导航:首页 > 污水知识 > 污水厂泵房设计计算

污水厂泵房设计计算

发布时间:2022-02-27 18:02:08

污水站一体化的泵站高度和扬程是怎么计算的

你好,很高兴为你解答。
泵站高度一般根据站内管道上翻时满足弯头长度即可,一般室外一层站房高度3.5米比较美观。
水泵扬程选择需要计算最远端沿程阻力

② 如何进行污水处理厂的高程计算及平面、高程布置

污水处理厂
平面布置及高程布置
一、污水处理厂的平面布置
污水处理厂的平面布置应包括:
处理构筑物的布置污水处理厂的主体是各种处理构筑物。作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。它们是污水处理厂设计不可缺少的组成部分。其建筑面积大小应按具体情况与条件而定。有可能时,可设立试验车间,以不断研究与改进污水处理方法。辅助建筑物的位置应根据方便、安全等原则确定。如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。化验室应远离机器间和污泥干化场,以保证良好的工作条件。办公室、化验室等均应与处理构筑物保持适当距离,并应位于处理构筑物的夏季主风向的上风向处。操作工人的值班室应尽量布置在使工人能够便于观察各处理构筑物运行情况的位置。
此外,处理厂内的道路应合理布置以方便运输;并应大力植树绿化以改善卫生条件。
应当指出:在工艺设计计算时,就应考虑它和平面布置的关系,而在进行平面布置时,也可根据情况调整构筑物的数目,修改工艺设计。
总平面布置图可根据污水厂的规模采用1∶200~1∶1000比例尺的地形图绘制,常用的比例尺为l:500。
图1为某甲市污水处理厂总平面布置图、主要处理构筑物有:机械除污物格栅井、曝气沉砂池、初次沉淀池与二次沉淀池(均设斜板)、鼓风式深水中层曝气池、消化池等及若干辅助建筑物。
该厂平面布置特点为:流线清楚,布置紧凑。鼓风机房和回流污泥泵房位于暖气池和二次沉淀池一侧,节约了管道与动力费用,便于操作管理。污泥消化系统构筑物靠近四氯化碳制造厂(即在处理厂西侧),使消化气、蒸气输送管较短。节约了基建投资。办公室。生活住房与处理构筑物、鼓风机房、泵房、消化池等保持一定距离,卫生条件与工作条件均较好。在管线布置上,尽量一管多用,如超越管、处理水出厂管都借道雨水管泄入附近水体,而剩余污泥、污泥水、各构筑物放空管等,又都与厂内污水管合并流人泵房集水井。但因受用地限制(厂东西两恻均为河浜),远期发展余地尚感不足。
图2为乙市污水厂的平面布置图,泵站设于厂外。主要构筑物有:格栅、曝气沉砂池、初次沉淀池、曝气池、二次沉淀池及回流污泥泵房等一些辅助建筑物。湿污泥池设于厂外便于农民运输之处。
该厂平面布置的特点是:布置整齐、紧凑。两期工程各自成系统,对设计与运行相互干扰较少。办公室等建筑物均位于常年主风向的上风向,且与处理构筑物有一定距离,卫生、工作条件较好。在污水流人初次沉淀池、曝气池与二次沉淀池时,先后经三次计量,为分析构筑物的运行情况创造了条件。利用构筑物本身的管渠设立超越管线,既节省了管道,运行又较灵活。
第二期工程预留地设在一期工程与厂前区之间,若二期工程改用别的工艺流程或另选池型时,在平面布置上将受一定限制。泵站与湿污泥池均设于厂外,管理不甚方便。此外,三次计量增加了水头损失。
二、污水处理厂的高程布置
污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。
污水处理厂的水流常依靠重力流动,以减少运行费用。为此,必须精确计算其水头损失(初步设计或扩初设计时,精度要求可较低)。水头损失包括:
(1)水流流过各处理构筑物的水头损失,包括从进池到出池的所有水头损失在内;在作初步设计时可按表1估算。
表1 处理构筑物的水头水损失
构筑物名称 水头损失(cm) 构筑物名称 水头损失(cm)
格栅 10~25 生物滤池(工作高度为2m时):
沉砂池 10~25
沉淀池: 平流
竖流
辐流 20~40 1)装有旋转式布水器 270~280
40~50 2)装有固定喷洒布水器 450~475
50~60 混合池或接触池 10~30
双层沉淀池 10~20 污泥干化场 200~350
曝气池:污水潜流入池 25~50
污水跌水入池 50~150

(2)水流流过连接前后两构筑物的管道(包括配水设备)的水头损失,包括沿程与局部水头损失。
(3)水流流过量水设备的水头损失。
水力计算时,应选择一条距离最长、水头损失最大的流程进行计算,并应适当留有余地;以使实际运行时能有一定的灵活性。
计算水头损失时,一般应以近期最大流量(或泵的最大出水量)作为构筑物和管渠的设计流量,计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。
设置终点泵站的污水处理厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以使处理后污水在洪水季节也能自流排出,而水泵需要的扬程则较小,运行费用也较低。但同时应考虑到构筑物的挖土深度不宜过大,以免土建投资过大和增加施工上的困难。还应考虑到因维修等原因需将池水放空而在高程上提出的要求。
在作高程布置时还应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。污泥干化场、污泥浓缩池(湿污泥池),消化池等构筑物高程的决定,应注意它们的污泥水能自动排人污水人流干管或其他构筑物的可能性。
在绘制总平面图的同时,应绘制污水与污泥的纵断面图或工艺流程图。绘制纵断面图时采用的比例尺:横向与总平面图同,纵向为1∶50-1∶100。
现以图2所示的乙市污水处理厂为例说明高程计算过程。该厂初次沉淀池和二次沉淀池均为方形,周边均匀出水,曝气池为四座方形池,表面机械曝气器充氧,完全混合型,也可按推流式吸附再生法运行。污水在入初沉池、曝气池和二沉池之前;分别设立了薄壁计量堰(、为矩形堰,堰宽0.7m,为梯形堰,底宽0.5m)。该厂设计流量如下:
近期 =174L/s 远期 =348L/s
=300L/s =600L/s
回流污泥量以污水量的100%计算。
各构筑物间连接管渠的水力计算见表2。
处理后的污水排人农田灌溉渠道以供农田灌溉,农田不需水时排人某江。由于某江水位远低于渠道水位,故构筑物高程受灌溉渠水位控制,计算时,以灌溉渠水位作为起点,逆流程向上推算各水面标高。考虑到二次沉淀池挖土太深时不利于施工,故排水总管的管底标高与灌溉渠中的设计水位平接(跌水0.8m)。
污水处理厂的设计地面高程为50.00m。
高程计算中,沟管的沿程水头损失按表2所定的坡度计算,局部水头损失按流速水头的倍数计算。堰上水头按有关堰流公式计算,沉淀池、曝气池集水槽系底,且为均匀集水,自由跌水出流,故按下列公式计算:
B= (1)
=1.25B (2)
式中Q--集水槽设计流量,为确保安全,常对设计流量再乘以1.2~1.5的安全系数();
B--集水槽宽(m);
h0--集水槽起端水深(m)。
高程计算:
高程(m)
灌溉渠道(点8)水位 49.25
排水总管(点7)水位
跌水0.8m 50.05
窨井6后水位
沿程损失=0.001×390 50.44
窨井6前水位
管顶平接,两端水位差0.05m 50.49
二次沉淀池出水井水位
沿程损失=0.0035×100=0.35m 50.84
二次沉淀池出水总渠起端水位
沿程损失=0.35-0.25=0.10m 50.94
二次沉淀池中水位
集水槽起端水深 =0.38m
自由跌落=0.10m
堰上水头(计算或查表)=0.02m
合计 0.50m 51.44
堰F3后水位
沿程损失=0.002810=0.03m
局部损失==0.28m
合计 0.31m 51.75
堰F3前水位
堰上水头=0.26m
自由跌落=0.15m
合计 0.41m 52.16
曝气池出水总渠起端水位
沿程损失=0.64-0.42=0.22m 52.38
曝气池中水位
集水槽中水位=0.26m 52.64
堰F2前水位
堰上水头=0.38m
自由跌落=0.20m
合计 0.58m 53.22
点3水位
沿程损失=0.62-0.54=0.08m
局部损失=5.85×=0.14m
合计 0.22m 53.44
初次沉淀池出水井(点2)水位
沿程损失=0.0024×27=0.07m
局部损失=2.46×=0.15m
合计 0.22m 53.66
初次沉淀池中水位
出水总渠沿程损失=0.35-0.25=0.10m
集水槽起端水深 =0.44m
自由跌落 =0.10m
堰上水头=0.03m
合计 0.67m 54.33
堰F1后水位
沿程损失=0.0028×11=0.04m
局部损失==0.28m
合计 0.32m 54.65
堰F1前水位
堰上水头=0.30m
自由跌落=0.15m
合计 0.45m 55.10
沉砂池起端水位
沿程损失=0.48-0.46=0.02m
沉砂池出口局部损失=0.05m
沉砂池中水头损失=0.20m
合计 0.27m 55.37
格栅前(A点)水位
过栅水头损失0.15m 55.52m
总水头损失 6.27m
上述计算中,沉淀池集水槽中的水头损失由堰上水头、自由跌落和槽起端水深三部分组成,见图3。计算结果表明:终点泵站应将污水提升至标高55.52m处才能满足流程的水力要求。根据计算结果绘制了流程图,见图4。

图3 集水槽水头损失计算示意
-堰上水头;-自由跌落;-集水槽起端水深;-总渠起端水深

图4 污水处理流程
污泥流程的高程计算以图1所示的甲市污水处理厂为例。该厂污泥处理流程为:
二次沉淀池--污水泵站--初次沉淀池--污泥投配(预热)池--污泥泵站--消化池--贮泥池--运泥船外运
高程计算顺序与污水流程同,即从控制性标高点开始计算。
甲市处理厂设计地面标高为4.2m,初次沉淀池水面标高为6.7m。二次沉淀池剩余活性污泥系利用厂内下水道排至污水泵站,计算从略。从初次沉淀池排出污泥的含水率为97%,污泥消化后经静澄、撤去上清液,其含水率为96%。初次沉淀池至污泥投配池的管道用铸铁管,长150m,管径300mm。设管内流速为15m/s,按式(3)

式中—输泥管道沿程压力损失(m)
L—输泥管道长度(m)
D—输泥管管径(m)
v—污泥流速(m/s)
—海森-威廉(Haren-Williams)系数,其值决定于污泥浓度,见下表:
污泥浓度(%) 值
0.0 100
2.0 81
4.0 61
6.0 45
8.5 32
10.1 25
可求得其水头损失为:
m
自由水头1.5m,则管道中心标高为:
6.7-(1.20+1.50)=4.0m
流入污泥投配池的管底标高为:
4.0-0.15=3.85m

图5 投配池及标高
污泥投配池的标高可据此确定,投配池及标高见图5。
消化池至贮泥池的各点标高受河水位的影响(即受河中运泥船高程的影响),故以此向上推算。设要求贮泥池排泥管管中心标高至少应为3.0m才能向运泥船排尽池中污泥,贮泥池有效深2.0m。已知消化池至贮泥池的铸铁管管径为200mm,管长70m,并设管内流速为1.5m/s,则根据式(1)可求得水头损失为1.20m,自由水头设为1.5m。又,消化池采用间歇式排泥运行方式,根据排泥量计算,一次排泥后池内泥面下降0.5m。则排泥结束时消化池内泥面标高至少应为:
3.0+2.0+0.1+1.2+1.5=7.8m
开始排泥时的泥面标高:
7.8+0.5=8.3m
式中0.1为管道半径,即贮泥池中泥面与入流管管底平。
应当注意的是:当采用在消化池内撇去上清液的运行方式时,此标高是撇去上清液后的泥面标高,而不是消化池正常运行时的池内泥面标高。
当需排除消化池中下面的污泥时,需用排泥泵排除。
据此绘制的污泥高程图见图8-5。

③ 泵房工艺管道安装工程量计算

泵房是安装水泵、电动机、水泵控制柜及其他辅助设备的建筑物,是水泵站工程的主体,其主要作用是为水泵机组、辅助设备及运行管理人员提供良好的工作条件。不同的泵房形式影响并决定泵站进、出水建筑物的形式及布置。合理设计泵房,对节约工程投资,延长设备使用寿命,保证安全和经济运行都有重要意义。

泵房的安装在整个水施工程中是重中之重,是一个安装公司在一个工程中的技术的体现所在地,同时也是系统的源头,因此,泵房的安装工艺就是一个公司在工程里的脸面,泵房的工艺做得好就是公司的标志。

2.常见的泵房介绍

给水泵房主要是给自来水加压用的,比方可以将水抽到水塔或者高层建筑的屋顶水箱。因为一般城市供水系统的水压只有3kg/cm2.所以高层房屋用水就需加压。保证高区用水压力满足使用要求。

消防泵房主要是担负消防供水任务的水泵房均称为消防水泵房。消防水泵房,按作用分为取水泵房、送水泵房和加压泵房;按使用目的分为生活、生产、消防合用泵房(如水厂内),生产、消防合用泵房(如工业企业内部),生活、消防合用泵房(如民用建筑物内)、独立的消防水泵房(如油罐区)。为了保证火灾时管道内达到灭火区域的压力要求,保证灭火功能。

污水泵房主要是将上游来水提升至后续处理单元所要求的高度,使其实现重力自流。它的工作特点是它所抽升的水是不干净的,一般含有大量的杂质,而且来水的流量随时都在变化。

3.泵房安装工艺流程图及质量控制

焊接管道安装泵房安装工艺流程图

安装前的土建施工环境要求:

1.安装区域土建的主体施工已完成,

2.安装区域垃圾或废弃物清理干净并有足够的加工制作空间,

3.柱子和楼板需装修的必须进行装修完成,

4.安全维护已经施工完成,保证施工安全,

5.运输路线已经施工完成,保证材料进场运输通畅,

6.临电、邻舍安装完成,保证施工用电要求,

7.设备基墩已浇筑完成。

安装前我们的技术准备或者方案准备

技术准备工作

技术准备是施工准备工作的核心。由于任何技术的差错或隐患都可能引起质量和人身安全事故,造成经济、财产和生命的巨大损失。因此必须认真地做好技术准备工作。具体内容如下:

(1)熟悉、审查施工图纸的依据

1)现场装饰工程施工图纸;

2)现场装饰工程施工现场实际状况;

3)施工验收规范和有关国家标准技术规定。

(2)熟悉、审查设计图纸的内容

1)审查设计图纸是否完整、齐全,设计图纸和资料是否符合国家相关规范和满足本项目要求;

2)认真熟悉审查设计图纸、有关的设计资料、设计依据、主体施工单位移交的相关资料、施工验收规范及有关技术规定

④ 某城市污水处理厂设计 急急急

模板
第一节 设计任务和内容
以一座二级处理的城市污水处理厂为对象,对主要污水处理构筑物的工艺尺寸,进行设计计算,确定污水厂的平面布置和高程布置。
完成设计计算说明书和设计图纸(污水厂平面布置图和污水厂高程布置图)。
设计深度一般为方案设计的深度。
第二节 基 本 资 料
1. 污水水量、水质
污水处理水量16万m3/d;
污水水质为:CODcr450mg/L,BOD5200 mg/L, SS250 mg/L,氨氮25mg/L。
2. 处理要求
污水经二级处理后应符合以下具体要求:
CODcr≤70mg/L, BOD5≤20mg/L, SS ≤30mg/L,氨氮≤12mg/L。
3. 处理工艺流程
原水→格栅→泵→沉砂池→初沉池→曝气池→二沉池→出水
4. 气象与水文资料
风向:多年主导风向为北北东风;
气温:最冷月平均为-3.5℃;
最热月平均为32.5℃;
极端气温,最高为41.9℃,最低为-17.6℃,最大冻土深度:0.18m;
水文:降水量,多年平均为每年728mm;
蒸发量,多年平均为每年1210mm;
地下水水位,地面下5-6m。
5. 厂区地形
污水厂选址区域海拔标高在64-66米之间,平均地面标高为64.5米。平均地面坡度为0.3-0.5‰,地势为西北高,东南低。
厂区征地面积为东西长380米,南北长280-300米。
污水进水管相对标高为-2.50米。

第二章 处理工艺流程说明
根据污水处理量、原污水水质、处理要求,污水厂主要去除CODcr,BOD5和SS,对氨氮也有一定的去除率,选择以好氧生物处理为主的二级处理工艺流程如下:
原水→格栅→泵→沉砂池→初沉池→曝气池→二沉池→出水
第一节 格 栅
格栅是用以去除废水中较大的悬浮物,漂浮物,纤维物质和固体颗粒物质,以保证后续处理单元的正常运行,减轻后续处理单元的处理负荷,防止阻塞排泥管道和设备。
按形状分为平面格栅和曲面格栅两种。按格栅栅条的净间隙,可分为粗格栅,中格栅和细格栅。按清楂方式可分为人工清楂和机械清楂两种。
本设计选用间隙b=20mm的中格栅,机械式平面清渣。
第二节 沉 砂 池
沉砂池的作用是从废水中分离密度比较大的无机颗粒,例如:直径为0.1mm,密度为2.5g/cm3以上的砂粒。目前常用沉砂池,按池型可分为平流式沉砂池,曝气沉砂池、多尔式沉砂池和钟式式沉砂池[1]。
本设计选用停留时间t=250s的曝气沉砂池。因为平流式沉砂池的主要缺点是沉砂中约夹有15%的有机物,使沉砂的后续处理难度加大,而曝气池就能克服这一缺点。曝气池的优点还有通过调节曝气量可以控制污水旋流速度,使除砂效率较稳定,受流量变化的影响较小,同时还起预曝气的作用,但其构造比平流式沉砂池复杂。
第三节 初 沉 池
初次沉淀池的作用是对污水中的以无机物为主的相对密度大的固体悬浮物进行沉淀分离。污水中的悬浮颗粒以重力为主,在初沉池中主要进行自由沉淀和絮凝沉淀。污水处理厂用沉淀池,按水流方向分平流式,辐流式,竖流式,斜流式四种。每种沉淀池都分为五个区,即进水区,沉淀区,缓冲区,污泥区和出水区。
此处选择表面负荷q=1.8的平流式沉淀池,其优点是沉淀效果好,对冲击负荷和温度变化的适应能力强,布置紧凑,排泥过程稳定,施工简易,已趋定型。缺点是配水不易均匀,如果采用多斗排泥时每个泥斗需单独设排泥管各自排泥,操作量大,因此多采用新型排泥方法与机械。
第四节 曝 气 池
曝气池,属于好氧生物处理单元,对污水中的(胶体和悬浮的)有机物作进一步的处理,COD、BOD、NH3-N的去除率一般为85%、90%、65%左右,可使出水达到二级要求。
曝气池按流动形态分主要有推流式,完全混合式和循环混合式三种。按平面形状方面可分为长方形廊道形,圆形,方形以及环状跑道形等四种。按采用的曝气方法可分为鼓风曝气池,机械曝气池以及两者混合使用的机械-鼓风曝气池。
此处选用传统活性污泥法,污泥负荷取0.2 kgBOD5/(kgMLSS•d),推流式廊道、鼓风曝气、形状为长方形。
第五节 二 沉 池
二沉池有别于其他沉淀池,首先在作用上有其特点。它除了进行泥水分离外,还进行污泥浓缩,并由于水量、水质的变化,还要暂时贮存污泥。由于二次沉淀池需要完成污泥浓缩的作用,所需要的池面积大于只进行泥水分离所需要的池面积。
其次,进入二次沉淀池的活性污泥混合液在性质上有其特点。活性污泥混合液的浓度高,具有絮凝性能,属于成层沉淀。
活性污泥的另一特点是质轻,易被出水带走,并容易产生二次流和异重流现象,使实际的过水断面远远小于设计的过水断面。
池型说明:分为平流、斜管、辐流、竖流四类,本设计选用中心进水周边出水辐流式二沉池。
第六节 消 毒 池
城市污水经一级处理或二级处理后,水质改善,细菌含量也大幅度减少,但其绝对值仍很可观,并有存在病原菌的可能,因此污水排放水体前应进行消毒,特别是医院、生物制品所及屠宰场等有致病菌污染的污水,更应严格消毒。
消毒设备应按连续工作设置,消毒设备的工作时间,消毒剂投加量,可根据所排放水体的卫生要求及季节条件掌握。
目前最常用的污水消毒剂是液氯。其优点是效果可靠,投配设备简单,投量准确,价格便宜。
第三章 污水处理构筑物设计计算
第一节 格 栅
1. 设计参数
处理设施数量:两组
设计流量为: ,
最大设计流量Qmax = KzQ
栅前水深h=1.0 m
过栅流速v=0.9m/s
栅条间隙b=0.02m
安装倾角α= 60°
1. 栅条的间隙数n
h=1.0 m ,v=0.9m/s, b=0.02m, α= 60°,n=2,
最大设计流量Qmax = KzQ =1.2×1.85/2 =1.11 m3/s

2. 栅槽宽度B
设栅条宽度S=0.01
B=(n-1)S+bn=(72-1)×0.01+0.02×72=2.15m
3. 进水渠道渐宽部分长度l1
设进水渠宽 ,其渐宽部分展开角度为 ,

4. 栅槽与出水渠道连接处的渐宽部分长度l2

5. 通过格栅的水头损失h1
设栅条断面为锐边矩形断面

6. 栅后槽总高度H
设栅前渠道的超高 ,
7. 栅槽总长度L

8. 每日栅渣量W
在格栅间隙20mm 的情况下,设栅渣量为每1000m3污水产生0.07m3.
,宜用机械清渣。

格栅计算简图如下:

第二节 曝气沉砂池
1. 参数的确定
处理设施数量:两组,n=2
设计流量为:

水力停留时间t=240s=250s ,水平流速v=0.1m/s,有效水深
含砂量X=0.05L/ =50 /1000000 ,
2. 池子总容积:
3. 水流断面积:
4. 池长:
5. 池宽: 池子总宽度为 , 池子分两格n=2,
每格池子宽度b=
6. 池高:池底坡度为0.2,超高 ,集砂槽高度 ,集砂槽宽度 ,池底斜面高度 ,全池总高:

7. 每格沉砂池实际进水断面面积:

8. 每格沉砂池沉砂斗容量:
9. 每格沉砂池实际沉砂量:每两天排一次砂,则:

10. 每小时所需空气量:取曝气管浸水深度为3.2m,查表得单位池长所需空气量为28 ,故q=28×24×(1+15%)×2=1545.6 /h,式中(1+15%)为考虑到进出口条件而增长的池长。

第三节 初 沉 池
1. 参数确定:
表面负荷 =1.8 ,
沉淀时间t=2.1h,
SS去除率η=55%,
设计流量
2. 沉淀池各部尺寸:
总有效沉淀面积 ,
采用四(8)座沉淀池, 每池处理量Q= ,
每池表面积A= ,
沉淀池有效水深 ,
每个池宽b取12m
池长:L=
长宽比 ,合格
3. 污泥区尺寸:
每日产生的污泥量 每日每座沉淀池的污泥量 ,
污泥斗容积:
式中污泥斗上口 ,污泥斗下底面积 ㎡,污泥斗为方斗,α=60°,故 ,则每个污泥斗的容积为
4. 沉淀池总高度
采用机械刮泥,缓冲层高 (含刮泥板),平底,故
0.3+3.78+0.6+10.4=15.08m
5. 沉淀池总长度
L=0.5+0.3+83.3=84.1m
式中 0.5为流入口至挡板距离,0.3为流出口至挡板的距离。
6. 放空管径
放空时间设为T=6h,则放空管 取d=360mm, 式中H为平均水深
7. 进出水措施
进水端采用穿孔花墙配水,出水端采用三角溢流堰

第四节 曝 气 池
一、 设计数据:
污泥负荷Ns = 0.30kgBOD5/(kgMLSS•d)
设计流量Q=16×104m3/d=1.86m3/s
二、 计算:
1. 污水处理程度的计算:
原污水的BOD值为200mg/L, 经初次沉淀池处理后BOD5按降低25%考虑,则进入曝气池的污水,其BOD5值(Sa)为: 。
计算去除率,对此,首先按下式计算处理水中非溶解性BOD5值 ,式中b为微生物自身氧化率,取0.09,Xa活性微生物在处理水中所占的比例,取0.4,Ce为处理水中悬浮固体浓度。
处理水中溶解性BOD5值为Se=20-5=15mg/L,
去除率
2. BOD-污泥负荷率的确定
拟定采用的BOD-污泥负荷率为0.3kgBOD5/(kgMLSS•d),但为稳妥需加以校核。
,式中
代入各值,计算得 ,
计算结果确定, 值取0.3是适宜的。
3. 确定混合液污泥浓度X
由基本资料得SVI值为120-150 mg/L,取120mg/L
计算确定混合液污泥浓度X,对此r=1.2,R=0.5,代入各值得:

4. 确定曝气池容积计算
曝气池容积按下式计算:
5. 确定曝气池各部位尺寸
设4组曝气池,每组容积为 ,
池深取4m,则每组曝气池的面积 ㎡,
池宽取4.5m,, 介于1-2之间,符合规定。
池长: ,符合规定。
设五廊道式曝气池,廊道长: ,
取超高0.5m,则,池总高度H=4+0.5=4.5m
在曝气池面对初沉池和二沉池的一侧各设横向配水渠道,并在1,2和3,4号沉淀池之间设置纵向中间配水渠道与横向配水渠道相连接。在两侧横向配水渠道上设进水口,每组曝气池共有5个进水口。
6. 曝气系统的设计与计算(本设计采用鼓风曝气系统)
1) 平均时需氧量的计算
由公式: 取 , , 代入各值,得:

2) 最大时需氧量的计算
查表得K=1.4,代入各值,得:

3) 每日去除的BOD5值

4) 去除每千克BOD的需氧量

5) 最大时需氧量与平均时需氧量之比

7. 供气量的计算
采用网状膜型中微孔空气扩散器,敷设于距池底0.2m处,淹没水深3.8m,
计算污水温度为30°C,
查表得水中溶解氧饱和度:
1) 空气扩散器出口处的绝对压力 按下式计算,即:

2) 空气离开曝气池面时,氧的百分比按下式计算,即:
式中EA是空气扩散器的氧转移效率,对网状膜型中微孔空气扩散器,取值12%。
3) 曝气池混合液中平均氧饱和度(按最不利的温度30°C考虑)按下式计算,即:

4) 换算为在20°C条件下,脱氧清水的充氧量,按下式计算,即:
取值α=0.82,β=0.95,C=2.0,ρ=1.0
代入各值,得:
相应的最大时需氧量为:

5) 曝气池平均时供气量,按下式计算,即:

6) 曝气池最大时供气量:
7) 去除每kgBOD5的供气量:
8) 每立方米污水的供气量:
9) 本系统的空气总量:除采用鼓风曝气外,本系统还采用空气在回流污泥井提升污泥,空气量按回流污泥量的6倍考虑,污泥回流比R取值60%,这样,提升回流污泥所需空气量为:
总需气量:36525+32000=68525
8. 空气管系统计算
在相邻的2个廊道的隔墙上设1根干管,共10根干管。每根干管上设5对配气竖管,每根干管上共10条配气竖管。全曝气池共设100条配气竖管。每根竖管的供气量为: ,曝气池的平面面积为:66.6×4.5×5×4=5994㎡。每个空气扩散器的服务面积按0.49㎡计,则所需空气扩散器的总数为: ,为安全计,本设计采用12300个空气扩散器,每个竖管上安设的空气扩散器的数目为: 个,每个空气扩散器的配气量为: 。
空气管道系统的总压力损失估算为:3kPa。网状膜空气扩散器的压力损失为5.88kPa,总压力损失为:5.88+3=8.88kPa。为安全计,设计取值10kPa。
9. 空压机的选定
空气扩散装置安曝气池池底0.2m处,因此,空压机所需压力为:P=(4-0.2+1)×9.8=47kPa
空压机供气量,最大时:36525+32000=68525
平均时:30186+32000=62186
根据所需压力及空气量,决定采用LG80型空压机15台,该型空压机风压50kPa,风量80 。正常条件下,13台工作,2台备用;高负荷时14台工作,1台备用。

第五节 二 沉 池
二沉池的池型是中心进水周边出水的辐流式沉淀池,其剖面图如下:

一、 参数的确定:
表面水力负荷q=1.2m3/(㎡•h),
二沉池个数n=4,
水力停留时间T=2.5h
二、 主要尺寸计算:
1. 池总表面积
2. 单池面积:
3. 池直径:
4. 沉淀部分有效水深
5. 沉淀部分有效容积: V=
6. 沉淀池底坡落差: 取池底底坡 i=0.05,则:

7. 沉淀池周边水深(有效)水深:
,满足规范要求6—12之间,
式中 为缓冲层高度,取0.5m;
为刮泥板高度,取0.5m
8. 沉淀池总高度: ,
式中 为沉淀池超高,取0.3m
为沉淀池中心斗高度,取1.73m。
三、 每池产生的污泥量
估计经过曝气池后污泥的SS去除率能达到80%,采用机械刮泥,所以污泥在斗内贮存时间约2h,并考虑到曝池回流比取最大值80%,则:

四、 贮泥斗贮泥量计算
泥斗容积用几何公式计算:
,
式中泥斗高

池底可贮存污泥的体积为:

共可贮存污泥的体积
>57.6 ,合要求。
五、 中心进水管的计算
单池设计流量: ,
中心进水管设计流量:

选用管径 ,
六、 进出水配水设施
进水采用进水管,进水竖井,稳流筒等设施;出水采用环形集水槽,以及出水溢流三角堰。
第六节 污泥处理
一、污泥处理工艺
典型的污泥处理工艺流程包括四个阶段。第一阶段为污泥浓缩,主要目的是使污泥初步减容,缩小后续处理构筑物的容积或设备容量,第二阶段为污泥消化,使污泥中的有机物分解,使污泥趋于稳定;第三阶段为污泥脱水,使污泥进一步减容,便于运输;第四阶段为污泥处置,采用某种适宜的途径,将最终的污泥予以消化处置。以上各阶段产生上清液或滤液其中含有大量的污泥物质,因而应送回污水处理系统中继续处理。

以上是典型的污泥址理工艺流程。但由于各地的条件不同,也可采用一些简化流程。
当污泥果用自然干化法脱水时,可果用以下工艺流程

二、污泥浓缩池
污泥浓缩主要有重力浓缩,气浮浓缩和离心浓缩三种工艺形式。国内目前以重力浓缩为主,但随着氧化沟、A2/0 等污在处理新工艺的不断增多,气浮浓缩和离心浓缩将会有较大的发展。在此选用重力浓缩。
1. 设计参数:
二沉池剩余污泥量:691.2m3/d
含水率99.2%,浓度7875mg/l
浓缩后含水率96%浓度3937mg/l
二座浓缩池固体通量Nwg=55Kg
2. 设计计算:
(1) 每座浓缩池面积
设计泥量Qw=
A=
(2) 浓缩池直径
D= =
(3) 浓缩池工作部分高度
取污泥浓缩时间T=14h。则浓缩池工作部分高度
h1= =
(4) 浓缩池高度
设池超高0.5m。缓冲层高0.3m
浓缩池总高:
H=h1+h2+h3=2.3+0.5+0.3=3.1m
(5) 浓缩后污泥总体积:
V2=

第四章 污水厂总体布置
一、厂址选择

在城镇总体规划中,污水厂的位置范围已有规定。但是,在污水厂的具体设计时,对具体厂址的选择,仍须进行深入的调查研究和详尽的技术经济比较。其一般原则如下:
(1)厂址与规划居住区或公共建筑群的卫生防护距离应根据当地具体情况,与有关环保部门协商确定,一般不小于300m 。
(2) 厂址应在城镇集中供在水源的下游,至少500m。
(3) 厂址应尽可能少占农田或不占良田.便于农田灌溉和消纳污泥。
(4) 厂址应尽可能设在城镇和工厂夏季主导风向的下方。
(5) 厂址应设在地形有适当坡度的城镇下游地区,使污水有自流的可能,以节约动力消耗。

二、平面布置及总平面图
污水处理厂的平面布置包括处理构筑物、办公、化验且其他辅助建筑物,以及各种管道、道路、绿化等的布置。根据处理厂的规模大小,采用l:200-1:50比例尺的地形图绘制总平面图,管道布置可单独绘制。
平面布置的一般原则如下:
(1)处理构筑物的布置应紧凑,节约用地且便于管理。
(2) 处理构筑物应尽可能地按流程的顺序布置,以避免管线迂回,同时应充分利用地型,以减少士方量。
(3) 经常有人工作的建筑物如办公、化验等用房应布置在夏季主风向的上风一方,在北方地区,并应考虑朝阳。
(4 )在布置总图时,应考虑安装充分的绿化地带。
(5) 总图布置应考虑远近期结合,有条件时,可按远景规划水量布置,将处理构筑物分为若干系列,分期建设。远景设施的安排应在设计中仔细考虑,除了满足远景处理能力的需要而增加的处理池以外,还应为改进出水水质的设施安排场址。
(6) 构筑物之间的距离应考虑敷设管渠的位置,运转管理的需要和施工的要求,一般采用5-10m.
(7) 污泥处理构筑物应恩可能布置成单独的组合,以策安全,并方便管理。污泥消化池应距初次沉淀池较近,以缩短污泥管线,但消化池与其他构筑物之间的距离不应小于20m。贮气罐与其他构筑物的间距则应根据容量大小按有关规定办理。

1、水厂面积为380m*280m,
平面图采用1:1000比例。所有构筑物应在厂区的范围内。

三、高程布置
在整个污水处理过程中,应尽可能使污水和污泥为重力流,但在多数情况下,往往须抽升。高程布置的一般规定如下:
(1)为了保证污水在各构筑物之间能顺利自流,必须精确计算各构筑物之间的水头损失,包括沿程损失、局部损失及构筑物本身的水头损失。此外,还应考虑污水厂扩建时预留的储备水头。
(2) 进行水力计算时,应选择距离最长,损失最大的流程,井按最大设计流量计算。当有二个以上并联运行的构筑物时,应考虑某构筑物发生故障时,其余构筑物须负担全部流量的情况。计算时还须考虑管内淤积,阻力增大的可能。因此,必须固有充分的余地,以防止水头不够而发生涌水现象。
(3) 污水厂的出水管渠高程,须不受水体洪水顶托,并能自由进行农田灌溉。
(4)各处理构筑物的水头损失(包括进出水渠的水头损失) .

⑤ 污水处理厂污水泵房设计,设计流量339m/s,过栅流速0.8m/s,进水管管径和充满度是多少,怎么算

设计流量339m/s?这个单位正确吗?
Q=AV,V是流速,A过水断面面积;
泵房设计Q应是给出的,专至于V流速根据室属外排水规范,选取一经济流速。算出圆管管径,然后取整。取整后查管径对应充满度,记得排水工程上就有相应数据。
也可直接查阅给排水手册,直接选用上面的管径和充满度。
对付毕业设计就可以了,想严格点还可以用管径核算流速。
提供个方法,具体计算还是自己去做吧。

⑥ 污水处理工艺设计需要使用哪些常用的计算软件

可完成工艺流程图、水处理构筑物的设计,材料自动汇总而且可实现图面材料与材料表的自动对应标注。管道、管件、阀类、设备等真实表示,针对不同构筑物特点,采用参数化绘制和工具集式绘制,达到设计的快速性和灵活性相结合。适用于规划院、工业院、市政院、环保公司等。鸿业水处理设计软件的CAD操作平台为美国AutoDesk公司的AutoCAD R2006~2009。软件特点1.参数化构筑物绘制配水井、沉淀池、污泥浓缩池、氧化沟等平面、剖面、详图 2.参数化和工具集相结合绘制AAO/SBR池 、CASS池、3.丰富构筑物设计工具、水处理设备、标注工具绘制污水泵房、脱水机房等 4.双线管道表示,真实尺寸表示三通、弯头、异径管 5.丰富的流程图建构筑物图库、设备库、阀类库6.标准化的构筑物计算书7.自动绘制材料表、设备表、图例表,自动标注编号 8.真实表示设备,动态拖动设备尺寸
流程图设计1.进行工艺流程图和水力剖面图的设计。丰富的构筑物和设备图块,可以满足设计人员快速完成图形绘制。2.流程图管线种类齐全,而且可以根据自己的需要任意添加。3.快速实现管道遮挡断线,快速标注构筑物特征点标高、管道直径、管道代号。4.自动绘制流程图图例表。

⑦ 污水处理构筑物的设计水面标高及池底标高怎样算出来

污水来处理构筑物的设自计水面标高及池底标高不是土建计算出来的,是给排水专业根据当地管网条件,确定进口污水泵站(粗格栅)的池底标高,根据选择的泵的扬程流量等指标和处理工艺依次确定后续构筑物的标高。并汇总总图专业平衡土方等指标。
污水处理 (sewage treatment,wastewater treatment):为使污水达到排水某一水体或再次使用的水质要求对其进行净化的过程。污水处理被广泛应用于建筑、农业,交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活。

⑧ 请教这个市政污水泵站的扬程该如何计算

扬程(水头)——水泵对单位重量

(1kg)液体所做的功,也即单位重量液体通过水泵后其能量的增值。以字母H表示,常用液柱高度m表示。

其它单位:Pa (kPa)、atm(1个工程大气压)

1atm=98.0665 kPa ≈0.1 MPa

扬程计算为H=E2-E1

水泵扬程H=z+hw z是扬水高度即入口处水面到出口处水面的高程差。hw是水头损失,包括沿程水头损失hf和局部水头损失hw hf的计算用达西公式或谢才公式,

hw=&*v^2/2g,&叫做局部水头损失系数,要查相关文献,v就是管中的流速,一般来说,hw发生在入口,弯折,阀门,出口等地方。

水泵扬程是水泵的重要工作能参数,对于业内人士来说,水泵扬程计算公式是十分常用的技术资料。

扬程通常是指水泵所能够扬水的最高度,用H表示。最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1 。

其中, H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。

通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。

按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):
Hmax=△P1+△P2+0.05L (1+K)

△P1为冷水机组蒸发器的水压降。

△P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。

L为该最不利环路的管长

K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6。

⑨ 居民小区污水处理厂设计中,污水提升泵的工程量怎样计算

包括出水提升泵房、电气、污水管道及设备安装工程

阅读全文

与污水厂泵房设计计算相关的资料

热点内容
喝核废水有多少辐射量 浏览:406
上海众杰过滤器材有限公司怎么样 浏览:873
柠檬酸除垢剂治疗结石 浏览:228
工厂污水处理设备有哪些 浏览:117
互联网和空气净化器怎么相处 浏览:747
过滤后水垢很多 浏览:473
什么牌子的超滤净水器好多少钱 浏览:792
蕊园滤芯怎么样 浏览:475
米家空气净化器滤网怎么清理 浏览:712
污水泵站运行安全 浏览:32
ro膜和超滤膜的tds 浏览:414
生活用水过滤器 浏览:974
家里什么位置适合放饮水机 浏览:953
钢结构屋面防水处理办法 浏览:953
丰田奕泽cHr空气滤芯怎么换 浏览:982
空气过滤棉海关编码 浏览:318
污水处理项目属于什么项目工程 浏览:1
蚯蚓加工的污水怎么处理 浏览:268
湖北公共场所用净水机哪个好 浏览:492
高分子吸水树脂如何展示 浏览:65