Ⅰ 如何去除污水中的重金属离子
湛清环保研发第三代重金属捕捉剂,能够去除多种重金属离子,反应生成不溶水的螯合沉淀,适用于酸碱废水,出水稳定达到国家排放标准,很不错。
Ⅱ 工业废水中金属离子的去除方法
1化学沉淀
化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。
中和沉淀法
在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点:
(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;
(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀;
(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理;
(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。
硫化物沉淀法
加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法。
与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH值在7—9之间,处理后的废水不用中和。硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题。
2氧化还原处理
化学还原法
电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等。
应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点。
铁氧体法
铁氧体技术是根据生产铁氧体的原理发展起来的。在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH值至8左右,使Fe离子和Cr离子产生氢氧化物沉淀。通入空气搅拌并加入氢氧化物不断反应,形成铬铁氧体。其典型工艺有间歇式和连续式。铁氧体法形成的污泥化学稳定性高,易于固液分离和脱水。铁氧体法除能处理含Cr废水外,特别适用于含重金属离子种类较多的电镀混合废水。我国应用铁氧体法已经有几十年历史,处理后的废水能达到排放标准,在国内电镀工业中应用较多。
铁氧体法具有设备简单、投资少、操作简便、不产生二次污染等优点。但在形成铁氧体过程中需要加热(约70oC),能耗较高,处理后盐度高,而且有不能处理含Hg和络合物废水的缺点。
电解法
电解法处理含Cr废水在我国已经有二十多年的历史,具有去除率高、无二次污染、所沉淀的重金属可回收利用等优点。大约有30多种废水溶液中的金属离子可进行电沉积。电解法是一种比较成熟的处理技术,能减少污泥的生成量,且能回收Cu、Ag、Cd等金属,已应用于废水的治理。不过电解法成本比较高,一般经浓缩后再电解经济效益较好。
近年来,电解法迅速发展,并对铁屑内电解进行了深入研究,利用铁屑内电解原理研制的动态废水处理装置对重金属离子有很好的去除效果。
另外,高压脉冲电凝系统()为当今世界新一代电化学水处理设备,对表面处理、涂装废水以及电镀混合废水中的Cr、Zn、Ni、Cu、Cd、CN-等污染物有显著的治理效果。高压脉冲电凝法比传统电解法电流效率提高20%—30%;电解时间缩短30%—40%;节省电能达到30%—40%;污泥产生量少;对重金属去除率可达96%一99%。
3溶剂萃取分离
溶剂萃取法是分离和净化物质常用的方法。由于液一液接触,可连续操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。
4吸附法
吸附法是利用吸附剂的独特结构去除重金属离子的一种有效方法。利用吸附法处理电镀重金属废水的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等。活性炭装备简单,在废水治理中应用广泛,但活性炭再生效率低,处理水质很难达到回用要求,一般用于电镀废水的预处理。腐植酸类物质是比较廉价的吸附剂,把腐植酸做成腐植酸树脂用以处理含Cr、含Ni废水已有成功经验。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准。另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr6+的去除率达到99%,出水中Cr6+含量低于国家排放标准,具有实际应用前暑。
5膜分离法
膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等。用电渗析法处理电镀工业废水,处理后废水组成不变,有利于回槽使用。含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备。反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理。采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环。液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进入到初步工业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中。膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展。
6离子交换法
离子交换处理法是利用离子交换剂分离废水中有害物质的方法,应用的离子交换剂有离子交换树脂、沸石等等,离子交换树脂有凝胶型和大孔型。前者有选择性,后者制造复杂、成本高、再生剂耗量大,因而在应用上受到很大限制。离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的。推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力,多数情况下离子是先被吸附,再被交换,离子交换剂具有吸附、交换双重作用。这种材料的应用越来越多,如膨润土,它是以蒙脱石为主要成分的粘土,具有吸水膨胀性好、比表面积大、较强的吸附能力和离子交换能力,若经改良后其吸附及离子交换的能力更强。但是却较难再生,天然沸石在对重金属废水的处理方面比膨润土具有更大的优点:沸石是含网架结构的铝硅酸盐矿物,其内部多孔,比表面积大,具有独特的吸附和离子交换能力。研究表明,沸石从废水中去除重金属离子的机理,多数情况下是吸附和离子交换双重作用,随流速增加,离子交换将取代吸附作用占主要地位。若用NaCl对天然沸石进行预处理可提高吸附和离子交换能力。通过吸附和离子交换再生过程,废水中重金属离子浓度可浓缩提高30倍。沸石去除铜,在NaCl再生过程中,去除率达97%以上,可多次吸附交换,再生循环,而且对铜的去除率并不降低。
三、生物处理技术
由于传统治理方法有成本高、操作复杂、对于大流量低浓度的有害污染难处理等缺点,经过多年的探索和研究,生物治理技术日益受到人们的重视。随着耐重金属毒性微生物的研究进展,采用生物技术处理电镀重金属废水呈现蓬勃发展势头,根据生物去除重金属离子的机理不同可分为生物絮凝法、生物吸附法、生物化学法以及植物修复法。
1生物絮凝法
生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物。一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀。至目前为止,对重金属有絮凝作用的约有十几个品种,生物絮凝剂中的氨基和羟基可与Cu2+、Hg2+、Ag+、Au2+等重金属离子形成稳定的鳌合物而沉淀下来。应用微生物絮凝法处理废水安全方便无毒、不产生二次污染、絮凝效果好,且生长快、易于实现工业化等特点。此外,微生物可以通过遗传工程、驯化或构造出具有特殊功能的菌株。因而微生物絮凝法具有广阔的应用前景。
2生物吸附法
生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法。利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除。生物吸附剂具有来源广、价格低、吸附能力强、易于分离回收重金属等特点,已经被广泛应用。
3生物化学法
生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。硫酸盐生物还原法是一种典型生物化学法。该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,废水中的重金属离子可以和所产生的H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2SO4的还原作用可将SO42-转化为S2-而使废水的pH值升高。因许多重金属离子氢氧化物的离子积很小而沉淀。有关研究表明,生物化学法处理含Cr6+浓度为30—40mg/L的废水去除率可达99.67%—99.97%。有人还利用家畜粪便厌氧消化污泥进行矿山酸性废水重金属离子的处理,结果表明该方法能有效去除废水中的重金属。赵晓红等人用脱硫肠杆菌(SRV)去除电镀废水中的铜离子,在铜质量浓度为246.8mg/L的溶液,当pH为4.0时,去除率达99.12%。
4植物修复法
植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量,以达到治理污染、修复环境的目的。植物修复法是利用生态工程治理环境的一种有效方法,它是生物技术处理企业废水的一种延伸。利用植物处理重金属,主要有三部分组成:
(1)利用金属积累植物或超积累植物从废水中吸取、沉淀或富集有毒金属;
(2)利用金属积累植物或超积累植物降低有毒金属活性,从而可减少重金属被淋滤到地下或通过空气载体扩散:
(3)利用金属积累植物或超积累植物将土壤中或水中的重金属萃取出来,富集并输送到植物根部可收割部分和植物地上枝条部分。通过收获或移去已积累和富集了重金属植物的枝条,降低土壤或水体中的重金属浓度。在植物修复技术中能利用的植物有藻类、草本植物、木本植物等。
藻类净化重金属废水的能力,主要表现在对重金属具有很强的吸附力,利用藻类去除重金属离子的研究已有大量报道。褐藻对Au的吸收量达400mg/g,在一定条件下绿藻对Cu、Pb、La、Cd、Hg等重金属离子的去除率达80%—90%,马尾藻、鼠尾藻对重金属的吸附虽然不及绿海藻,但仍具有较好的去除能力。
草本植物净化重金属废水的应用已有很多报道。凤眼莲是国际上公认和常用的一种治理污染的水生漂浮植物,它具有生长迅速,既能耐低温、又能耐高温的特点,能迅速、大量地富集废水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多种重金属。有关研究发现凤眼莲对钴和锌的吸收率分别高达97%和80%。此外,还有很多草本植物具有净化作用,如喜莲子草、水龙、刺苦草、浮萍、印度芥菜等。
木本植物具有处理量大、净化效果好、受气候影响小、不易造成二次污染等等优点,受到人们广泛关注。同时对土壤中Cd、Hg等有较强的吸附积累作用,由胡焕斌等试验结果表明:芦苇和池杉对重金属Pb和Cd都有较强富集能力。
Ⅲ 重金属去除方法
重金属废水通常是包括大量难以降解的金属离子。
其中如锌、铁、铜、铅等等,还有包括汞、铅、砷、镉、铬等重金属离子是带有毒性的。会使得废水水质、与土壤中存在大量重金属离子。
这些重金属离子会随着转移到动植物体内,再转入人体体内或直接通过影响水源使人体内重金属含量过高,造成重金属中毒。
重金属废水的处理方法有生物处理法,物理处理法与化学混凝沉淀法几种。
随着污水重金属离子排放标准的提高,靠单一一种方法无法彻底将重金属离子去除。
如今比较常用的是生物法+化学沉淀法相结合对重金属进行去除。
其中化学沉淀法又分为碱剂中和混凝、硫酸亚铁或聚合硫酸铁等混凝剂混凝与氧化还原法、以及重金属螯合剂等等。
化学沉淀法去除重金属离子
1)加碱剂中和混凝法,通过投加片碱、复合碱等pH中和剂进行调节,使同种重金属离子废水达到该重金属的沉淀pH值,或对含有多种金属离子的废水进行分段pH值调节,形成沉淀污泥。
再通过气浮刮泥或沉淀排泥去除水中重金属离子。
2)硫酸亚铁或聚合硫酸铁等混凝法,通过投加硫酸亚铁、聚合硫酸铁、PAM等混凝剂。
通过混凝沉淀作用,将水中悬浮的金属盐物质进行吸附混凝沉淀处理。
3)氧化还原法,如以硫化碱、硫酸亚铁等混凝剂都具有很强的氧化还原性。
将硫酸亚铁投加入废水中水解后Cr6+还原成微毒的Cr3+(硫酸亚铁与焦亚处理六价铬对比),再通过投加聚丙烯酰胺等助凝剂将其快速反应形成Cr(OH)3沉淀并进行分离。
4)混凝破络法,这种方法主要针对含络合物的重金属废水而使用的。
这种废水中的重金属处理工艺多采用进水→调碱→破络(加硫化钠+硫酸亚铁)→混凝(硫酸亚铁)→沉淀→出水/深度处理/回收。利用破络剂溶解破络,再通过强混凝絮凝剂与水中金属离子反应产生沉淀,可以将废水中的重金属离子通过混凝去除。
5)还有另外一种更方便、快捷的方式,即选择重金属螯合剂,可适用多个行业的重金属离子处理。
主要是向重金属废水中投加化学药剂,通过线性螯合沉淀,使溶解状态的重金属生成沉淀而去除的方法。
重金属螯合剂可直接投加在污水中,操作简单,去除范围广,经济实用,是目前应用较为广泛的处理重金属废水的方法。
Ⅳ 污水中的重金属离子去除方法有哪些
通过用活性炭跟其他过滤设备多次过滤才可以去除重金属离子,一般的污水处理厂多数都是用过滤法祛除金属离子的
Ⅳ 有哪些方法可以去除污水中的重金属污染物
目前已开发应用的去除废水中重金属的方法主要有化学法、物理化学法和生物法,包括化学沉淀、电解、离子交换、膜分离、活性碳和硅胶吸附、生物絮凝、生物吸附、植物整治等方法。采用化学法、物理化学法都将残生污染转移,易造成二次污染,且对于大流域、低浓度的有害重金属污染难以处理。而生物法具有效果好、投资少及运作费用低、易于管理和操作、不产生二次污染等优点,日益受到人们的关注。
1 化学法
化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理。
2 物理化学法
离子交换法和膜分离技术适用于含较低浓度重金属离子废水的处理。
3 生物法
3.1 生物絮凝法
生物絮凝法是利用微生物或微生物产生的代谢物,进行絮凝沉淀的一种除污方法。
3.2 生物吸附法
生物吸附是对于经过一系列生物化学作用使重金属离子被微生物细胞吸附的概括理解,这些作用包括络合、鳌合、离子交换、吸附等。
3.3 植物整治技术
植物对重金属的吸收富集机理,主要为两个方面:一是利用植物发达的根系对重金属废水的吸收过滤作用,达到对重金属的富集和积累。二是利用微生物的活性原则和重金属与微生物的亲和作用,把重金属转化为较低毒性的产物。通过收获或移去已积累和富集了重金属的植物的枝条,降低土壤或水体中的重金属浓度,达到治理污染、修复环境的目的。
Ⅵ 污水处理重金属怎么去除
含重金属离子的废水中多为络合体系,常规的处理方法有投加硫酸亚铁,但不能将其去除到专1mg/L以下,重金属的排放属标准为0.5~0.1mg/L,因此本文提供一种深度去除的方法,以达到废水的处理需求。
RECY-DAM-02型重金属去除剂属固体高分子有机螯合物,能在常温和很宽的pH值条件范围内,与废水中的Cu、Cd、Hg、Pb、Mn、Ni、Zn、Cr等各种重金属离子进行螯合反应形成不溶性沉淀物,具有络合能力强、反应迅速、添加量少、不对水体造成二次污染的特点,广泛应用于电镀、线路板、矿产等行业废水中重金属离子的去除。
实验步骤:向含重金属的废水中投加100~500ppm的RECY-DAM-02型重金属去除剂;搅拌反应5分钟。
注:重金属去除剂RECY-DAM-02乳剂详细参数需在网上查询
Ⅶ 重金属工业废水处理技术有哪几种
重金属废水是指矿冶、机械制造、化工、电子、仪表等工业生产过程中排出的含重金属的废水。重金属(如含镉、镍、汞、锌等)废水是对一环境污染最严重和对人类危害最大的工业废水之一,其水质水量与生产工艺有关。废水中的重金属一般不能分解破坏,只能转移其存在位置和转变其物化形态。水体的重金属污染已经成为当今世界最严重的环境之一。
目前重金属废水处理常用的技术有:①化学法:化学沉淀法,氧化还原法,溶剂萃取分离;②物理化学法:离子交换法,吸附法,膜分离技术;③生物法:植物修复法,生物絮凝法,生物吸附法。由于传统化学、物理治理方法有成本高、操作复杂、效果不稳定等缺点,生物治理技术在处理含重金属离子的废水中,因其成本低、效率高的优点日益受到人们的重视。
1 植物修复法
植物修复是一种利用自然生长的植物或者遗传工程培育植物修复重金属污染环境的技术总称。植物去除重金属污染的修复类型有四种:植物吸收、植物挥发、植物吸附和植物稳定。利用植物通过吸收、沉淀、富集等作用提取、分解、吸收、转化或固定地表水、地下水中的重金属,降低其重金属含量,以达到治理污染,修复环境的目的。在植物修复技术中能用到的植物有传统作物和水生植物等。渠荣遴等在对低浓度含重金属废水的植物修复作用研究中对比讨论玉米、向日葵、蓖麻种苗对水体中锌、铜的去除效果,发现选择传统作物种苗进行低浓度含重金属废水的植物修复具有良好的修复前景,如在Cu 浓度为10 mg/L 时,向日葵茎中Cu 的积累可达到1.90 mg/g 干重、玉米茎中Cu 的积累可达到1.17 mg/g 干重;在Zn 浓度为100 mg/L 时,向日葵茎中Zn 的积累可达到7.88 mg/g 干重、蓖麻茎中Zn 的积累可达到7.08mg/g 干重。王谦等在综述利用大型水生植物植物修复重金属水体的研究进展中,对几种生活型水生植物(挺水、漂浮、浮叶和沉水)在重金属污染水体中对重金属的蓄积效果对比分析可以看出大型水生植物对重金属污染有着很好的去除效果。用植物修复技术处理重金属废水的优点是成本低,不会造成二次污染,且可以利用组织培养技术、基因工程技术对植物进行筛选、培育,使其对重金属污染具有良好的蓄积、去除能力,但其也有一定的局限性,植物会受季节、植物培养周期和植物具有选择性的限制。
Ⅷ 重金属废水的去除方法有哪些
重金抄属离子一般采用沉淀的方袭法去除,有碱性沉淀法、硫化物沉淀法、螯合沉淀法等;
一般重金属废水中会含有络合剂,碱性沉淀和硫化物沉淀不容易去除,因为络合剂会与重金属离子生成稳定的络合剂,在碱性条件下不容易沉淀,一般需要破络反应,在将其沉淀;
但是成本较大,能耗较高,一般采用重捕剂螯合沉淀的作用将重金属去除掉,例如:HMC-M1就是很好的重金属捕集剂,去除重金属的效果强劲,适用PH范围较广,生成不溶于水的螯合沉淀。
Ⅸ 含重金属废水处理的处理方法
含重金属废水处理使用膜处理技术:
其中纳滤可以浓缩废水中金属离子、盐类等,反渗透可以膜截留金属离子和有机添加剂,而让水分子透过膜,而达到分离、浓缩目的。
含重金属废水进入处理系统,根据需要,经过复合试剂预处理,减少其它离子对膜系统的影响,之后通过纳滤膜、反渗透膜实现物料分离、浓缩。
本系统设置多套纳滤装置,既可以辅助实现浓缩倍数的要求,也可以切换实现出水重金属离子实现达标排放的要求。
重金属废水来源及其处理原则:
重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。废水中重金属的种类、含量及存在形态随不同生产企业而异。由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态。
例如,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,重金属废水处理原则是:首先,最根本的是改革生产工艺.不用或少用毒性大的重金属。其次是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。