放射性废水,排入水体的可通过稀释,排入地下的可通过土壤对放射性核素的吸附和地下水的稀释等作用,达到安全水平。
Ⅳ 低放废水采用凝聚沉淀的描述正确的是
咨询记录 · 回答于2021-10-22
Ⅵ 核电站排出的废水怎么处理
在核电站,由于处理废水的量大、放射性物质浓度较高,都建有专门的版放射性污水处理系统,其常用的权工艺是蒸发和过滤。前面提到过,废水中的大多数放射性元素都不具有挥发性,利用这一特性,科学家对废水进行加热令其蒸发,再将留下的无法蒸发的放射性物质作浓缩处理。这个方法有两个优点,其一,核电站运行过程中本身就有很多无用的废热,加热废水不会多耗能源;其二,蒸发法基本不需要使用其他物质,不会像其他方法因为污染物的转移而产生其他形式的污染物。另一种方法是过滤法,原理类似我们日常生活中使用的净水器。在废水流经的管道中安放了专门用来吸附放射性物质的树脂,这样水流走了,放射性物质留在树脂中。过一段时间,树脂吸附“饱”了,可以换上新的树脂。而吸满了放射性物质的树脂可以通过压缩等方法减小体积,收集后浇筑水泥密封,若树脂中放射性强度不高,放入铁桶密封也行。
Ⅶ 放射性物质的废液如何处理
.放射性“三废”处理效果的评价指标:一是浓缩倍数;二是去污倍数或净化倍数专。(1)浓缩倍数:放射属性废物的原有体积与处理后放射性浓集物体积之比。浓缩倍数越大,说明浓缩后的体积越小,贮存也就越经济、越安全。(2)去污倍数或净化倍数:放射性废物的原有放射性浓度与处理后的剩余放射性浓度之比。去污倍数越大,说明处理后废物中剩余放射性浓度越低,排放、贮存就越安全。2.放射性废液的处理(1)稀释排放:低活度的放射性废水,稀释至限值以下排入下水道。(2)放置衰变:对于短半衰期的低活度放射性废液,放置10个半衰期后,作一般废液排放。(3)浓缩贮存:对于长半衰期高活度的废液,以化学沉淀、离子交换、蒸发等方法,将放射性物质浓集,缩小体积,以利长期贮存。(4)固化贮存:经浓缩处理后的放射性残渣,可与水泥、沥青等融合成固态废物,再以贮存。3.放射性固体废物的处理:主要有放置衰变和压缩贮存等方法。 4.放射性废气的处理:主要有稀释排放和净化排放等方法。
Ⅷ 常见的放射性废水处理方法有哪些
放射性废水的主要去除对象是具有放射性的重金属元素,与此相关的处理技术,简单地可分为化学形态改变法和化学形态不变法两类。
放射性废水处理方法:
其中化学形态改变法包括:
1、化学沉淀法;
2、气浮法;
3、生化法。
化学形态不变法包括:
1、蒸发法;
2、 离子交换法;
3、吸附法;
4、 膜法。
化学沉淀法是向废水中投放一定量的化学絮凝剂,如硫酸钾铝、硫酸钠、硫酸铁、氯化铁等,有时还需要投加助凝剂,如活性二氧化硅、黏土、聚合电解质等,使废水中的胶体物质失去稳定而凝聚何曾细小的可沉淀的颗粒,并能于水中原有的悬浮物结合为疏松绒粒。改绒粒对水中的放射性元素具有很强的吸附能力,从而净化水中的放射性物质、胶体和悬浮物。引起放射性元素与某种不溶性沉渣共沉的原因包括了共晶、吸附、胶体化、截留和直接沉淀等多种作用,因此去除效率较高。
化学沉淀法的优点是:方法简便、费用低廉、去除元素种类较广、耐水力和水质冲击负荷较强、技术和设备较成熟。缺点是:产生的污泥需进行浓缩、脱水、固化等处理,否则极易造成二次污染。化学沉淀法适用于水质比较复杂、水量变化较大的低放射性废水,也可在与其他方法联用时作为预处理方法。
蒸发浓缩法处理放射性废水:除氚、碘等极少数元素之外,废水中的大多数放射性元素都不具有挥发性,因此用蒸发浓缩法处理,能够使这些元素大都留在残余液中而得到浓缩。蒸发法的最大优点之一是去污倍数高。使用单效蒸发器处理只含有不挥发性放射性污染物的废水时,可达到大于10的4次方的去污倍数,而使用多效蒸发器和带有除污膜装置的蒸发器更可高达10的6次方到8次方的去污倍数。此外,蒸发法基本不需要使用其他物质,不会像其他方法因为污染物的转移而产生其他形式的污染物。
尽管蒸发法效率较高,但动力消耗大、费用高,此外,还存在着腐蚀、泡沫、结垢和爆炸的危险。因此,本法较适用于处理总固体浓度大、化学成分变化大、需要高的去污倍数且流量较小的废水,特别是中高放射性水平的废水。
新型高效蒸发器的研发对于蒸发法的推广利用具有重大意义,为此,许多国家进行了大量工作,如压缩蒸汽蒸发器、薄膜蒸发器、脉冲空气蒸发器等,都具有良好的节能降耗效果。另外,对废液的预处理、抗泡和结垢等问题也进行了不少研究。
离子交换法处理放射性废水的原理是,当废液通过离子交换剂时,放射性离子交换到离子交换剂上,使废液得到净化。目前,离子交换法已广发应用于核工艺生产工艺及放射性废水处理工艺。
许多放射性元素在水中呈离子状态,其中大多数是阳离子,且放射性元素在水中是微量存在的,因此很适合离子交换出来,并且在无非放射性粒子干扰的情况下,离子交换能够长时间的工作而不失效。
离子交换法的缺点是,对原水水质要求较高;对于处理含高浓度竞争离子的废水,往往需要采用二级离子交换柱,或者在离子交换柱前附加电渗析设备,以去除常量竞争离子;对钌、单价和低原子序数元素的去除比较困难;离子交换剂的再生和处置较困难。除离子交换树脂外,还有用磺化沥青做离子交换剂的,其特点是能在饱和后进行融化-凝固处理,这样有利于放射性废物的最终处置。
吸附法是用多孔性的固体吸附剂处理放射性废水,使其中所含的一种或数种元素吸附在吸附剂的表面上,从而达到去除的目的。在放射性废液的处理中,常用的吸附剂有活性炭、沸石等。
天然斜发沸石是一种多孔状结构的无机非金属矿物,主要成分为铝硅酸盐。沸石价格低廉,安全易得,处理同类型地放射性废水的费用可比蒸发法节省80%以上,因而是一种很有竞争力的水处理药剂。它在水处理工艺中常用作吸附剂,并兼有离子交换剂和过滤剂的作用。
当前,高选择性复合吸附剂的研发是吸附法运用中的热点。所谓“复合”是指离子交换复合物(氰亚铁盐、氢氧化物、磷酸盐等)在母体(多位多孔物质)上的某些方面饱和,所以新材料结合天然母体材料的优点,具有良好的机械性能、高的交换容量以及适宜的选择性。
离子浮选法属于泡沫分离技术范畴。该方法基于待分离物质通过化学的、物理的力与捕集剂结合在一起,在鼓泡塔中被吸附在气泡表面而富集,借泡沫上升带出溶液主体,达到净化溶液主体和浓缩待分离物质的目的。例子浮选法的分离作用,主要取决于其组分在气-液界面上选择性和吸附程度。所使用捕集剂的主要成分是,表面活性剂和适量的起泡剂、络合剂、掩蔽剂等。
离子浮选法具有操作简单、能耗低、效率高和适应性广等特点。它适用于处理铀同位素生产和实验研究设施退役中产生的含有各种洗涤剂和去污剂的放射性废水,尤其是含有有机物的化学清洗剂的废水,以便充分利用该废水易于起泡的特点而达到回收金属离子和处理废水的目的。
膜处理作为一门新兴学科,正处于不断推广应用的阶段。它有可能成为处理放射性废水的一种高效、经济、可靠的方法。目前所采用的膜处理技术主要有:微滤、超滤、反渗透、电渗析、电化学离子交换、铁氧体吸附过滤膜分离等方法。与传统处理工艺相比,膜技术在处理低放射性废水时,具有出水水质好,浓缩倍数高,运行稳定可靠等诸多优点。
不同的膜技术由于去除机理不同,所适用的水质与现场条件也不尽相同。此外,由于对原水水质要求较高,一般需要预处理,故膜法处理法宜与其他方法联用。
如铁凝沉淀-超滤法,适用于处理含有能与碱生成金属氢氧化物的放射性离子的废水。
水溶性多聚物-膜过滤法,适用于处理含有能被水溶性聚合物选择吸附的放射性离子的废水。
化学预处理-微滤法,通过预处理可以大大提高微滤处理放射性废水的效果,且运行费用低,设备维护简单。
Ⅸ 核废水会蒸发进入大气层吗,有辐射的物质会不会随着雨水降下地表
会的,因为核废水里有重水,氚是氢的放射性同位素,普通水是H2O,重水是D2O。
它的化学性质和水差不多,最大区别就是辐射,所以会和水一样蒸发。
补充一下:氚的放射性不强,正常无法穿透皮肤,不过进入人体就不一样了,内照射还是有危害的。
Ⅹ 日本能不能把核废水丢到沙漠里
据日本共同社等多家日本媒体报道,日本政府基本决定将福岛第一核电站核污水净化后含有放射性物质氚的处理水以排放入太平洋的方式来处理。最快本月内将举行相关阁僚参加的会议最终敲定。该消息一出就引发外界对于日本福岛核废水排入海中风险的高度关注。福岛核电站废水真的只有排入太平洋这样一种处理方式吗?一旦排入大海是否将会引发毒害“整个太平洋”的灾难呢?
120余万吨核废水将排入太平洋?
近日,日本政府终于公开放风:将于本月内正式决定福岛核电厂内储存的约130万吨含放射性物质氚的核废水向大海投放的具体时间。也就是说,目前虽没有正式决定,但日本政府已经不再犹豫不决,计划于2022年开始向太平洋排出核废液。
《朝日新闻》17日称,日本政府今后将在听取反对海洋排放特别强烈的渔业团体等意见后,召开相关阁僚会议,进行最终判断。最早将于本月27日召开内阁会议进行最终决定。
所谓核污水,是指流入废堆的高污染废水。东京电力公司通过多核素去除装置(ALPS)处理后将水保存在储存罐中,蓄积的水达到120多万吨。由于地皮制约,现在东京电力公司可以新建储存罐的最大储量为137万吨。《读卖新闻》17日称,现在每天新增140吨污染水,东京电力公司估算到2022年9月将达到储存罐上限的137万吨。未来海洋排放将持续30年。
只有排入大海一种处理方案吗
日本为了降低核废水中的放射性物质,2015年开始,投入使用了一种名叫“多核素去除装置(ALPS)”的设备。原理概括地讲,就是利用特殊材料通过“吸附”“共沉淀预处理”等工艺,能够将锶、铯等60余种放射性物质浓度降至一定的标准值以内,但其中的放射性物质氚基本除不掉。因此,总体上依然达不到环境排放标准。
据联合国新闻网报道,日本此前设想的核污水处理方案包括排入大海、蒸发后排入大气、埋入地底以及在核电站内新建储水罐等,日本政府一委员会在今年2月发布报告称,“排入海洋或大气是最现实的选择”。
英国《金融时报》16日称,为日本政府提供建议的科学家考虑了一系列处理方案,包括将其蒸发到大气中或埋入地底。但将废水稀释然后排放到海洋中,被认为是最安全、最经济的方法。
果真除了向海洋排放别无其他方法可选了吗?有分析认为,站在东京电力的角度,确实没有地方可用,但站在日本政府的角度,福岛核电厂周边还有广阔的可利用空间,这里的一些地区核辐射量依然很高,至今被日本政府指定为“暂时不可居住地区”。如果在这里扩建新的储存点不仅条件具备,并且在处理过程中风险也是可控的。比如,核电站解体时间是大约30-40年,而且目前已经基本知道10年间核废水的增长量,处理方法也会不断改进。就是说,今后最多再建设4500-6000个储存罐,就可以全部容纳核废液,这些土地既然不能住人,何必让其荒废呢?尤其是放射性物质氚的半衰期约为13年,就是说在下一个10年,目前保存在福岛核电厂内的核废液的放射性将降低50%(20年以后再降25%……)。日本的研究机构可以充分利用这段宝贵的时间,开发新的放射性污水处理方法,也可以通过国际合作加速这一过程。
后续危害引发关注
今年8月的美国《科学》杂志刊文称,福岛核电站核污水处理罐中还含有多种放射性成分,需要更多关注将这些污水释放到海洋可能带来的潜在危险。
在这些放射性污水中,有一种同位素——氚备受关注。虽然在这些放射性污水中,氚的含量处于最高水平,但它并不容易被海洋动物和海底沉积物吸收。它是一种危害较小的放射性元素,这也是日本政府认为能排放污水的原因。
实际上,除了难以去除的氚之外,2018年科学家发现在处理后的污水中还存在一些放射性同位素,包括碳14、钴60和锶90。虽然这些同位素的含量远低于氚的含量,但它们在不同污水处理罐中的含量可能存在很大差异。
根据东京电力公司的估计,有超过70%处理后的放射性污水,还需要通过第二次处理减少其中的放射性同位素含量,才能满足释放到海洋的标准。和氚不同,它们需要更长的时间降解,并且它们很容易进入海洋沉积物,且与海洋生物如鱼类具有很强的亲和力。