导航:首页 > 污水知识 > 高炉煤气化废水

高炉煤气化废水

发布时间:2022-01-30 00:40:07

『壹』 请问高炉喷吹煤指标

1.评价指标

1.1灰分%

灰分是有害成分。喷入高炉的煤粉的灰分转变成炉渣,不仅增加石灰石的消耗,又增加吨煤渣量,使焦比升高。喷吹煤的灰分越低越好。喷吹煤灰分应比所用焦炭灰分低2%,即钢厂的焦炭灰分为13%,则喷吹煤的灰分应不高于11%。

1.2硫分%

硫分也是一种极为有害的物质。喷吹煤粉中硫影响生铁和钢的质量(钢铁中含硫大于0.07%,就会使之产生热脆性而无法使用)。为脱去钢铁中硫,就须在高炉和炼钢炉中多加石灰石,致使成本升高,生产能力下降。硫分越低越好。喷吹煤硫分应比所用焦炭硫分低0.2%,即钢厂焦炭硫分为0.8%,喷吹煤硫分应不高于0.6%。

1.3发热量

固定碳含量越高,挥发分含量越低,在风口前燃烧时放出的热量越多。喷入高炉的煤粉是以其放出的热量和形成的还原剂CO、H2等来代替焦炭在高炉内提供热源和还原剂。发热量越高越好。在高炉内放出的热量越多,置换比越高。

1.4可磨性

它反映煤的耐磨特性。可磨指数越大,越易粉碎,磨煤机出力越大,电耗越小,粉煤加工成本越低。但可磨指数大于90时,在磨机内会有粘结现象。实践证明,喷吹煤可磨指数为70-90时为最佳。

1.5反应性

煤对CO2的反应性即将CO2还原成CO的能力。它是反映煤气化、燃烧的一个重要指标。反应性的强弱直接影响炉子的耗煤量、耗氧量及煤气中的有效成分等。高炉喷吹反应性强的煤,不仅可提高煤粉燃烧率,扩大喷吹量,而且风口区未燃烧的煤粉在高炉的其它部位参加了与CO2的气化反应,减少焦炭的气化反应,对焦炭强度起到保护作用。

1.6燃烧性

煤的燃烧性好,即其着火点低,反应性强。这可使喷入高炉的煤粉能在有限的空间和时间内尽可能多地气化,少量未及气化的煤粉也因反应性强而与高炉煤气中的CO2和H2O反应而气化,不给高炉冶炼带来麻烦。另外,燃烧性好的煤也可磨得粗一些,即-200目占的比例少一些,这为降低磨煤能耗和费用提供了条件。

1.7爆炸性

悬浮的煤粉与空气或其他氧化剂混合极易发生爆炸,最明显的规律是随挥发分增加,其爆炸性也增加。一般认为煤粉Vdaf<10%为基本无爆炸性煤,10%<VDAF<25%为有爆炸性煤,Vdaf>25%为强爆炸性煤。

爆炸特性主要采用长管式的测试装置来测定煤粉爆炸火焰返回长度确定煤粉有无爆炸性及其强弱。一般认为,仅在火源处出现稀少火星或无火星的属于无爆炸性,如无烟煤;返回至喷入端的火焰长度小于400mm的为易燃有爆炸性煤,如贫瘦煤、不粘煤、弱粘煤;返回至喷入端的火焰长度大于400mm的为强爆炸性煤,如气煤等。

1.8煤灰熔融性

煤灰熔融性是指在规定条件下,随加热温度的变化,煤灰的变形、软化和流动特征的物理状态。煤灰的熔融性取决于它们的化学组成。在煤灰熔融时,Al2O3起“骨架”作用,能明显提高灰的熔融温度,当其含量超过40%时,煤灰的软化温度一般都会超过1500℃;SiO2起“助熔”作用,一般来说,SiO2大于40%的灰熔温度比低于40%的要高100℃左右,而SiO2含量在45%-60%范围内,熔融温度随其含量的增加而降低;在还原性气氛中,氧化铁以FeO形式存在,随其含量增加,煤灰熔融温度开始下降,当FeO摩尔百分数增加到40%时,下降至最低点,此后随着FeO含量的增加,熔融温度又升高。在氧化性气氛中,氧化铁呈Fe2O3形式存在,它总是起升高熔融温度的作用;CaO起助熔作用,但其含量超过30%时,它又起升高熔融温度的作用。其他MgO、Na2O、K2O在煤灰熔融中都起助融作用。

『贰』 煤化工废水处理技术研究及应用分析

背景

煤化工废水近零排放:煤化工是指以煤为原料,经化学加工转化为气体、液体和固体燃料及化学品的过程,是针对我国“富煤、贫油、少气”的能源特点发展起来的基础产业。

近年来,受市场需求等因素的刺激,煤炭富集区煤化工产业呈现爆发式增长态势,《“十二五”规划纲要》明确提出,推动能源生产和利用方式变革,从生态环境保护滞后发展向生态环境保护和能源协调发展转变。

我国水资源和煤炭资源逆向分布,煤炭资源丰富的地域,往往既缺水又无环境容量。煤化工废水如果不加以达标处理直接排入受纳水体会对周围水环境造成较大的污染和破坏,造成可利用的水资源量更加紧缺。因此,我国煤化工废水实施“近零排放”,实现废水回用及资源化利用势在必行。


何为近零排放

煤化工废水近零排放是以解决我国煤化工水资源及废水处理难题为目标,形成的煤化工废水处理及资源化利用重大技术研究领域。目前,该领域已基本确立“预处理—生化处理—深度处理—高盐水处理”实现“近零排放”的技术路线。但是,最终产生的结晶盐仍然含有多种无机盐和大量有机物。从加强环境保护的角度出发,煤化工高盐水产生的杂盐被暂定为危险废物。

按目前的处理技术,一次脱盐处理后仅有60%~70%的淡水能回用。如果真正的零排放还需要把剩余的30%~40%浓盐水浓缩再处理进行回用。

现代煤化工企业废水按照含盐量可分为两类:

一是高浓度有机废水。 主要来源于煤气化工艺废水等, 其特点是含盐量低、污染物以COD为主;

二是含盐废水。主要来源于生产过程中煤气洗涤废水、循环水系统排水、除盐水系统排水、回用系统浓水等,,其特点是含盐量高。

煤化工废水“零排放”处理技术主要包括煤气化废水的预处理、生化处理、深度处理及浓盐水处理几大部分。

预处理:由于煤气化废水中酚、氨和氟含量很高,而回收酚和氨不仅可以避免资源的浪费,而且大幅度降低了预处理后废水的处理难度。通常情况下,煤气化废水的物化预处理过程有:脱酚,除氨,除氟等。

生化处理:预处理后,煤气化废水的COD含量仍然较高,氨氮含量为50~200mg/l,BOD5/COD范围为0.25~0.35,因此多采用具有脱氮功能的生物组合技术。目前广泛使用的生物脱氮工艺主要有:缺氧-好氧法(A/O工艺)、厌氧-缺氧-好氧法(A-A/O工艺)、SBR法、氧化沟、曝气生物滤池法(BAF)等。

深度处理:多级生化工艺处理后出水COD仍在100~200mg/l,实现出水达标排放或回用都需进一步的深度处理。目前,国内外深度处理的方法主要有混凝沉淀法、高级氧化法、吸附法或膜处理技术。

浓盐水处理: 针对含盐量较高的气化废水等,TDS浓度一般在10000mg/L左右,除了先通过预处理和生化处理以外,通常后续采用超滤反渗透膜来除盐,膜产水回用,浓水进入蒸发结晶设施,这也是实现污水零排放的重点和难点所在。

ZDP工艺解决煤化工废水近零排放难题

海普创新开发了废水近零排放ZDP工艺

煤化工行业近零排放项目现场

『叁』 煤气化的工艺技术

碎煤固定层加压气化采用的原料煤粒度为6~50mm,气化剂采用水蒸汽与纯氧作为气化剂。该技术氧耗量较低,原料适应性广,可以气化变质程度较低的煤种(如褐煤、泥煤等),得到各种有价值的焦油、轻质油及粗酚等多种副产品。该技术的典型代表是鲁奇加压气化技术和BGL碎煤熔渣气化技术。
该气化技术的优点:
原料适应范围广,除黏结性较强的烟煤外,从褐煤到无烟煤均可气化,可气化水分、灰分较高的劣质煤。
氧耗量较低,气化较年轻的煤时,可以得到各种有价值的焦油、轻质油及粗酚等多种副产品。
该气化技术存在的不足:
该技术出炉煤气中甲烷和二氧化碳的含量较高,有效气的含量较低。
蒸汽分解率低。一般蒸汽分解率约为40 %,蒸汽消耗较大,未分解的蒸汽在后序工段冷却,造成气化废水较多,由于废水中含有酚类物质,导致废水处理工序流程长,投资高。 粉煤流化床加压气化又称之为沸腾床气化,这是一种成熟的气化工艺,在国外应用较多,该工艺可直接使用0~6mm碎煤作为原料,备煤工艺简单,气化剂同时作为流化介质,炉内气化温度均匀,典型的代表有德国温克勒气化技术,山西煤化所的ICC灰融聚气化技术和恩德粉煤气化技术。
虽然近年来流化床气化技术已有较大发展,相继开发了如高温温柯勒(HTW)、U-Gas等加压流化床气化新工艺以及循环流化床工艺(CFB),在一定程度上解决了常压流化床气化存在的带出物过多等问题,但仍然存在煤气中带出物含量高、带出物碳含量高且又难分离、碳转化率偏低、煤气中有效成分低,而且要求煤高活性、高灰熔点等多方面问题。 气流床加压气化技术大都以纯氧作为气化剂,在高温高压下完成气化过程,粗煤气中有效气(CO+H2)含量高,碳转化率高,不产生焦油、萘和酚水等,是一种环境友好型的气化技术。
气流床气化技术主要分为水煤浆气化技术和粉煤气化技术。

『肆』 煤化工环境保护的图书目录

第一章 能源与环境
第一节 能量与能源
一、能量
二、能量的发源地——太阳
第二节 能源的分类
一、能源分类总述
二、化石燃料
三、核能
四、可再生能源
第三节 能源消费与社会发展
第四节 能源问题
一、世界能源问题
二、中国能源问题
第五节 能源利用的环境效应
一、人类与地球环境的依存关系
二、大气温室效应和气候变化
三、臭氧层的耗损与破坏
四、酸雨
五、热污染
六、生物多样性锐减
七、大气污染的危害
八、水污染
第六节 能源开发和运输过程的环境问题
一、化石能源
二、核能
三、可再生能源
第七节 发展能源与环境保护
复习题
第二章 我国煤炭利用状况及对环境的污染
第一节 我国煤炭资源利用及其对环境的污染概况
一、焦化工业及其主要污染物
二、气化工业及其主要污染物
三、液化工业及其主要污染物
四、燃煤的主要污染物
第二节 我国煤炭能源利用面临的问题及技术发展方向
复习题
第三章 煤化工废气污染物来源及控制
第一节 煤化工过程大气污染物的来源
一、炼焦生产过程
二、气化过程
三、煤液化过程
四、燃煤的主要气态污染物
第二节 常见除尘装置的分类与原理
一、除尘装置的主要类型及其性能
二、除尘装置的工作原理
三、除尘装置的选择与应用
第三节 煤焦储运过程的粉尘控制
一、煤场的自动加湿系统
二、喷覆盖剂
三、除尘系统
四、配煤槽顶部密封防尘
第四节 炼焦生产过程烟尘的控制
一、装煤过程烟尘的控制
二、推焦过程烟尘的控制
三、熄焦过程烟尘的控制
四、筛焦系统的防尘捕集
五、焦炉连续性烟尘的控制
第五节 化产回收与精制的气体污染控制
一、回收车间的气体污染控制
二、精制车间污染气体控制
第六节 气化过程废气的处置
一、控制煤气炉中加煤装置的煤气泄漏
二、煤气站循环冷却的废气治理
三、吹风阶段排出吹风气时废气的治理
四、发展烟气除尘、脱硫技术
五、改革气化的工艺和设备
六、利用大气自净能力,废气高空排放
第七节 燃煤大气污染控制
一、煤炭加工与转化工业
二、提高燃煤效率
三、控制煤烟排放物
四、节能与优化能源结构
第八节 含二氧化硫废气的治理技术
一、原煤脱硫
二、燃烧脱硫
三、烟气脱硫
第九节 氮氧化物废气的治理
一、改善燃烧条件(低NOx燃烧技术)
二、烟气脱硝技术
第十节 CO2排放控制及综合利用
一、吸收法
二、膜分离法
三、纯氧/烟气再循环燃烧
四、改变煤气化联合循环
五、低温分离法
第十一节 有机废气的治理
一、含烃类废气的直接燃烧
二、有机污染物的催化燃烧
三、吸附法
四、冷凝法
五、吸收法
六、其他方法
复习题
第四章 煤气化废水污染及控制
第一节 煤气化废水的特征
一、煤气化废水的来源及水量水质
二、煤气化废水的可生化性分析
第二节 煤气化废水与预处理
一、酚的回收
二、氨的回收
第三节 煤气化废水处理技术
一、组合生物处理技术
二、煤气化废水脱氮技术的进展
第四节 废水处理工艺流程
复习题
第五章 焦化废水的污染及控制
第一节 焦化废水的来源及危害
一、焦化废水产生的概况
二、焦化废水的组成及分类
三、焦化废水的排放现状与危害
第二节 焦化废水一般处理技术
一、两段生物法
二、延时曝气
三、传统生物脱氮工艺
第三节 焦化废水处理深度氧化技术
一、化学氧化
二、光化学氧化
第四节 焦化废水处理脱氮工艺
一、同步硝化反硝化工艺
二、短程硝化反硝化脱氮工艺
三、短程硝化?厌氧氨氧化脱氮工艺
四、短程硝化+铁炭微电解脱氮工艺
复习题
第六章 焦化废水综合治理及回用技术
第一节 结合物化法的生物脱氮技术
一、物化预处理
二、生物处理
三、焦化废水的后续处理
四、工程实例
第二节 结合强化生物法的生物脱氮技术
一、生物铁强化技术在焦化废水处理中的应用
二、高效生物菌种在焦化废水处理中的应用
三、固定化微生物技术在焦化废水处理中的应用
第三节 焦化废水处理的展望
一、整体趋势展望
二、行业管理
三、处理技术
四、焦化废水排放标准
第四节 焦化废水回用
一、湿法熄焦补充水
二、钢铁转炉除尘水系统补充水
三、高炉冲渣、泡渣
四、洗煤循环水补充水
五、曝气池消泡水
六、煤场喷洒
复习题
第七章 煤化工废液废渣的处理与利用
第一节 煤化工废液废渣的来源
一、焦化生产废液废渣的来源
二、气化生产过程的废渣
第二节 焦化废渣的利用
一、焦油渣的利用
二、酸焦油的利用
三、再生酸的利用
四、洗油再生残渣的利用
五、酚渣的利用
六、脱硫废液处理
七、污泥的资源化
第三节 气化废渣的利用
一、筑路
二、用于循环流化床燃烧
三、建材
四、化工
五、轻金属
复习题
第八章 煤化工其他类型的污染
第一节 有毒污染物的危害与防护
一、有毒污染物的性质及危害
二、中毒分类及特点
三、中毒急救
四、毒物泄漏处置
五、预防措施
第二节 粉尘的危害与防护
一、粉尘的种类
二、粉尘的危害
三、粉尘的防护
第三节 噪声的危害与防护
一、声音的物理量
二、噪声的来源及分类
三、噪声的危害
四、噪声控制
第四节 振动的危害与防护
一、振动及其类型
二、振动的危害
三、振动对人体影响的因素
四、振动控制
第五节 电磁辐射危害与防护
一、非电离辐射的危害与防护
二、电离辐射的危害与防护
复习题
参考文献
……

『伍』 “十三五”现代煤化工面临哪些挑战

现代煤化工产业,一度被认为是化解煤炭过剩、实现煤炭高效清洁利用的重要途径。曾备受资本热捧的现代煤化工如今却面临着如此窘境:前有低价油,后有页岩气;上有日趋严格的环保政策,下有难见起色的市场需求。煤化工项目高耗能、高耗水、高污染排放等问题也让其备受争议。近期,不少地方在“十三五”规划中对现代煤化工的定位,也开始变得谨慎起来。那么,“十三五”现代煤化工产业发展前景如何?面临着哪些挑战?究竟该如何实现突围?中国化工报记者对此进行了采访。
告别“大发展” 升级示范先行
“‘十三五’现代煤化工不能再提‘大发展’了。”这句话是记者在日前举行的中国煤炭加工利用协会六届四次理事会暨第九届全国低阶煤热解提质及下游产品技术研讨会上,听到与会代表说得最多的一句话。
“‘十二五’期间,现代煤化工的发展是石油和化工行业的最大亮点之一。从技术和产业规模看,我国现代煤化工已经走在了世界的前列。但是‘十三五’期间,现代煤化工产业最应该注重的是发展质量而不是发展速度。”中国化学工程集团股份有限公司总工程师汪寿建说。
石油和化学工业规划院副院长白颐也认为,“十三五”行业要重新认识现代煤化工,推动煤化工产业健康发展,而不能使其发展过热。发展煤化工对于我国来说是一个长期战略,无论油价涨跌,坚持煤炭资源清洁高效转化的大方向始终不变。当前的市场困境,恰恰可以使已经有过热苗头的煤化工产业冷静下来,重新审视和定位产业发展方向。
记者了解到,相比于昔日“逢煤必化”的发展冲动,如今煤化工行业已显得更为冷静和理性。比如,业界曾估算,2015年我国将形成煤制油产能1200万吨,但是根据最新的行业数据,预计到2020年,我国煤制油产能将达1200万吨,煤制天然气产能将达200亿立方米,煤制烯烃产能将达1600万吨,煤制芳烃产能将达100万吨,煤制乙二醇产能将达600万吨,相比之前的规划均有不同程度的缩水。
不少现代煤化工企业亦如此。今年1月,神华集团确定的“十三五”发展目标中,提出将现代煤制油化工产业建设成为行业升级示范标杆,主要煤化工产品中,油品583万吨、合成树脂366万吨、甲醇554万吨。
对此,白颐认为,“十三五”期间我国现代煤化工应该做好三件事一是研究低油价条件下的发展机会成本和竞争力;二是加大各项技术创新和工艺优化的力度,提高发展效率;三是完善和落实可持续发展措施,注重资源保护、环保和节能。
采访中,不少业内人士表示,目前现代煤化工发展遭遇困境,与其本身工艺技术还不够成熟不无关系,因此,“十三五”行业还应该以示范为主,并需要进一步升级示范。
中国煤炭加工利用协会理事长张绍强认为,投资大、水资源消耗大、碳排放强度大、对原料要求比较苛刻等,都是现代煤化工行业现存的问题。对此,业内要有清醒的认识,而不应该只盯着“高大上”的那几条工艺路线。
张绍强提出,“十三五”期间,要科学规划现代煤化工产业布局。总结煤制油、煤制烯烃、煤制气等示范工程取得的经验。深入研究煤质与气化炉的适应性,开展高富油、高挥发分低阶煤节水型干馏提质、高硫煤化工、新型催化剂等关键技术攻关,提高设备运行的稳定性和可靠性。有序建设一批大型煤制油、煤制烯烃、煤制气等示范项目,推进具有自主知识产权的煤炭间接液化技术研发示范和产业化进程,加大煤炭转化力度,推动煤炭由燃料向原料与燃料并重转变,提高煤炭对国家能源安全的保障能力。
汪寿建认为,“十三五”期间,现代煤化工产业应围绕能效、环保、节水及技术装备自主化等内容开展产业化升级示范工程,依托示范项目不断完善现代煤化工自主创新升级技术,加快转变煤炭清洁利用方式,为煤炭绿色化综合利用提供坚强支持。
汪寿建告诉记者,“十三五”期间要有序推进现代煤化工产业化、技术升级示范工程,规范标定评价工作,做好三个有数。一是掌握标定示范工程物耗、能耗、水耗以及“三废”排放等主要指标,如示范工程能源转化效率和二氧化硫、氮氧化物及二氧化碳排放强度;二是掌握示范工程的生产负荷等各机组及转动设备运行情况、产品品种及质量指标、安全环保措施、投资强度及经济效益,判断以上指标是否达到设计值;三是掌握示范工程运行经验并总结查找分析存在的问题,为进一步优化操作和技术升级改造提供可靠的数据依据。
面临五大挑战 低油价最头痛
现代煤化工产业未来发展仍然面临诸多挑战,这是与会代表们所达成的共识。汪寿建将现代煤化工产业所面临的挑战归纳为五个方面。
一是煤化工规划布局制约问题。“十三五”期间,国家对现代煤化工项目的布局有严格的要求,要优先布局在有煤炭资源的开发区和重点开发区,优先选择在水资源相对丰富、环境容量较好的地区进行布局,并符合环境保护规划;对没有环境容量的地区布局现代煤化工项目,要先期开展经济结构调整、煤炭消费等量或减量替代等措施腾出环境容量,并采用先进工艺技术和污染控制技术,最大限度减少污染物的排放。
二是水资源利用瓶颈问题。我国煤炭资源和水资源分布不匹配。主要煤炭产地和煤化工项目基地多分布在水资源相对匮乏、环境相对脆弱的地区。由于煤化工要消耗大量的水资源,主要用于工艺蒸汽用水获取氢源、循环冷却水蒸发或跑冒滴漏损失需要系统补充水、除盐水补充水及生活用水等。同时产生大量废水,对环境产生巨大威胁。
“若不采取确实可行的节水措施,如开式循环冷却水系统节水技术、空冷技术、闭式冷凝液回收技术、水的梯级利用及重复利用等措施,单位水耗和废水排放量降不下来,布局的煤化工项目就会成为泡影。”汪寿建说。
三是环境排放污染问题。此前,我国现代煤化工由于废水不达标排放,或者排放标准过低,出现了一些“三废”排放污染环境、污染水源和沙漠的事件。目前高浓盐水和有机废水的处理回收技术还没有得到很好的解决。大量的二氧化碳排放也是产业发展不容回避的问题,如何综合利用如捕集、驱油和埋存,相关问题还有待于探索和完善。
“今年年初,环保部发布的《关于华电榆横煤基芳烃项目环境影响报告书审批权限的复函》指出,华电榆横煤基芳烃项目包括年产300万吨的煤制甲醇装置环境影响评价文件将由环保部直接审批。这说明,从2014年开工以来,目前华电榆横煤基芳烃项目还没有通过环保部环评。这也从侧面说明了现代煤化工环评难。”汪寿建说。
四是产品同质化问题。现代煤化工产业起步时间短、研发时间不长,加上投入资源有限,核心装备技术又不能完全掌握,导致煤化工的中间产品雷同现象比较严重。产业链也做不长,不少终端产品是低附加值产品,比如聚乙烯、聚丙烯等,产业竞争力不强。若不走差异化的发展道路,现代煤化工产业还将形成新一轮的产能过剩。
五是低价油气冲击经济性问题。在高油气价格的前提下,现代煤化工的竞争力毋庸置疑。但是到了低油气价阶段,如油价在每桶60美元、50美元以下的时候,煤化工成本优势遇到了极大的挑战。如何采取应对措施扶持政策,是行业和有关部门必须考虑的问题。
在业内人士看来,“十三五”现代煤化工面临的诸多挑战中,首当其冲的便是油价问题。
近日,国际原油期货价格跌至12年来新低点。对此,不少分析机构预计,整个“十三五”期间国际油价都将保持在中低位。
白颐表示,预计“十三五”期间,石油价格大部分时间将保持在每桶50~70美元,前3年价格会低一些,后2年价格会上涨一些,但是也有分析机构预计的油价更低。这说明,现代煤化工产业很可能将长期受到低油价的冲击。
新型煤化工包括煤制油、煤制气、煤制烯烃、煤制芳烃、煤制乙二醇等,白颐指出,这些工艺产品对油价的承受能力各不相同。
煤价在每吨200~300元的情况下,煤制油项目可承受每桶70~80美元的油价,若煤制油项目享受30%税费优惠,则可承受每桶60~70美元的油价。
煤制天然气方面,目前世界各地区天然气定价机制存在显著差异,气价与油价脱钩已逐渐成为世界天然气贸易定价的新趋势,我国煤制天然气与油价不完全挂钩,所以煤制天然气项目更多的不是考虑油价,而是考虑目标市场和运输途径。
煤制烯烃方面,在煤炭价格每吨200~300元的情况下,新建煤/甲醇制烯烃项目可承受每桶70~80美元的油价,已建煤或甲醇制烯烃项目的承受能力(按照边际成本考虑)可承受每桶50~55美元的油价。价格和市场环境是煤制烯烃企业必须考虑的因素。白颐认为,东部地区项目将主要面临海外低价原料产品的冲击,如果项目在东部地区,船运费用较低,就要考虑国外产品的竞争;项目要是在西部煤炭产地,就要考虑液体运输半径和消费能力,尽可能在周边解决销售问题。此外,煤制烯烃除了生产聚丙烯、聚乙烯等通用产品外,产品还要往高端和精细化学品方向发展。
由于项目投资高,煤制芳烃项目对原油价格下降的承受能力略低于煤制烯烃,而且PX不宜长距离运输、PTA产能过剩,白颐建议企业在进行布点时充分考虑产业链衔接。
煤制乙二醇项目还无法与乙烷路线工艺竞争,因此新建项目应尽可能分布在中西部地区,目标市场控制在一定销售半径内,以产业链形式发展。
突围需靠创新 瞄准成套技术
业内人士普遍认为,在当前的形势下,技术创新依然是现代煤化工行业实现困境突围的重要途径。业内专家认为,在示范阶段,应在煤炭分质高效利用、资源能源耦合利用、污染控制技术(如废水处理技术、废水处置方案、结晶盐利用与处置方案等)等方面承担环保示范任务,并提出示范技术达不到预期效果的应对措施;同时严格限制将加工工艺、污染防治技术或综合利用技术尚不成熟的高含铝、砷、氟、油及其他稀有元素的煤种作为原料煤和燃料煤。
技术创新不仅在于原创性发明,更在于具有重大应用价值的技术集成。汪寿建表示,“十三五”期间,应通过对煤化工单项工艺技术、工程技术和信息技术的重组,获得具有统一整体功能的全新成套技术,并努力形成现代煤化工的品牌;要进一步加大核心工艺技术、工程技术和环保技术的创新力度,在关键及核心技术方面取得突破;煤化工项目应创新工艺技术、工程技术和环保节能减排技术,项目建设规模应符合国家产业政策要求,采用能源转换率高、污染物排放强度低的升级工艺技术,并确保原料煤质相对稳定。
在汪寿建看来,有四类技术是构成“十三五”现代煤化工生存和发展的关键。
一是现代煤化工污染物控制技术(“三废”处理排放及废弃物回收利用环保技术、节能技术和节水技术);二是现代煤化工核心工艺示范升级创新技术(煤气化、合成气净化、合成、煤质分质分级综合利用技术);三是现代煤化工后续产品链技术(合成材料、合成树脂、合成橡胶等高端化学新材料技术以及精细化学品专业化、高附加值化技术);四是现代煤化工耦合集成技术(产品耦合技术、催化剂技术、多领域多元节能信息控制技术耦合和国产大型装备技术)。
“第一类解决环保问题,第二类解决生存问题,第三类解决同质化问题,第四类解决现代煤化工智能竞争力问题。这些技术都有很大的创新空间,等待行业去开拓。”汪寿建说。
白颐介绍说,在热解提质技术方面,行业要注重规模化应用的工业热解反应设备开发,装备和自控的系统集成和整体提升,热解产品深加工技术开发,配套的环保节能技术的应用和创新;在煤气化技术方面,要开发安全环保、可靠性强、效率高、消耗小、适应性强的技术,对煤种、煤质的适应性强(如高灰熔点)的气化技术,煤气化新工艺如催化气化工艺、共气化、地下气化等,开发国产大型煤气化装备,超高温3000~4000吨/天的大型气化炉,大型粉煤输送泵,煤气化废水处理技术。
在煤间接液化领域,要注重新型催化剂技术开发,产品要向特种油品、精细化学品方向发展,工艺向系统优化集成方向发展,关键技术装置向大型化、低能耗方向发展。在煤制天然气领域,要注重国产甲烷化工艺的优化及工业化、新型甲烷化反应器技术,创新国产催化剂的工业化应用,提高寿命、耐高温特性,注重节能降耗、余热利用。甲醇制烯烃领域,要注重催化剂改性、工艺条件和反应器优化、产品分离工艺,加强下游产品技术开发,减少同质化,优化原料结构,废水处理,节能降耗等。甲醇制芳烃领域,要注重国产技术的工业化验证,加强关键技术优化、提高芳烃产率、芳烃技术集成、煤制芳烃技术多元化、反应设备及优化。甲醇制汽油领域,要注重提高国产催化剂的活性、寿命、选择性,加强大型化反应器开发。工艺系统优化、副产物集成利用。
北京凯瑞英科技股份有限公司总经理唐强博士认为,以甲醇为原料生产聚甲氧基二甲醚(DMMn),将DMMn用作柴油调和组分,能明显减少污染物排放,提升油品质量,可以利用我国已经过剩的甲醇,替代部分油品,是“十三五”现代煤化工产品多元化的发展方向之一。该公司与清华大学、山东玉皇化工集团合作,已经开发全球首个万吨级DMMn生产装置,并通过鉴定,总体技术处于国际领先水平。目前,90万吨DMMn生产项目已被列为山东省重点建设项目,一期30万吨装置设备加工安装及现场建设工作已经启动。“我国目前柴油年消费量超过1.6亿吨,如果DMMn能替代20%柴油,其年需求量将超过3000万吨,市场空间十分广阔。”唐强告诉记者。
来源:中国化工报

『陆』 山西省高炉和铸造是两高吗

摘要 山西省是能源重化工基地,高能耗和高污染的现实严峻使环保与节能减排任务十分艰巨。为了解山西省“两高”企业节能减排实施情况及存在的问题,提供切实可行的对策建议,近期国家统计局山西调查总队对山西省太原、大同、长治、晋中、临汾、吕梁、朔州、运城、忻州等9个市的38家高能耗、高污染企业转型发展情况进行了调研,这些企业主要分布于煤炭(洗选)、炼焦、化工、电力、钢铁、铸造、建材、陶瓷等行业。调查结果显示,企业节能减排取得了积极成效,但攻坚克难还需加大政策扶持力度。

『柒』 煤炭气化技术的煤气化工艺

煤炭气化技术虽有很多种不同的分类方法,但一般常用按生产装置化学工程特征分类方法进行分类,或称为按照反应器形式分类。气化工艺在很大程度上影响煤化工产品的成本和效率,采用高效、低耗、无污染的煤气化工艺(技术)是发展煤化工的重要前提,其中反应器便是工艺的核心,可以说气化工艺的发展是随着反应器的发展而发展的,为了提高煤气化的气化率和气化炉气化强度,改善环境,新一代煤气化技术的开发总的方向,气化压力由常压向中高压(8.5 MPa)发展;气化温度向高温(1500~1600℃)发展;气化原料向多样化发展;固态排渣向液态排渣发展。 固定床气化也称移动床气化。固定床一般以块煤或焦煤为原料。煤由气化炉顶加入,气化剂由炉底加入。流动气体的上升力不致使固体颗粒的相对位置发生变化,即固体颗粒处于相对固定状态,床层高度亦基本保持不变,因而称为固定床气化。另外,从宏观角度看,由于煤从炉顶加入,含有残炭的炉渣自炉底排出,气化过程中,煤粒在气化炉内逐渐并缓慢往下移动,因而又称为移动床气化。
固定床气化的特性是简单、可靠。同时由于气化剂于煤逆流接触,气化过程进行得比较完全,且使热量得到合理利用,因而具有较高的热效率。
固定床气化炉常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种。前者用于生产合成气时一定要采用白煤(无烟煤)或焦碳为原料,以降低合成气中CH4含量,国内有数千台这类气化炉,弊端颇多;后者国内有20多台炉子,多用于生产城市煤气;该技术所含煤气初步净化系统极为复杂,不是公认的首选技术。
(1)、固定床间歇式气化炉(UGI)
以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。该技术是30年代开发成功的,投资少,容易操作,目前已属落后的技术,其气化率低、原料单一、能耗高,间歇制气过程中,大量吹风气排空,每吨合成氨吹风气放空多达5 000 m3,放空气体中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤气冷却洗涤塔排出的污水含有焦油、酚类及氰化物,造成环境污染。我国中小化肥厂有900余家,多数厂仍采用该技术生产合成原料气。随着能源政策和环境的要来越来越高,不久的将来,会逐步为新的煤气化技术所取代。
(2)、鲁奇气化炉
30年代德国鲁奇(Lurgi)公司开发成功固定床连续块煤气化技术,由于其原料适应性较好,单炉生产能力较大,在国内外得到广泛应用。气化炉压力(2.5~4.0)MPa,气化反应温度(800~900)℃,固态排渣,气化炉已定型(MK~1~MK-5),其中MK-5型炉,内径4.8m,投煤量(75~84)吨/h,粉煤气产量(10~14)万m3/h。煤气中除含CO和H2外,含CH4高达10%~12%,可作为城市煤气、人工天然气、合成气使用。缺点是气化炉结构复杂、炉内设有破粘和煤分布器、炉篦等转动设备,制造和维修费用大;入炉煤必须是块煤;原料来源受一定限制;出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多、炉渣含碳5%左右。针对上述问题,1984年鲁奇公司和英国煤气公司联合开发了液体排渣气化炉(BGL),特点是气化温度高,灰渣成熔融态排出,炭转化率高,合成气质量较好,煤气化产生废水量小并且处理难度小,单炉生产能力同比提高3~5倍,是一种有发展前途的气化炉。 流化床气化又称为沸腾床气化。其以小颗粒煤为气化原料,这些细颗粒在自下而上的气化剂的作用下,保持着连续不断和无秩序的沸腾和悬浮状态运动,迅速地进行着混合和热交换,其结果导致整个床层温度和组成的均一。流化床气化能得以迅速发展的主要原因在于:(1)生产强度较固定床大。(2)直接使用小颗粒碎煤为原料,适应采煤技术发展,避开了块煤供求矛盾。(3)对煤种煤质的适应性强,可利用如褐煤等高灰劣质煤作原料。
流化床气化炉常见有温克勒(Winkler)、灰熔聚(U-Gas)、循环流化床(CFB)、加压流化床(PFB是PFBC的气化部分)等。
(1)、循环流化床气化炉CFB
鲁奇公司开发的循环流化床气化炉(CFB)可气化各种煤,也可以用碎木、树皮、城市可燃垃圾作为气化原料,水蒸气和氧气作气化剂,气化比较完全,气化强度大,是移动床的2倍,碳转化率高(97%),炉底排灰中含碳2%~3%,气化原料循环过程中返回气化炉内的循环物料是新加入原料的40倍,炉内气流速度在(5~7)m/s之间,有很高的传热传质速度。气化压力0.15MPa。气化温度视原料情况进行控制,一般控制循环旋风除尘器的温度在(800~1050)℃之间。鲁奇公司的CFB气化技术,在全世界已有60多个工厂采用,正在设计和建设的还有30多个工厂,在世界市场处于领先地位。
CFB气化炉基本是常压操作,若以煤为原料生产合成气,每公斤煤消耗气化剂水蒸气1.2kg,氧气0.4kg,可生产煤气 (l.9~2.0)m3。煤气成份CO+H2>75%,CH4含量2.5%左右, CO215%,低于德士古炉和鲁奇MK型炉煤气中CO2含量,有利于合成氨的生产。
(2)、灰熔聚流化床粉煤气化技术
灰熔聚煤气化技术以小于6mm粒径的干粉煤为原料,用空气或富氧、水蒸气作气化剂,粉煤和气化剂从气化炉底部连续加入,在炉内(1050~1100)℃的高温下进行快速气化反应,被粗煤气夹带的未完全反应的残碳和飞灰,经两极旋风分离器回收,再返回炉内进行气化,从而提高了碳转化率,使灰中含磷量降低到10%以下,排灰系统简单。粗煤气中几乎不含焦油、酚等有害物质,煤气容易净化,这种先进的煤气化技术中国已自行开发成功。该技术可用于生产燃料气、合成气和联合循环发电,特别用于中小氮肥厂替代间歇式固定床气化炉,以烟煤替代无烟煤生产合成氨原料气,可以使合成氨成本降低15%~20%,具有广阔的发展前景。
U-Gas在上海焦化厂(120吨煤/天)1994年11月开车,长期运转不正常,于2002年初停运;中科院山西煤化所开发的ICC灰熔聚气化炉,于2001年在陕西城化股份公司进行了100吨/天制合成气工业示范装置试验。CFB、PFB可以生产燃料气,但国际上尚无生产合成气先例;Winkler已有用于合成气生产案例,但对粒度、煤种要求较为严格,甲烷含量较高(0.7%~2.5%),而且设备生产强度较低,已不代表发展方向。 气流床气化是一种并流式气化。从原料形态分有水煤浆、干煤粉2类;从专利上分,Texaco、Shell最具代表性。前者是先将煤粉制成煤浆,用泵送入气化炉,气化温度1350~1500℃;后者是气化剂将煤粉夹带入气化炉,在1500~1900℃高温下气化,残渣以熔渣形式排出。在气化炉内,煤炭细粉粒经特殊喷嘴进入反应室,会在瞬间着火,直接发生火焰反应,同时处于不充分的氧化条件下,因此,其热解、燃烧以吸热的气化反应,几乎是同时发生的。随气流的运动,未反应的气化剂、热解挥发物及燃烧产物裹夹着煤焦粒子高速运动,运动过程中进行着煤焦颗粒的气化反应。这种运动状态,相当于流化技术领域里对固体颗粒的“气流输送”,习惯上称为气流床气化。
气流床气化具有以下特点:(1)短的停留时间(通常1s);(2)高的反应温度(通常1300-1500℃);(3)小的燃料粒径(固体和液体,通常小于0.1mm);(4)液态排渣。而且,气流床气化通常在加压(通常20-50bar)和纯氧下运行。
气流床气化主要有以下几种分类方式:
(1)根据入炉原料的输送性能可分为干法进料和湿法进料;
(2)根据气化压力可分为常压气化和加压气化;
(3)根据气化剂可分为空气气化和氧气气化;
(4)根据熔渣特性可分为熔渣气流床和非熔渣气流床。
在熔渣气流床气化炉中,燃料灰分在气化炉中熔化。熔融的灰分在相对较冷的壁面上凝聚并最终形成一层保护层,然后液态熔渣会沿着该保护层从气化炉下部流出。熔渣的数量应保证连续的熔渣流动。通常,熔渣质量流应至少占总燃料流的6%。为了在给定的温度下形成具有合适粘度的液态熔渣,通常在燃料中添加一种被称为助熔剂的物质。这种助熔剂通常是石灰石和其它一些富含钙基的物质。在非熔渣气流床气化炉中,熔渣并不形成,这就意味着燃料必须含有很少量的矿物质和灰分,通常最大的灰分含量是1%。非熔渣气流床气化炉由于受原料的限制,因此工业上应用的较少。
气流床对煤种(烟煤、褐煤)、粒度、含硫、含灰都具有较大的兼容性,国际上已有多家单系列、大容量、加压厂在运作,其清洁、高效代表着当今技术发展潮流。
干粉进料的主要有K-T(Koppres-Totzek)炉、Shell- Koppres炉、Prenflo炉、Shell炉、GSP炉、ABB-CE炉,湿法煤浆进料的主要有德士古(Texaco)气化炉、Destec炉。
(1)、德士古(Texaco)气化炉
美国Texaco(2002年初成为Chevron公司一部分,2004年5月被GE公司收购)开发的水煤浆气化工艺是将煤加水磨成浓度为60~65%的水煤浆,用纯氧作气化剂,在高温高压下进行气化反应,气化压力在3.0~8.5MPa之间,气化温度1400℃,液态排渣,煤气成份CO+H2为80%左右,不含焦油、酚等有机物质,对环境无污染,碳转化率96~99%,气化强度大,炉子结构简单,能耗低,运转率高,而且煤适应范围较宽。目前Texaco最大商业装置是Tampa电站,属于DOE的CCT-3,1989年立项,1996年7月投运,12月宣布进入验证运行。该装置为单炉,日处理煤2000~2400吨,气化压力为2.8MPa,氧纯度为95%,煤浆浓度68%,冷煤气效率~76%,净功率250MW。
Texaco气化炉由喷嘴、气化室、激冷室(或废热锅炉)组成。其中喷嘴为三通道,工艺氧走一、三通道,水煤浆走二通道,介于两股氧射流之间。水煤浆气化喷嘴经常面临喷口磨损问题,主要是由于水煤浆在较高线速下(约30m/s)对金属材质的冲刷腐蚀。喷嘴、气化炉、激冷环等为Texaco水煤浆气化的技术关键。
80年代末至今,中国共引进多套Texaco水煤浆气化装置,用于生产合成气,我国在水煤浆气化领域中积累了丰富的设计、安装、开车以及新技术研究开发经验与知识。
从已投产的水煤浆加压气化装置的运行情况看,主要优点:水煤浆制备输送、计量控制简单、安全、可靠;设备国产化率高,投资省。由于工程设计和操作经验的不完善,还没有达到长周期、高负荷、稳定运行的最佳状态,存在的问题还较多,主要缺点:喷嘴寿命短、激冷环寿命仅一年、褐煤的制浆浓度约59%~61%;烟煤的制浆浓度为65%;因汽化煤浆中的水要耗去煤的8%,比干煤粉为原料氧耗高12%~20%,所以效率比较低。
(2)、Destec(Global E-Gas)气化炉
Destec气化炉已建设2套商业装置,都在美国:LGT1(气化炉容量2200吨/天,2.8MPa,1987年投运)与Wabsh Rive(二台炉,一开一备,单炉容量2500吨/天,2.8MPa,1995年投运)炉型类似于K-T,分第一段(水平段)与第二段(垂直段),在第一段中,2个喷嘴成180度对置,借助撞击流以强化混合,克服了Texaco炉型的速度成钟型(正态)分布的缺陷,最高反应温度约1400℃。为提高冷煤气效率,在第二阶段中,采用总煤浆量的10%~20%进行冷激(该点与Shell、Prenflo的循环没气冷激不同),此处的反应温度约1040℃,出口煤气进火管锅炉回收热量。熔渣自气化炉第一段中部流下,经水冷激固化,形成渣水浆排出。E-Gas气化炉采用压力螺旋式连续排渣系统。
Global E-Gas气化技术缺点为:二次水煤浆停留时间短,碳转化率较低;设有一个庞大的分离器,以分离一次煤气中携带灰渣与二次煤浆的灰渣与残炭。这种炉型适合于生产燃料气而不适合于生产合成气。
(3)、Shell气化炉
最早实现工业化的干粉加料气化炉是K-T炉,其它都是在其基础之上发展起来的,50年代初Shell开发渣油气化成功,在此基础上,经历了3个阶段:1976年试验煤炭30余种;1978年与德国Krupp-Koppers(krupp-Uhde公司的前身)合作,在Harburg建设日处理150t煤装置;两家分手后,1978年在美国Houston的Deer Park建设日处理250t高硫烟煤或日处理400t高灰分、高水分褐煤。共费时16年,至1988年Shell煤技术运用于荷兰Buggenum IGCC电站。该装置的设计工作为1.6年,1990年10月开工建造,1993年开车,1994年1月进入为时3年的验证期,目前已处于商业运行阶段。单炉日处理煤2000t。
Shell气化炉壳体直径约4.5m,4个喷嘴位于炉子下部同一水平面上,沿圆周均匀布置,借助撞击流以强化热质传递过程,使炉内横截面气速相对趋于均匀。炉衬为水冷壁(Membrame Wall),总重500t。炉壳于水冷管排之间有约0.5m间隙,做安装、检修用。
煤气携带煤灰总量的20%~30%沿气化炉轴线向上运动,在接近炉顶处通入循环煤气激冷,激冷煤气量约占生成煤气量的60%~70%,降温至900℃,熔渣凝固,出气化炉,沿斜管道向上进入管式余热锅炉。煤灰总量的70%~80%以熔态流入气化炉底部,激冷凝固,自炉底排出。
粉煤由N2携带,密相输送进入喷嘴。工艺氧(纯度为95%)与蒸汽也由喷嘴进入,其压力为3.3~3.5MPa。气化温度为1500~1700℃,气化压力为3.0MPa。冷煤气效率为79%~81%;原料煤热值的13%通过锅炉转化为蒸汽;6%由设备和出冷却器的煤气显热损失于大气和冷却水。
Shell煤气化技术有如下优点:采用干煤粉进料,氧耗比水煤浆低15%;碳转化率高,可达99%,煤耗比水煤浆低8%;调解负荷方便,关闭一对喷嘴,负荷则降低50%;炉衬为水冷壁,据称其寿命为20年,喷嘴寿命为1年。主要缺点:设备投资大于水煤浆气化技术;气化炉及废锅炉结构过于复杂,加工难度加大。
我公司直接液化项目采用此技术生产氢气。
(4)、GSP气化炉
GSP(GAS Schwarze Pumpe)称为“黑水泵气化技术”,由前东德的德意志燃料研究所(简称DBI)于1956年开发成功。目前该技术属于成立于2002年未来能源公司(FUTURE ENERGY GmbH)(Sustec Holding AG子公司)。GSP气化炉是一种下喷式加压气流床液态排渣气化炉,其煤炭加入方式类似于shell,炉子结构类似于德士古气化炉。1983年12月在黑水泵联合企业建成第一套工业装置,单台气化炉投煤量为720吨/天,1985年投入运行。GSP气化炉目前应用很少,仅有5个厂应用,我国还未有一台正式使用,宁煤集团(我公司控股)将要引进此技术用于煤化工项目。
总之,从加压、大容量、煤种兼容性大等方面看,气流床煤气化技术代表着气化技术的发展方向,水煤浆和干煤粉进料状态各有利弊,界限并不十分明确,国内技术界也众说纷纭。

『捌』 煤炭气化的优点体现在哪些方面

一、煤气化原理
气化过程是煤炭的一个热化学加工过程。它是以煤或煤焦为原料,以氧气(空气、富氧或工业纯氧)、水蒸气作为气化剂,在高温高压下通过化学反应将煤或煤焦中的可燃部分转化为可燃性气体的工艺过程。气化时所得的可燃气体成为煤气,对于做化工原料用的煤气一般称为合成气(合成气除了以煤炭为原料外,还可以采用天然气、重质石油组分等为原料),进行气化的设备称为煤气发生炉或气化炉。 煤炭气化包含一系列物理、化学变化。一般包括热解和气化和燃烧四个阶段。干燥属于物理变化,随着温度的升高,煤中的水分受热蒸发。其他属于化学变化,燃烧也可以认为是气化的一部分。煤在气化炉中干燥以后,随着温度的进一步升高,煤分子发生热分解反应,生成大量挥发性物质(包括干馏煤气、焦油和热解水等),同时煤粘结成半焦。煤热解后形成的半焦在更高的温度下与通入气化炉的气化剂发生化学反应,生成以一氧化碳、氢气、甲烷及二氧化碳、氮气、硫化氢、水等为主要成分的气态产物,即粗煤气。气化反应包括很多的化学反应,主要是碳、水、氧、氢、一氧化碳、二氧化碳相互间的反应,其中碳与氧的反应又称燃烧反应,提供气化过程的热量。 主要反应有: 1、水蒸气转化反应 C+H2O=CO+H2-131KJ/mol 2、水煤气变换反应 CO+ H2O =CO2+H2+42KJ/mol 3、部分氧化反应 C+0.5 O2=CO+111KJ/mol 4、完全氧化(燃烧)反应 C+O2=CO2+394KJ/mol 5、甲烷化反应 CO+2H2=CH4+74KJ/mol 6、Boudouard反应 C+CO2=2CO-172KJ/mol
二、煤气化工艺
煤炭气化技术虽有很多种不同的分类方法,但一般常用按生产装置化学工程特征分类方法进行分类,或称为按照反应器形式分类。气化工艺在很大程度上影响煤化工产品的成本和效率,采用高效、低耗、无污染的煤气化工艺(技术)是发展煤化工的重要前提,其中反应器便是工艺的核心,可以说气化工艺的发展是随着反应器的发展而发展的,为了提高煤气化的气化率和气化炉气化强度,改善环境,新一代煤气化技术的开发总的方向,气化压力由常压向中高压(8.5 MPa)发展;气化温度向高温(1500~1600℃)发展;气化原料向多样化发展;固态排渣向液态排渣发展。 1、固定床气化 固定床气化也称移动床气化。固定床一般以块煤或焦煤为原料。煤由气化炉顶加入,气化剂由炉底加入。流动气体的上升力不致使固体颗粒的相对位置发生变化,即固体颗粒处于相对固定状态,床层高度亦基本保持不变,因而称为固定床气化。另外,从宏观角度看,由于煤从炉顶加入,含有残炭的炉渣自炉底排出,气化过程中,煤粒在气化炉内逐渐并缓慢往下移动,因而又称为移动床气化。 固定床气化的特性是简单、可靠。同时由于气化剂于煤逆流接触,气化过程进行得比较完全,且使热量得到合理利用,因而具有较高的热效率。 固定床气化炉常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种。前者用于生产合成气时一定要采用白煤(无烟煤)或焦碳为原料,以降低合成气中CH4含量,国内有数千台这类气化炉,弊端颇多;后者国内有20多台炉子,多用于生产城市煤气;该技术所含煤气初步净化系统极为复杂,不是公认的首选技术。 (1)、固定床间歇式气化炉(UGI) 以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。该技术是30年代开发成功的,投资少,容易操作,目前已属落后的技术,其气化率低、原料单一、能耗高,间歇制气过程中,大量吹风气排空,每吨合成氨吹风气放空多达5 000 m3,放空气体中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤气冷却洗涤塔排出的污水含有焦油、酚类及氰化物,造成环境污染。我国中小化肥厂有900余家,多数厂仍采用该技术生产合成原料气。随着能源政策和环境的要来越来越高,不久的将来,会逐步为新的煤气化技术所取代。 (2)、鲁奇气化炉 30年代德国鲁奇(Lurgi)公司开发成功固定床连续块煤气化技术,由于其原料适应性较好,单炉生产能力较大,在国内外得到广泛应用。气化炉压力(2.5~4.0)MPa,气化反应温度(800~900)℃,固态排渣,气化炉已定型(MK~1~MK-5),其中MK-5型炉,内径4.8m,投煤量(75~84)吨/h,粉煤气产量(10~14)万m3/h。煤气中除含CO和H2外,含CH4高达10%~12%,可作为城市煤气、人工天然气、合成气使用。缺点是气化炉结构复杂、炉内设有破粘和煤分布器、炉篦等转动设备,制造和维修费用大;入炉煤必须是块煤;原料来源受一定限制;出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多、炉渣含碳5%左右。针对上述问题,1984年鲁奇公司和英国煤气公司联合开发了液体排渣气化炉(BGL),特点是气化温度高,灰渣成熔融态排出,炭转化率高,合成气质量较好,煤气化产生废水量小并且处理难度小,单炉生产能力同比提高3~5倍,是一种有发展前途的气化炉。 2、流化床气化 流化床气化又称为沸腾床气化。其以小颗粒煤为气化原料,这些细颗粒在自下而上的气化剂的作用下,保持着连续不断和无秩序的沸腾和悬浮状态运动,迅速地进行着混合和热交换,其结果导致整个床层温度和组成的均一。流化床气化能得以迅速发展的主要原因在于:(1)生产强度较固定床大。(2)直接使用小颗粒碎煤为原料,适应采煤技术发展,避开了块煤供求矛盾。(3)对煤种煤质的适应性强,可利用如褐煤等高灰劣质煤作原料。 流化床气化炉常见有温克勒(Winkler)、灰熔聚(U-Gas)、循环流化床(CFB)、加压流化床(PFB是PFBC的气化部分)等。 (1)、循环流化床气化炉CFB 鲁奇公司开发的循环流化床气化炉(CFB)可气化各种煤,也可以用碎木、树皮、城市可燃垃圾作为气化原料,水蒸气和氧气作气化剂,气化比较完全,气化强度大,是移动床的2倍,碳转化率高(97%),炉底排灰中含碳2%~3%,气化原料循环过程中返回气化炉内的循环物料是新加入原料的40倍,炉内气流速度在(5~7)m/s之间,有很高的传热传质速度。气化压力0.15MPa。气化温度视原料情况进行控制,一般控制循环旋风除尘器的温度在(800~1050)℃之间。鲁奇公司的CFB气化技术,在全世界已有60多个工厂采用,正在设计和建设的还有30多个工厂,在世界市场处于领先地位。 CFB气化炉基本是常压操作,若以煤为原料生产合成气,每公斤煤消耗气化剂水蒸气1.2kg,氧气0.4kg,可生产煤气 (l.9~2.0)m3。煤气成份CO+H2>75%,CH4含量2.5%左右, CO215%,低于德士古炉和鲁奇MK型炉煤气中CO2含量,有利于合成氨的生产。 (2)、灰熔聚流化床粉煤气化技术 灰熔聚煤气化技术以小于6mm粒径的干粉煤为原料,用空气或富氧、水蒸气作气化剂,粉煤和气化剂从气化炉底部连续加入,在炉内(1050~1100)℃的高温下进行快速气化反应,被粗煤气夹带的未完全反应的残碳和飞灰,经两极旋风分离器回收,再返回炉内进行气化,从而提高了碳转化率,使灰中含磷量降低到10%以下,排灰系统简单。粗煤气中几乎不含焦油、酚等有害物质,煤气容易净化,这种先进的煤气化技术中国已自行开发成功。该技术可用于生产燃料气、合成气和联合循环发电,特别用于中小氮肥厂替代间歇式固定床气化炉,以烟煤替代无烟煤生产合成氨原料气,可以使合成氨成本降低15%~20%,具有广阔的发展前景。 U-Gas在上海焦化厂(120吨煤/天)1994年11月开车,长期运转不正常,于2002年初停运;中科院山西煤化所开发的ICC灰熔聚气化炉,于2001年在陕西城化股份公司进行了100吨/天制合成气工业示范装置试验。CFB、PFB可以生产燃料气,但国际上尚无生产合成气先例;Winkler已有用于合成气生产案例,但对粒度、煤种要求较为严格,甲烷含量较高(0.7%~2.5%),而且设备生产强度较低,已不代表发展方向。 3、气流床气化 气流床气化是一种并流式气化。从原料形态分有水煤浆、干煤粉2类;从专利上分,Texaco、Shell最具代表性。前者是先将煤粉制成煤浆,用泵送入气化炉,气化温度1350~1500℃;后者是气化剂将煤粉夹带入气化炉,在1500~1900℃高温下气化,残渣以熔渣形式排出。在气化炉内,煤炭细粉粒经特殊喷嘴进入反应室,会在瞬间着火,直接发生火焰反应,同时处于不充分的氧化条件下,因此,其热解、燃烧以吸热的气化反应,几乎是同时发生的。随气流的运动,未反应的气化剂、热解挥发物及燃烧产物裹夹着煤焦粒子高速运动,运动过程中进行着煤焦颗粒的气化反应。这种运动状态,相当于流化技术领域里对固体颗粒的“气流输送”,习惯上称为气流床气化。 气流床对煤种(烟煤、褐煤)、粒度、含硫、含灰都具有较大的兼容性,国际上已有多家单系列、大容量、加压厂在运作,其清洁、高效代表着当今技术发展潮流。 干粉进料的主要有K-T(Koppres-Totzek)炉、Shell- Koppres炉、Prenflo炉、Shell炉、GSP炉、ABB-CE炉,湿法煤浆进料的主要有德士古(Texaco)气化炉、Destec炉。 (1)、德士古(Texaco)气化炉 美国Texaco(2002年初成为Chevron公司一部分,2004年5月被GE公司收购)开发的水煤浆气化工艺是将煤加水磨成浓度为60~65%的水煤浆,用纯氧作气化剂,在高温高压下进行气化反应,气化压力在3.0~8.5MPa之间,气化温度1400℃,液态排渣,煤气成份CO+H2为80%左右,不含焦油、酚等有机物质,对环境无污染,碳转化率96~99%,气化强度大,炉子结构简单,能耗低,运转率高,而且煤适应范围较宽。目前Texaco最大商业装置是Tampa电站,属于DOE的CCT-3,1989年立项,1996年7月投运,12月宣布进入验证运行。该装置为单炉,日处理煤2000~2400吨,气化压力为2.8MPa,氧纯度为95%,煤浆浓度68%,冷煤气效率~76%,净功率250MW。 Texaco气化炉由喷嘴、气化室、激冷室(或废热锅炉)组成。其中喷嘴为三通道,工艺氧走一、三通道,水煤浆走二通道,介于两股氧射流之间。水煤浆气化喷嘴经常面临喷口磨损问题,主要是由于水煤浆在较高线速下(约30m/s)对金属材质的冲刷腐蚀。喷嘴、气化炉、激冷环等为Texaco水煤浆气化的技术关键。 80年代末至今,中国共引进多套Texaco水煤浆气化装置,用于生产合成气,我国在水煤浆气化领域中积累了丰富的设计、安装、开车以及新技术研究开发经验与知识。 从已投产的水煤浆加压气化装置的运行情况看,主要优点:水煤浆制备输送、计量控制简单、安全、可靠;设备国产化率高,投资省。由于工程设计和操作经验的不完善,还没有达到长周期、高负荷、稳定运行的最佳状态,存在的问题还较多,主要缺点:喷嘴寿命短、激冷环寿命仅一年、褐煤的制浆浓度约59%~61%;烟煤的制浆浓度为65%;因汽化煤浆中的水要耗去煤的8%,比干煤粉为原料氧耗高12%~20%,所以效率比较低。 (2)、Destec(Global E-Gas)气化炉 Destec气化炉已建设2套商业装置,都在美国:LGT1(气化炉容量2200吨/天,2.8MPa,1987年投运)与Wabsh Rive(二台炉,一开一备,单炉容量2500吨/天,2.8MPa,1995年投运)炉型类似于K-T,分第一段(水平段)与第二段(垂直段),在第一段中,2个喷嘴成180度对置,借助撞击流以强化混合,克服了Texaco炉型的速度成钟型(正态)分布的缺陷,最高反应温度约1400℃。为提高冷煤气效率,在第二阶段中,采用总煤浆量的10%~20%进行冷激(该点与Shell、Prenflo的循环没气冷激不同),此处的反应温度约1040℃,出口煤气进火管锅炉回收热量。熔渣自气化炉第一段中部流下,经水冷激固化,形成渣水浆排出。E-Gas气化炉采用压力螺旋式连续排渣系统。 Global E-Gas气化技术缺点为:二次水煤浆停留时间短,碳转化率较低;设有一个庞大的分离器,以分离一次煤气中携带灰渣与二次煤浆的灰渣与残炭。这种炉型适合于生产燃料气而不适合于生产合成气。 (3)、Shell气化炉 最早实现工业化的干粉加料气化炉是K-T炉,其它都是在其基础之上发展起来的,50年代初Shell开发渣油气化成功,在此基础上,经历了3个阶段:1976年试验煤炭30余种;1978年与德国Krupp-Koppers(krupp-Uhde公司的前身)合作,在Harburg建设日处理150t煤装置;两家分手后,1978年在美国Houston的Deer Park建设日处理250t高硫烟煤或日处理400t高灰分、高水分褐煤。共费时16年,至1988年Shell煤技术运用于荷兰Buggenum IGCC电站。该装置的设计工作为1.6年,1990年10月开工建造,1993年开车,1994年1月进入为时3年的验证期,目前已处于商业运行阶段。单炉日处理煤2000t。 Shell气化炉壳体直径约4.5m,4个喷嘴位于炉子下部同一水平面上,沿圆周均匀布置,借助撞击流以强化热质传递过程,使炉内横截面气速相对趋于均匀。炉衬为水冷壁(Membrame Wall),总重500t。炉壳于水冷管排之间有约0.5m间隙,做安装、检修用。 煤气携带煤灰总量的20%~30%沿气化炉轴线向上运动,在接近炉顶处通入循环煤气激冷,激冷煤气量约占生成煤气量的60%~70%,降温至900℃,熔渣凝固,出气化炉,沿斜管道向上进入管式余热锅炉。煤灰总量的70%~80%以熔态流入气化炉底部,激冷凝固,自炉底排出。 粉煤由N2携带,密相输送进入喷嘴。工艺氧(纯度为95%)与蒸汽也由喷嘴进入,其压力为3.3~3.5MPa。气化温度为1500~1700℃,气化压力为3.0MPa。冷煤气效率为79%~81%;原料煤热值的13%通过锅炉转化为蒸汽;6%由设备和出冷却器的煤气显热损失于大气和冷却水。 Shell煤气化技术有如下优点:采用干煤粉进料,氧耗比水煤浆低15%;碳转化率高,可达99%,煤耗比水煤浆低8%;调解负荷方便,关闭一对喷嘴,负荷则降低50%;炉衬为水冷壁,据称其寿命为20年,喷嘴寿命为1年。主要缺点:设备投资大于水煤浆气化技术;气化炉及废锅炉结构过于复杂,加工难度加大。 我公司直接液化项目采用此技术生产氢气。 (4)、GSP气化炉 GSP(GAS Schwarze Pumpe)称为“黑水泵气化技术”,由前东德的德意志燃料研究所(简称DBI)于1956年开发成功。目前该技术属于成立于2002年未来能源公司(FUTURE ENERGY GmbH)(Sustec Holding AG子公司)。GSP气化炉是一种下喷式加压气流床液态排渣气化炉,其煤炭加入方式类似于shell,炉子结构类似于德士古气化炉。1983年12月在黑水泵联合企业建成第一套工业装置,单台气化炉投煤量为720吨/天,1985年投入运行。GSP气化炉目前应用很少,仅有5个厂应用,我国还未有一台正式使用,宁煤集团(我公司控股)将要引进此技术用于煤化工项目。 总之,从加压、大容量、煤种兼容性大等方面看,气流床煤气化技术代表着气化技术的发展方向,水煤浆和干煤粉进料状态各有利弊,界限并不十分明确,国内技术界也众说纷纭。
3、我国煤气化技术进展
煤气化技术在中国已有近百年的历史,但仍然较落后和发展缓慢,就总体而言,中国煤气化以传统技术为主,工艺落后,环保设施不健全,煤炭利用效率低,污染严重。目前在国内较为成熟的仍然只是常压固定床气化技术。它广泛用于冶金、化工、建材、机械等工业行业和民用燃气,以UGI、水煤气两段炉、发生炉两段炉等固定床气化技术为主。常压固定床气化技术的优点是操作简单,投资小;但技术落后,能力和效率低,污染重,急需技术改造。如不改变现状,将影响经济、能源和环境的协调发展。 近40年来,在国家的支持下,中国在研究与开发、消化引进技术方面进行了大量工作。我国先后从国外引进的煤气化技术多种多样。通过对煤气化引进技术的消化吸收,尤其是通过国家重点科技攻关,对引进装置进行技术改造并使之国产化,使我国煤气化技术的研究开发取得了重要进展。50年代末到80年代进行了仿K-T气化技术研究与开发;80年代中科院山西煤化所开发了灰熔聚流化床煤气化工艺并取得了专利;“九五”期间华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司承担了国家重点科技攻关项目“新型(多喷嘴对置)水煤浆气化炉开发”(22吨煤/天装置),中试装置的结果表明:有效气成分~83%,比相同条件下的Texaco生产装置高1.5~2个百分点;碳转化率>98%,比Texaco高2~3个百分点;比煤耗、比氧耗均比Texaco降低7%。 “十五”期间多喷嘴对置式水煤浆气化技术已进入商业示范阶段。“新型水煤浆气化技术”获“十五”国家高技术研究发展计划(863计划)立项,由兖矿集团有限公司、华东理工大学承担,在兖矿鲁南化肥厂建设多喷嘴对置式水煤浆气化炉及配套工程,利用两台日处理1150吨煤多喷嘴对置式水煤浆气化炉(4.0MPa)配套生产24万吨甲醇、联产71.8MW发电,总投资为~16亿元。该装置于2005年7月21日一次投料成功,并完成80小时连续、稳定运行。装置初步运行结果表明:有效气CO+H2超过82%,碳转化率高于98%。它标志着我国拥有了具备自主知识产权的、与国家能源结构相适应的煤气化技术具有重大的突破,其水平填补了国内空白,并达到国际先进水平。

『玖』 焦化废水 煤气化废水 煤化工废水 各有什么不同

焦化废水是煤炭炼焦过程产生的废水,主要有氮氧化物、焦油、硫化物、灰渣等成分;
煤气化废水是指煤炭经过高温气化过程产生的废水,主要有氨氮、硫化物、煤气、灰尘等成分;
煤化工废水是指煤气化后经过深加工过程产生的废水,主要有氨氮、有机物,硫化物,以及一些副产品成分等等,是处理难度最大、最复杂的废水。

『拾』 化工企业废水必须零排放吗零排放的吨水投资成本是多少呢有没有比较靠谱的废水零排放工艺

工业废水问题的破解迫在眉睫,工业废水零排放是指化工厂生产产品过程专中所产生的废水,如生产乙属烯、聚乙烯、橡胶、聚酯、甲醇、乙二醇、油品罐区、空压站等装置的含油废水,经过生化处理后,一般可达到国家二级排放标准,现由于水资源的短缺,需达到排放标准的水再经过进一步深度处理后,达到工业补水的要求并回用。
现代化工业废水按照含盐量可分为两类
1、是高浓度有机废水。主要来源于煤气化工艺废水等,其特点是含盐量低、污染物以COD为主。
2、是含盐废水。主要来源于生产过程中煤气洗涤废水、循环水系统排水、除盐水系统排水、回用系统浓水等,其特点是含盐量高。
工业废水零处理工艺介绍
1、由多元金属熔合多种催化剂,通过高温熔炼形成一体化合金,保证“原电池”效应持续高效。不会像物理混合那样出现阴阳极分离,影响原电池反应。
2、架构式微孔结构形式,提供了极大的表面积和均匀的水气流通道,对废水处理提供了更大的电流密度和更好的催化反应效果。
3、活性强,比重轻,不钝化、不板结,反应速率快,长期运行稳定有效。
4、针对不同废水调整不同比例的催化成份,提高了反应效率,扩大了对废水处理的应用范围。

阅读全文

与高炉煤气化废水相关的资料

热点内容
长安欧诺空气滤芯是在哪里拆的 浏览:438
制取蒸馏水实验冷凝管的作用 浏览:886
核废水为什么要用冷水冷却 浏览:240
茂名新华粤树脂有限公经过 浏览:512
2013款捷达水箱除垢 浏览:471
河南电镀镍废水处理什么价格 浏览:188
高效过滤器的阻力多大 浏览:322
环戊二烯蒸馏方法 浏览:673
xad2树脂预处理 浏览:819
市政工程污水管工程量怎么计算 浏览:551
安徽阜阳污水处理公司 浏览:215
川崎空调滤芯在哪里 浏览:408
普通活性污泥法污水处理水厂 浏览:647
福田瑞沃货车空调滤芯怎么换 浏览:203
河南污水池聚脲多少钱 浏览:476
纯水加什么导电 浏览:174
家用反渗透机不启动怎么办 浏览:778
饮水机有异味用什么了清洗 浏览:529
饮水机接水小怎么办 浏览:867
伟业饮水机怎么样 浏览:179