① 污水处理如何脱氮
污水中的氨氮、总磷是分别两种指标同时存在的,因此在处理的时候应该分开来处理。因为有部分客户以为一种药剂就可以同时处理氨氮和总磷,但是根据我司多年来的案例分析及研究,如果一种药剂同时处理两种超标,效果是会大打折扣的。就好像我们生病一样,不同的病状需要不同的药物来处理的道理是一样的。 那么我们指的污水处理脱氮除磷药剂是什么呢?
分别针对氨氮和总磷的两种药剂(即氨氮去除剂和除磷剂)。
一、“污水处理脱氮除磷”之 “氨氮去除剂”特点:
反应速度快,6分钟左右即可完成反应过程;
去除效率达96%以上;
无2次污染产生,真正的环保药剂
无需设备,直接投加,操作方便。
不改变原有工艺。
现场使用方法:
1、氨氮药剂投加点氨氮药剂的反应非常迅速,可在6分钟左右完成反应,可以直接对氨氮超标的废水进行处理,因此在沉淀池之后的砂滤池或者回调池进行投加即可,为了确保反应完全,需要有曝气或者搅拌。
2、投加量由于废水(原水)的氨氮值高低不一样,因此投加量会因氨氮高低而不同;废水的投加量建议通过实验确定,并最终在使用中进行调整。
二、“污水处理脱氮除磷”之 “除磷剂”特点:
使用范围广,针对各种铝氧化、化学抛光、涂装、磷化等高含磷废水;
具有除磷、混凝、调PH等多重功效,是一种多功能高效除磷剂;
使用pH值范围广;
除磷彻底,出水清澈。
现场使用方法:
1、投加方法:可配成5%-20%的溶液后投加,也可直接投加;
2、现场使用:可根据现有的处理流程,在反应池工序投加;3、使用条件:PH值使用范围为3-6。
② 污水处理氨氮怎么去除
在生物脱氮处理的过程中:
好氧条件下,通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;
缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中溢出。
氨氮的去除可使硝化细菌,其主要解决污水中氨氮超标问题。
③ 污水中总氮中的有机氮如何去除
污水中总氮中的有机氮用AO法及AOO法去除。
AO法及AOO法是近年来开发出的生物脱氮除磷新工艺,与传统的化学和生物脱氮除磷相比,它还有效提高了BOD、COD、SS的出水指标。
AO法是缺氧、好氧的简称,AOO法是厌氧、缺氧和好氧的简称,脱氮是在缺氧段完成的,除磷则要求有厌氧段。AO法主要是脱氮,AOO法可以同时去除氮、磷。这两种工艺都要求污水充分曝气,使含氮有机物充分硝化,所以必须降低污泥负荷,延长曝气时间和增大鼓风量。
根据天津东郊污水处理厂和沈阳市北部污水处理厂的实践,采用AO工艺比传统活生污泥流程的曝气池容积、二沉池容积、回流污泥量、鼓风量和曝气装置数量都增大一倍左右,而且由于该工艺要求比较低的污泥负荷。
否则不足以达到污泥好氧稳定,所以AO法将带来基建投资和电耗的大幅度增加。AOO法在缺氧段前面还加有一个厌氧池,以达到对磷的有效去除效果,基建费用与电耗比AO工艺更高点。
(3)污水中酸盐氮为什么去除不掉扩展阅读:
氮污染的来源:
其人为来源主要是燃烧化石燃料,产生硝酸、氮肥、火药等排放的废气。氮氧化物是光化学烟雾反应的起始反应物,它和氧化亚氮在平流层对臭氧的分解起催化作用,因此它们都是破坏臭氧层的物质。水体中的氮主要来自生物体的代谢和腐败,氮肥的流失,以及工业废水和生活污水的排放。
水体中氮过量时会造成富营养化,使水质恶化,影响水生生物的生长及繁殖。土壤中的固氮菌和植物的根瘤菌等可将空气中的单质氮转化为氨、硝酸盐等化合态氮,供植物作养分,但氨或铵盐存在过量时,反而会使土壤的土质变坏,影响植物生长。
此外,土壤中的硝酸盐可经反硝化作用生成N2O,N2O进入平流层大气时会与臭氧发生化学反应而消耗臭氧层中的臭氧。所以,土壤也是产生臭氧层破坏的痕量气体发生源之一。
参考资料来源:网络-氮污染
参考资料来源:网络-城市污水
④ 氨氮如何去除
去除氨氮的主要方法有:物理法、化学法、生物法。
物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术 。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
折点氯化法去除氨氮:
折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下:
Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O
NHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-
折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。
⑤ MPR过虑式污水处理中氮氮超标,磷酸盐超标,是什么原因
MBR膜孔径是过滤不掉磷酸盐和氨氮的,主要还是考虑生化效果不好, 重点应该调生化。
⑥ 传统活性污泥法,传统的,曝气池后接沉淀池.为何无法脱氮除磷
氮在污水中的存在形式主要是有机氮、氨氮、硝酸盐氮和亚硝酸盐氮.脱氮过程中有氨化作用即将有机氮转化为氨氮,硝化作用即硝化细菌在好氧条件下将氨氮转化为硝酸盐,反硝化作用即有反硝化细菌在缺氧条件下将硝酸盐和亚硝酸盐转化为氮气,从而完成氮的去除.
而除磷需要利用污水中聚磷菌的作用,聚磷菌具有在厌氧条件下释磷,在好氧条件下过量吸磷的能力,这样污水中的磷就从污水转移到了污泥中,通过排出剩余污泥的方式将磷去除.
在这个工艺中没有厌氧、缺氧、好氧环境的交替,因此没有脱氮除磷能力.
⑦ 废水中氨氮的去除
废水中的氨氮如何去除?随着世界经济的发展和城市化的进程,对水的需求回量在不断地增大,随之答而来的是废水的排放量也日益增多,水体中的氨氮污染已引起国内外社会各界的广泛关注。水中存在的氨氮能够产生水体富营养化等危害。水中氨氮的去除非常必要;
方法/步骤
1/4分步阅读
废水中的氨氮去除可以分为以下几个步骤:
1)首先根据污水情况,利用物理法、化学法、生物法处理。其中可根据实际情况,选择其中的折点氯化法、化学沉淀法、吹脱法及气提法、离子交换法、短程硝化反硝化法、A/O工艺、液膜法等方法处理。
2/4
2)有些废水成分复杂、浓度高,利用单一的处理方法很难达到排放标准,需要使用几种方法结合处理,才能使废水处理达标。
3/4
3)如果按以上方法处理氨氮污水仍达不到排放要求,需选择相关水处理药剂处理,即可选择氨氮去除剂处理。
4/4
氨氮去除剂主要特点如下:
氨氮药剂广泛应用于电镀废水、造纸废水、印染废水、纺织废水、屠宰废水、线路板废水、电器废水等。氨氮处理药剂适合氨氮废水后期处理很主要的原因是其添加与使用比较方便,反应过程比较快速,几分钟即可完成反应。
编辑于2017-01-05,内容仅供参考并受版权保护
赞踩分享阅读全
⑧ 在污水处理中用乙酸钠作为碳源,反硝化中去除1mgTN需要多少乙酸钠,具体化学方程式是怎样的
利用序批式反应器,以乙酸钠为唯一碳源,对反硝化污泥进行了50d的长期驯化。之后,利用缓冲溶液将反硝化过程中pH值的上升幅度控制在0.5范围内,研究了不同碳氮比下的反硝化规律。
结果表明,无论碳源是否充足,反硝化过程中硝酸盐氮和亚硝酸盐氮的变化趋势基本相同,即反硝化过程中均会出现亚硝酸盐氮积累且随后逐渐消失的现象。
硝酸盐氮还原完毕时,亚硝酸盐氮会出现最大积累量,同时反硝化速率出现拐点,速率开始明显加快。
当碳氮比从1.0增加到3.7时,反硝化速率明显增加。反硝化菌可过量吸附乙酸钠,因此在以乙酸钠为外加碳源进行反硝化时,即使乙酸钠投加过量,出水COD值也能维持在较低水平。
硝化用硝酸或硝酸盐处理,与硝酸或硝酸盐结合,尤指将〖有机化合物〗转化成硝基化合物或硝酸酯(如用硝酸和硫酸的混合物处理)。
反硝化也称脱氮作用反硝化细菌在缺氧条件下。还原硝酸盐,释放出分子态氮或一氧化二氮的过程。
乙酸钠一般以带有三个结晶水的三水合乙酸钠形式存在。三水合乙酸钠为无色透明或白色颗粒结晶,在空气中可被风化,可燃。易溶于水,微溶于乙醇,不溶于乙醚。
⑨ 污水中氨氮含量高 怎么去除
氨氮/COD的去除在污水处理中多采用生物法,是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。 氨氮/COD超标主要是硝化反应控制不好所致。硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下:亚硝化: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 : 2NO2-+O2→2NO3- 解决措施:控制好PH与温度。硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS?d);泥龄在3~5天以上。在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH- 反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。 生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。为了能使微生物正常生长,必须增加回流比来稀释原废水;硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。
⑩ 污水中总氮中的硝态氮如何去除
硝态氮主要是指硝酸根离子,目前有采用离子交换、膜渗透、吸附以及生物脱氮的内方法。其中离子交换法、容膜渗透法以及吸附法都只是硝酸根离子的浓缩与转移,无法真正去除总氮,浓缩以后的硝酸根废液需要进一步处理。
在生物脱氮中,主要是指硝酸根离子通过反硝化细菌降解转化为氮气的过程。在传统的生化方法中,需要极大地占地面积,而且由于微生物密度低,微生物脱氮效率很低,而且出水不清澈,有悬浮物,不耐毒性物质。