㈠ 热电厂污染有什么成分
大气污染物主要有:二氧化硫、烟尘、氮氧化物、一氧化碳
水染回污物主要有两类:一类答是生活污水,主要是COD、BOD、氨氮、磷化物、悬浮物等;二类是生产废水,又包括冷却水更新出水和锅炉制水排放的废水,主要是矿物质和酸碱物质及高温度废水(热污染)
固体废物就是粉煤灰及生活垃圾了。
㈡ 火电厂废水的检测项目有哪些
按照《火电厂环境监测技术规范》(DL414-91),对不同种类废水有不同要求。
比如对脱硫废水、冲灰水、敏感点(地下水)等要求是不同的。
㈢ 火电厂的废水是怎样产生的
大型热电厂典型的废水来源主要有来自化学水处理车间的酸碱废水、电除尘器冲灰内系统产生的冲灰水、容锅炉房冲渣废水、锅炉定期排污水、循环水系统的排污水、输煤系统冲洗水、油库产生的含油废水和厂区生活污水等。废水中的主要污染物为悬浮物、石油类以及少量的有机物
㈣ 电厂有哪些废水
我所接触过的热电厂污水主要有以下几种
1、冲洗水和冲专灰水。
2、生活污水
3、循环水浓属水
4、树脂再生废水
冲洗水中主要含有油类、悬浮物等。
循环水的浓水含有阻垢剂、杀菌剂、硬度
以上两种水其实也算不上什么污染,但是要回用肯定要处理后才行。
生活污水比较少
树脂再生废水是典型的酸碱废水,可以现进行酸碱中和,然后投药中和。可以用来冲灰。
其他的废水我就没接触过了,其实电厂的废水与其说是防止污染不如说是如何处理后加以利用的问题。
总的来说电厂的水还是污染比较小的。但是循环冷却水确实用水大户。所以现在一般用市政污水处理厂的二级出水,经过深度处理后作为循环水补水来用。
㈤ 电厂脱硫废水特点有哪些
电厂脱硫废水由于其高浊度、高硬度,高含盐量、污染物种类多,且不同内电厂水质容波动大等特点,因此电厂脱硫废水处理成为燃煤电厂中成分最为复杂、处理难度最大的工业废水。
电厂脱硫废水具体特点:
1、含盐量高。
2、悬浮物含量高。
3、硬度高导致易结垢。
4、腐蚀性强。
5、水质随时间和工况不同而变化。
㈥ 电厂化学水处理
1 化学废水集中处理现状
电厂的化学废水有经常性废水和非经常性废水两部分,2×600 MW机组的废水排放量如表1所示。
表1 化学废水排放量
500)this.style.width=500;" onmousewheel="return bbimg(this)">screen.width-333)this.width=screen.width-333" border=0>
由表1可知全厂废水排放量约为经常性:(24+80)t/h(连续),非经常性:22000 t/a(平均)
1.1 废水处理主要流程
化学废水→废水贮存槽→氧化槽→反应槽→pH调整槽→混合槽→凝聚澄清池→清净水槽(水质监控)→煤灰用水系统。
澄清池底部排泥经浓缩池浓缩后送至泥渣脱水机脱水,泥饼用汽车运到干灰场贮存。清水返回废水贮存池。
1.2 存在问题
1.2.1 容量方面
上述流程将锅炉酸洗废水、锅炉排污水、锅炉补给水处理系统所排废水、凝结水精处理系统废水等全厂所有化学废水,都集中至化学废水集中处理站处理。这样,集中处理系统的容量大、占地多、造价高。
1.2.2 处理设施方面
传统的贮存槽主要是贮存废水,兼有部分粗调功能。但废水的氧化、反应、pH调整和混合,分别在氧化槽、反应槽、pH调整槽和混合槽中进行。这些槽上设有各种搅拌、加酸、加碱设施,且池内防腐、池上盖房(或棚)。这样,废水处理系统流程复杂、处理设施繁多、投资大、运行管理不便。
1.3 主要设备及其技术数据
废水贮存槽:V=1 000 m3 6座
氧化槽、反应槽、pH调整槽、混合槽:V=600 m 31套
澄清池:Q=100m3/h 2座
浓缩池:Q=20m3/h 1座
脱水机:Q=10m3/h 2台
清净水槽:8 m×6m×3m 2座
废水贮存池用排水泵: H=0.23MPa,Q=50m3/h 12台
药品储存、计量系统设备:1套
2 简化后的化学废水集中处理系统
2.1 处理系统主要流程
化学废水→废水贮存槽A→废水贮存槽(该槽兼有贮存、氧化、反应、pH调整和混合五种功能)→凝聚澄清池→清净水槽(水质监控)→煤灰用水系统。
澄清池底部排泥处理方法与传统方式相同。
2.2 优点
2.2.1 容量方面
锅炉补给水处理系统和凝结水处理系统的反冲洗水,主要是悬浮物不合乎排放标准,将其直接排入工业下水道,由工业废水处理系统处理。
锅炉补给水处理系统和凝结水处理系统的再生废水,主要是pH值不合乎排放标准,此部分水就地调pH值排放。如将此部分水用泵送入化学废水集中处理站,处理方法仍是调pH值。
锅炉酸洗废水、锅炉排污水等化学废水,因其量大、悬浮物高、pH值也不符合排放标准要求,就地处理困难大,故集中起来处理较方便。
循环水弱酸处理站废水,含有硫酸钙易沉物,虽然目前环保对排水的含盐量没有限制,但悬浮物超标不能排;另外,如只将此水就地调pH值,而不去除其中的硫酸钙就排入自流下水道,长此以往,有污堵下水道的隐患。这部分废水进行集中处理。通过以上划分,系统的容量可大大减小。设计流量由100 m3/h降至80 m3/h。
2.2.2 处理设施方面
取掉了传统废水处理流程中的氧化槽、反应槽、pH调整槽和混合槽五种设施,以及五种设施上的各种配套设备、管道和厂房(或棚)。虽然取消了五种设施,但这五种设施的处理功能并没取消,而是在废水贮槽B中进行,因为传统的贮存槽本身具有粗调水质的功能,现将其转换成细调功能即行。
2.2.3 废水贮存槽方面
传统工艺的废水储存槽有1000 m3的池子6座。每座都设有2台耐腐蚀输送泵、加药管道、空气搅拌管道、检测装置等。
系统简化后贮存槽总容量从6000m3缩小为 m3,且分为A型和B型。废水贮存槽A只有1座3000 m3的池子,废水贮存槽B有2座1000m3的池子。
废水贮存槽A,用来储存废水,并输送废水到废水贮存槽B,没有调整废水水质的功能;这座池上只设有2台输送泵和空气搅拌管道,没有加药管道和检测装置。
2座废水贮存槽B,开始用来储存废水,储满后一池用来调整(氧化、反应、pH调整和混合)废水,另一池输送已调整好的废水至澄清池,两池倒换使用;这两池上各设有输送泵、加药管道、空气搅拌管道和检测装置。
2.3 主要设备及其技术数据
废水贮存槽A:V=3 000 m3 1座
废水贮存槽B:V=1 000 m3 2座
澄清池:Q=80 m3/h 2座
浓缩池:Q=15 m3/h 1座
脱水机:Q=10 m3/h 2台
清净水槽:6 m×6 m×3 m 2座
废水贮存池用排水泵:H=0.23 MPa、Q=40 m3/h 6台
药品储存、计量系统设备: 1套
3 两种处理方案的主要经济指标比较
详见表2。
表2 两种处理方案的主要经济指标
500)this.style.width=500;" onmousewheel="return bbimg(this)">screen.width-333)this.width=screen.width-333" border=0>
㈦ 如何调试热电厂废水处理
热电厂废水主要是洗煤的污水,加药后的排污水,先沉淀,后中和,
㈧ 电厂是如何处理废水的
火电企业的复废水主要包括循环制冷却水浓缩液和锅炉纯水制取后的浓水。回收后的废水用于除灰、渣或经处理后回用。
另外,通过二级预处理+蒸发结晶末端废水处理工艺,实现了废水污泥与结晶盐资源化综合利用。
㈨ 火电厂用石灰石脱硫脱硝时对粉煤灰有何影响
摘要: 火力发电厂的脱硫,为什么一定要用石灰石作为脱硫剂?火力发电厂排出的粉煤灰浆,无用,有害,量大,且多。酸碱度一般在8.5-13左右。为什么不能将其碱性应用于脱硫呢? 按照中等偏下原则计算粉煤灰浆中的脱硫物质。粉煤灰浆中的脱硫物质,是燃煤含硫量3%情况下的4倍多。足以用于脱硫。 不仅有价值,而且完全有必要,将粉煤灰浆应用于火力发电厂的脱硫。运用高、精、尖技术的最新烟气微分处理工艺,不仅能够将粉煤灰浆与二氧化硫充分有效混合,而且能够降低传统脱硫塔50%以上高度。也就是说,能够大为减少占地面积和占用空间。根据已经成功的十多个工业应用业绩进行计算,能够实际应用于火力发电厂的高效除尘脱硫装置,其除尘、脱硫效率,一般在99.9999%左右。也就是说,完全可以节省掉静电除尘这一部分。针对国内、外燃煤电厂锅炉烟气治理的除尘、脱硫成本高、效率低,结构复杂、操作繁琐、具有二次污染,缺陷过多状况,研发成功,可以广泛运用于烟气治理领域,可以与电厂污水零排放相结合,并且可以与城市污水水处理相结合的,全部国产化的,低成本、高效率湿式除尘、脱硫、污水处理一体化技术装备。
绪言:解决温室效应、空气质量剧烈恶化、水污染和大规模酸沉降污染,是全人类面临的重大问题之一。进行全球气候和环境保护,是对人类智慧、勇气和信心的重大考验。进行全球气候和环境保护,烟气治理是主要措施之一。烟气治理的除尘、脱硫一体化,以废治害、以害制害,综合利用、综合开发,是降低脱除二氧化硫成本的最有效途径。其意义,丝毫不亚于进行第二次工业革命。温室效应、空气质量剧烈恶化、水污染和大规模酸沉降污染,给予人类社会和谐发展造成的危害,愈发剧烈。日益明显。这是每一个人都能够切切实实的感受到的。对于环境保护的迫切性和重要性,人人皆知。但是,为什么烟气治理的速度仍然不尽人意呢? 归根结底,静电除尘--石膏脱硫的除尘、脱硫工艺流程,复杂、造价昂贵,是根本原因。虽然,石灰石价格低廉、资源广泛,静电除尘耗用的用电量也比较小,但是,久而久之,运行费用也是很为可观的。仅就全国的火力发电厂除尘、脱硫来讲,造价和运行费用,都是巨大的天文数字。对于脱硝、脱碳的具体实施要求,则更是遥遥无期了。降低除尘、脱硫的造价和运行费用,是粉尘和硫、氮、碳氧化物污染治理的根本所在。 烟气治理,需要造价低、效率新高技术。电力,中国、乃至全世界的各行各业都在呼唤更好、更先进的除尘、脱硫全新技术装备。 怎么样降低除尘、脱硫的造价和运行费用?从这里就可以引出一个问题。
一、火力发电厂的脱硫,为什么一定要用石灰石作为脱硫剂?火力发电厂排出的粉煤灰浆,无用,有害,量大,且多。酸碱度一般在8.5-13左右。 为什么不能,为什么没有将其碱性应用于脱硫呢?如果能够应用一部分,那么,就可以降低粉煤灰的相当一部分有害性。就能够减少许多石灰石的消耗。就能够减少许多有关石灰石消耗的资源浪费。亚石膏的无用性,以及其堆积缓释二氧化硫的二次污染性,众所周知。石灰石-石膏-湿式脱硫工艺流程,虽然也能够广泛应用,毕竟造价高、效率低、结构复杂。浪费严重。需要根本性进步。
二、粉煤灰浆中含有能够脱硫的物质,是不是不足以用于脱硫呢?一般燃煤的含灰量在30%以上。30%含灰量中的脱硫物质,能够脱除多少二氧化硫? 燃煤煤质的不同,含灰量也不同。 30%的含灰量,能够脱除3%的二氧化硫。十倍比例,从数学意义上讲,根本没有问题。 按照中等偏下原则计算粉煤灰浆中的脱硫物质。粉煤灰浆中的脱硫物质,是燃煤含硫量3%情况下的4倍多。足以用于脱硫。所以,不仅有价值,而且完全有必要,完全应该将粉煤灰浆应用于火力发电厂的脱硫。燃煤含灰量中的脱硫物质,混溶在水溶剂中的活性更好。脱硫能力应该更好。因为应用石灰石脱硫的石膏脱硫法,并不能高效地脱除二氧化硫。还需要添加含镁物质等等。表1粉煤灰的化学成分及性能(%): 细度 需水量 烧失比 含水量 SO 3 SiO 2 Fe 2 O 3 AI 2 O 3 CaO MgO K 2 O Na 2 O
20 106 1.73 0.3 0.14 54.0 6.11 27.7 2.57 1.23 1.50 0.37
粉煤灰是原煤经电厂锅炉燃烧后的产品。各地电厂所用的原煤来自不同的煤矿。所以燃煤中各组成物质的含量不同。而且各个电厂炉膛结构有别,受炉温、空气含氧量、燃烧质量等的影响,以及原煤的燃烧方式不同,因而燃烧后粉煤灰的比重及成分不同。经频谱仪分析可知:粉煤灰的主要成分是氧化硅、氧化铝和氧化铁,约占粉煤灰总量的80%左右,还有一定量的氧化钙、氧化镁等(见表2)。表2不同电厂粉煤灰化学成分测定结果(%):
灰名 SiO 2 Al 2 O 3 Fe 2 O 3 CaO MgO 烧失量 d 50 (mm)
青山热电厂干灰 59.82 26.66 4.95 2.42 0.90 0.93 0.035
青山热电厂湿灰 57.28 24.24 7.48 3.48 0.31 3.47 0.029
汉川电厂干灰 57.50 26.70 4.10 2.72 0.95 4.81 0.031
汉川电厂湿灰 59.95 28.72 4.71 3.53 1.16 3.43 0.076
阳逻电厂干灰 54.54 24.48 5.05 2.68 0.95 4.29 0.027
阳逻电厂湿灰 56.31 23.50 7.79 4.16 1.09 3.59 0.083
郑州热电厂 50.37 21.28 4.19 3.24 1.30 4.30 0.061
郑州火电厂 52.86 22.88 4.09 3.52 1.38 11.0 0.027
1.关于燃煤含硫量计算: 以35吨/小时锅炉为例。烟气量126000立方米/时。按用煤量6.6吨/时计算。燃煤含硫量为3%时烟气含硫量:每小时烟气含硫量6.6×1000×3%=198kg,为198kg×1000÷32=6187.5GM。
2.关于粉煤灰所含脱硫物质计算: 按煤的含灰量为30%计算:煤渣、粉尘量为6.6×1000×30%=1980kg。粉煤灰含SiO2为32-60%,取45%;Al2O3为10-32%,取20%;Fe2O3为4-12%,取8%;CaO为2-24%,取12%;MgO为1-11%,取6%;烧失量为1-15%,取9%。矿物组成以玻璃体为主要成分。玻璃体含量50-80%。其余为莫来石和石英相。粉煤灰中能够脱硫的物质数量如下:
SiO2: 45%×1980=891(kg), 891000÷(28×1+16×2)=14850GM。 Al2O3:20%×1980=396(kg), 396000÷(27×2+16×3)=3882.35GM。 Fe2O3:8%×1980=158.4(kg), 158400÷(56×2+16×3)=990GM。 CaO: 12%×1980=237.6(kg), 237600÷(40×1+16×1)=4242.85GM。 MgO: 6%×1980=118.8(kg), 118800÷(24×1+16×1)=2970GM。合计为:14850+3882.35+990+4242.85+2970=26935.2GM。
3.脱硫剂数量大于含硫量四倍以上。 燃煤含硫量3%时,每小时烟气含硫量为198kg×1000÷32=6187.5GM。粉煤灰中所含脱硫物质的量,每小时为26935.2GM,是硫的26935.2÷6187.5=4.35倍。
三、如何将粉煤灰浆中的脱硫物质与二氧化硫充分混合?
传统中的湿式石膏脱硫法,能够将石灰石中的脱硫物质有效混合。也完全能够将粉煤灰浆与二氧化硫有效混合。在利用传统的石膏脱硫法脱硫设施的基础上,利用粉煤灰脱硫,一定会有许多不适之处。所以进行了研究。经过研究、开发,事实证明,应用粉煤灰进行脱硫的设施,不仅比石灰石脱硫设施小,而且,还可以将巨大的静电除尘设施节约掉。
四、应用粉煤灰浆脱硫,是否可以节省掉静电除尘? 静电除尘的效率一般在99.99%左右。传统的麻石水膜除尘器效率,一般只有97%. 在利用粉煤灰浆脱硫时,除尘效率能不能达到99.99%,关系到能否节省掉静电除尘问题。根据已经成功的十多个工业应用业绩,作为粉煤灰浆脱硫的工业应用试验装置进行计算。脱硫效率与除尘效率基本相同。烟气治理的效率可以达到100%。但是,与物质不灭定律、能量守恒定律丝毫无关。例如空调。例如沙尘暴污染的大气,经过湿式处理后,完全可以达到湿润、清新程度。其经过安装紫外线、负离子发生装置、恒温装置通道后,空气质量还可以进一步提高。
五、除尘、脱硫一体化,是降低除尘、脱硫成本的根本途径。与目前世界上最为成熟、应用范围最为广泛的石灰石-石膏湿式脱硫-静电除尘烟气治理工艺流程相比较,将静电除尘和脱硫岛这两个庞然大物合而为一,一定能够降低造价,降低运行成本。但是,还能不能够具有更进一步的发展?研究证实,完全能够将除尘、脱硫、污水处理合而为一。除尘、脱硫、污水处理一体化,更有利于烟气治理向纵深发展。不仅有利于电厂的污水零排放,更有利于社会上的污水处理。除尘、脱硫、污水处理一体化,具有强大的污水处理功能。其它企业将印染废水、造纸废水、氨水、电石渣、海泥应用于脱硫的工业应用事实,完全能够证明。工业应用证明,经过除尘、脱硫工艺流程的澄清水,清澈度一般在1.8米以上。 关于小型火力发电厂的废水水质、水量特点:小型火电厂的废水一般分为除灰废水、冷却系统排水、化学处理系统排水、输煤系统废水、厂区生活废水、含油废水和杂用水系统排水等。其中除灰废水和冷却水系统排水水量占整个电厂废水的80%左右。其它废水水量由电厂的具体用水情况而定。冷却水系统排水水质较好,只是温度和COD较高。除灰废水水质差,水中不仅COD和SS很高,还含有许多重金属元素。表3小型火电厂各废水系统水量和废水中的污染物统计:
废水系统 冷却系统排水 除灰废水 化学处理系统排水 含油废水 输煤系统废水 厂区生活废水 杂用水系统排水
占总废水百分比/% 30-70 20-50 2-7 0.1-1 0.5-2 0.5-3 5-10
主要污染物 Cl - 、Ca 2+ 等 重金属、COD、SS、Ca 2+ 、SO 4 2- 等 H+或OH - 、COD、Cl - 等 油污等 SS等 BOD等 COD、SS等
火力发电厂的烟气治理,是一个相当巨大的社会工程。一般要求具有两个同样的业绩。这就彻底否定了创新。作为企业,创新成果如果没有业绩,也是不可以接受的。必须坚持进一步深化科研体制、机制改革。火力发电厂的烟气治理创新,也同样是一个相当巨大的社会工程。也需要跨越很高的门槛。许许多多关于煤的清洁燃烧研究机构、重点实验室,并不能够做到对于具体情况进行具体分析,进行具体研究,对于显而易见的、近在咫尺的、具有明显碱性特征的粉煤灰浆,加以应用,至今仍然达不到非职务发明人一九九七年的研究水平,只能说明,开拓具有中国特色的科学技术全面发展道路,任重道远。建设科学发展的创新型国家,需要全国上上下下每一个人的努力,汇聚成为共同的合力。
结论:利用具有碱性特征的粉煤灰浆脱硫,切实可行。关于其工业应用的技术装备,鉴于应用在其它行业的十多个业绩,证明其技术可靠、成熟。