1. 平板式膜与中空纤维膜在工业废水中哪个效果更好
平板膜与中空纤维膜处理废水是各有特点,平板膜相对的单位膜面积通量略大于中空纤维膜,抗污染性也略好于中空纤维膜,但是平板膜的单位体积膜面积填充密度远小于中空纤维膜(即同样膜面积的体积远大于中空纤维膜),平板膜无法真正意义上的反洗,中空纤维膜在受污染后可以很容易的用反洗、气泡擦洗联用的方法来清除污染恢复通量,平板膜通常结构比中纤维膜复杂,价格也通常会高出不少。在中国目前市场上,用中空纤维膜还是主流。
我想请问下超滤膜是用哪个厂家的牌号做的?
3. 请问生产一吨玻璃会产生多少污染气体和污水
玻璃生复产目前属于限制性制产业。国家工业和信息化部在2010年专门制定了《日用玻璃行业准入条件》(可在相关网站上查到)。
在《日用玻璃行业准入条件》中,对玻璃生产中的环境保护和清洁生产、能源消耗、各污染物的排放都有具体、细致的要求。其中就有:外排废水量、废水PH值、COD产生量、SS产生量、烟尘产生量、SO2产生量、NOx产生量等污染物排放要求。各项指标都是以吨产品计的。
不达到这些指标要求是不允许生产的。
生产不同的玻璃产品、采用不同的生产工艺技术,各项指标要求也不同。所以没法在这里详细列出。请参考该《准入条件》。
4. 为几个时期哪个时期净化废水效果最好
工业废水处理中的应用
目前膜技术处理工艺在环境过程中的应用,主要是超滤、反渗透、渗析和电渗析等方法用于处理各工业废水。超滤技术因其操作压力低、能耗低、通量大、分离效率高,可以回收和回用有用物质和水,特别是通量大的特点,使得超滤成为废水处理工程采用的主要膜分离技术。
化纤、纺织工业废水
染料废水种类繁多,组成复杂,主要包括含盐、有机物的有色废水;氯化及溴化废水;含有微酸和微碱的有机废水;含有铜、铅、铬、锰、汞等阳离子的有色废水;含硫的有机物废水。废水量大,浓度高,色度高,毒性大,是治理难度最大的工业废水之一。用聚砜超滤膜管式和中空纤维式装置处理染料废水的现场实验,脱色率为95%~98%,COD去除率60%~90%,浓缩液含染料15~20 g/L,并被印染厂引用于生产。
造纸工业废水
造纸工业耗水量极大,造纸废水主要来源于去皮、浆化、洗净、漂白、抄纸等工序。用超滤技术处理造纸废水既可以对废水中某些有用成分进行浓缩回收,又可将透过水回用。工艺为:将废液预热升温到50~70℃,打开进料阀,废液经过过滤器进入储罐内,超滤始终控制入口压力0.6 MPa,出口压力0.3 MPa,膜的工作温度60~65 ℃,膜工作面积2.25 cm2。结果成品的木质素磺酸浓度大于95%,还原物去除率大于85%,固形物的率大于30%,达到了对废液中高分子木质素磺酸的有效分离、纯化以及浓缩的目的。
含油废水的处理
含原油废水中含油量通常为100~1000 mg/L,超过国家排放标准(10 mg/L),故排放前必须进行除油处理。可采用中空纤维超滤膜组件和超滤设备,在操作压力为0.10 MPa,废水温度40℃,膜的透水速度可达60~120 L/(cm2·h),可以把含原油100~1000 mg/L的废水处理达到环境排放标准10 mg/L以下,也使处理后的水质达到了低渗透油田的注水标准[11]。
5. 人均每天污水排放量是好多
城市居民(成年人)24小时正常生活污水量 200L
农村居民(成年人)24小时正常生活污水量 120--180L
6. 化工废水的处理
化工废水处理:
化工废水是指化工厂生产产品过程中所生产的废水,如生产乙烯、聚乙烯、橡胶、聚酯、甲醇、乙二醇、油品罐区、空分空压站等装置的含油废水,经过生化处理后,一般可达到国家二级排放标准,现由于水资源的短缺,需将达到排放标准的水再经过进一步深度处理后,达到工业补水的要求并回用。 化工厂作为用水大户,年新鲜水用量一般为几百万立方米,水的重复利用率低,同时外排污水几百万立方米,不仅浪费大量水资源,也造成环境污染,并且水资源的短缺已对这些工业用水大户的生产造成威胁。为保持企业的可持续发展及减少水资源的浪费,降低生产成本,提高企业经济效益和社会效益。需对化工废水进行深度处理(三级处理),作为循环水的补水或动力脱盐水的补水,实现污水回用。 由于水中杂质主要为悬浮颗粒和细毛纤维,利用机械过滤原理,采用微孔过滤技术将杂质去除。由PLC或时间继电器控制过滤器设备工作状况,实现自动反冲洗、自动运行,提升水泵提供过滤器所需水头,出水直接引入生产系统。
编辑本段化工废水中水回用
废水性质
化工产品生产过程中产生的废水表现为:排放量大、毒性大、有机物浓度高、含盐量高、色度高、难降解化合物含量高、治理难度大,但同时废水中也含有许多可利用的资源,而膜技术作为高新技术在化工领域的生产加工、节能降耗和清洁生产等方面发挥着重要。
编辑本段废水处理
化工废水深度处理中水回用优化组合工艺: (1) 预处理+UF+RO/NF 处理工艺 (2) MBR+UF/RO/NF处理工艺 工艺系统优点: 超滤系统优点:采用高分子材料的中空纤维膜,抗耐压、抗污染、使用寿命长 占地面积小、自动化程度高、 分离能力强、出水水质好 保证后续RO/NF系统的正常运行 RO/NF膜处理系统优点:RO系统采用抗污染反渗透膜、使用寿命长 盐分、有机物、难降解化合物有效截留 出水水质适用于所有生产工艺 自动化程度高、运行成本低 膜-生物反应器工艺(MBR工艺)是膜分离技术与生物技术有机结合的新型废水处理技术。它利用膜分离设备将生化反应池中的活性污泥和大分子有机物质截留住,分离出清水,实现生化反应与清水分离同步进行,省掉二沉池。 MBR紧凑简洁单元结构特别适合于处理成份复杂、污染物浓度高的印染废水。 MBR工艺的优点:处理效率高、出水水质好、污泥少 水力停留时间短、占地面积小 易清洗、易更换、运行稳定、运行成本低 耐冲击能力强、COD和色度去除效率高 应用领域:高浓度化工废水、氯碱行业废水、农药废水、化工园区及污水处理厂、 含磷废水处理、 含甲醛废水处理
7. PVDF中空纤维超滤膜与一般超滤膜的区别所在
PVDF中空纤维超滤膜其独特的抗氧化性,易清洗的特点,在污水处理、中水回用、自来水净化方面可广泛应用。
8. 生产废水和生活污水的污染物产生量怎么计算
排污系数,即污染物排放系数,指在典型工况生产条件下,生产单位产品(实用订单为原料等)所产生的污染物量经过末端治理设施削减后的残余量,或生产单位产品(实用单位原料)直接排放到环境中的污染物量.当污染物直排时,排污系数与产污系数相同.
这个理解了就行,不需要什么公式的.具体你看你们单位的数据.什么废水污染物生产量等等的
常用的排污系数
烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘.
烧一吨柴油,排放2000×S%千克SO2,1.2万立米废气;排放1千克烟尘.
烧一吨重油,排放2000×S%千克SO2,1.6万立米废气;排放2千克烟尘.
大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克.
普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克;
砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫.
规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫.
乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫.
物料衡算公式:
1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%.若燃煤的含硫率为1%,则烧1吨煤排放16公斤SO2 .
1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油1.5-3%,柴油0.5-0.8%.若含硫率为2%,燃烧1吨油排放40公斤SO2 .
¬排污系数:燃烧一吨煤,排放0.9-1.2万标立方米燃烧废气,电厂可取小值,其他小厂可取大值. 燃烧一吨油,排放1.2-1.6万标立方米废气,柴油取小值,重油取大值.
【城镇排水折算系数】 0.7~0.9,即用水量的70-90%.
【生活污水排放系数】采用本地区的实测系数.
【生活污水中COD产生系数】60g/人.日.也可用本地区的实测系数 .
【生活污水中氨氮产生系数】7g/人.日.也可用本地区的实测系数.使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数.
【生活及其他烟尘排放量】
按燃用民用型煤和原煤分别采用不同的系数计算:
民用型煤:每吨型煤排放1~2公斤烟尘
原 煤:每吨原煤排放8~10公斤烟尘
一、工业废气排放总量计算
1.实测法
当废气排放量有实测值时,采用下式计算:
Q年= Q时× B年/B时/10000
式中:
Q年——全年废气排放量,万标m3/y;
Q时——废气小时排放量,标m3/h;
B年——全年燃料耗量(或熟料产量),kg/y;
B时——在正常工况下每小时的燃料耗量(或熟料产量) ,kg/h.
2.系数推算法
1)锅炉燃烧废气排放量的计算
①理论空气需要量(V0)的计算a. 对于固体燃料,当燃料应用基挥发分Vy>15%(烟煤),计算公式为:V0=0.251 ×QL/1000+0.278[m3(标)/kg]
当Vy
9. 中空纤维和玻璃纤维的区别是什么
中空纤维超滤膜
分离原理及特点
超滤技术是通过膜表面的微孔结构对物质进行选择性分离。当液体混合物在一定压力下流经膜表面时,小分子溶质透过膜(称为超滤液),而大分子物质则被截留,使原液中大分子浓度逐渐提高(称为浓缩液),从而实现大、小分子的分离、浓缩、净化的目的。
中空纤维超滤膜组件具有装填密度大、结构简单、操作方便等特点,分离过程为常温操作,无相态变化,节省能源,并且不产生二次污染。
分离体系一般为动态过滤,可有效防止或减少被截留物在膜表面的沉积,维持较高的滤液透过量。膜表面沉积物的去除与膜通过通量的恢复,可采用正向清洗与反向清洗两种方式,也可以在线清洗。清洗液一般是水或滤过液,也可添加化学药剂以提高清洗效果。
中空纤维组件必须在湿态下使用与保存。长期停用时,用0.5%甲醛或次氯酸钠水溶液保存。
膜装置系统可用双氧水、次氯酸钠、氢氧化钠等水溶液灭菌消毒。
应用实例 膜应用领域
制药工业符合GMP的水处理设备
中水处理设备
反渗透纯水设备
中空纤维超滤膜
养鱼场水处理设备
膜的应用领域
膜分离技术以其节能效果显著、设备简单、操作方便、容易控制而受到广大用户的普遍欢迎。选择适当的膜分离过程,可替代鼓式真空过滤、板框压滤、离子交换、离心分离、溶媒抽提、静电除尘、袋式过滤、吸附/再生、絮凝/共聚、倾析/沉淀、蒸发、结晶等多种传统的分离与过滤方法。
膜分离过程不仅为水与空气的净化提供了一条极为简便、有效的途径,而且它能在生产工艺中应用以提高产品的回收率。从而在增加效益的同时,减少了产品在废水/废气中的流失,符合清洁生产工艺的要求与规范。
膜分离技术可以广泛的应用在下列行业中:
化学/染料工业
活性染料的脱盐、纯化、浓缩与回收
食品染料的脱盐、纯化、浓缩与回收
催化剂与贵金属的回收利用
脱氧、氧化、酯化、皂化、磺化、硝化、脱氢反应中液体的分离、纯化
甘油/己内酰胺/苯/染料活性剂等有机化工原料的回收
汽车/仪表及其它工业涂漆的浓缩回收
食品/饮料工业
啤酒/果酒/黄酒/葡萄酒的澄清除菌过滤
苹果、梨、草莓、橙、芒果、桃、梅、李、柠檬等果汁的澄清除菌过滤
苹果、梨、凤梨、草莓、橙、芒果、桃、梅、李、柠檬等果汁的脱水浓缩
葡萄酒/果酒/茶/咖啡芬香气味的浓缩保留
豆蛋白/乳清蛋白/白蛋白/单糖/多糖溶液的澄清与浓缩
乳清、奶酶及其他乳品的澄清、脱盐与浓缩
蔬菜抽提汁/西红柿汁的脱水浓缩
制药/生物工程
抗生素、维生素、有机酸、氨基酸、酶等发酵液的澄清除菌过滤
抗生素、维生素、有机酸、氨基酸等发酵液的蛋白剔除
酶、蛋白质、多糖制备过程中细胞碎片的剔除
抗生素、氨基酸、维生素、有机酸、酶、多糖、蛋白质的纯化与浓缩
6-APA、7-ACA、7-ADCA及其他半合成抗生素的脱盐浓缩
中成药、保健品口服液的澄清除菌过滤
动物血浆、血清的浓缩精制
其他相关的脱盐浓缩、澄清除菌、蛋白剔除、细胞收集等分离过程
空气过滤
喷雾干燥过程中染料、抗生素、奶粉等的回收
电池厂金属镉、氧化铅粉尘的收集
粉碎过程中磷酸盐、氧化镁、二氧化钛、碳粉、水泥、碳酸钙的回收
包装过程中砂糖、染料、奶粉、味精等的回收
干燥过程中PVC、二氧化硅、活性碳、肥料等的回收
合成氨尾气中氢气的回收利用
其他一切有关的粉尘收集及空气除尘过程
水处理
饮用纯水(太空水)的制备
医药工业中注射用水/洗瓶水及其他无菌水的制备
电子工业中超纯水的制备
火力发电厂锅炉补给水的制备
饮料与化妆品工业中产品配方用水的制备
制造业中终端洗涤水的制备
饮用水纯化/苦碱水脱盐/海水淡化
废水循环与再生利用(零排放)
BOD/COD的最小化
垃圾填埋场渗出水的浓缩处理
染料、颜料、油漆、含油废水的处理
纸浆与造纸废水的处理及木素磺酸盐的回收
金属、食品、皮革、农药和除草剂废水的处理
纺织印染废水的处理及丝光废水的回收利用
微孔聚乙烯中空纤维的研制及其亲水化改性研究。通过对国内外拉伸法制备聚烯烃中空纤维微孔膜技术的跟踪和调研,结合本试验具体情况,首先进行了设备改造,设计制造了制膜用纺丝组件,改进了冷却成型装置。采用连续拉伸设备及工艺,研制出了具有良好透气性的聚乙烯中空纤维膜,经亲水化处理后,已获得透水性良好的亲水性膜,可应用于水净化处理及污水处理、气体吸收和物流分离等过程。该项研究的成功,为进一步开发亲水性干态聚烯烃中空纤维膜的研究奠定了基础,尽管目前由于受设备及原料限制,实现该创新存在一定困难,但是研制大孔径、高孔隙率、透水量大和亲水性稳定的聚烯烃中空纤维微孔膜,仍是膜技术领域中重要的发展方向。
10. 日处理量五吨的污水处理厂需要多少MBR膜,怎么算
就是按水量的1-1.5%折算,精细点的,可以根据SS的去除率折算污泥量+剩余污泥量。
城镇生活污水回排放量 指城镇居民每年答排放的生活污水。用人均系数法测算。
测算公式为:城镇生活污水排放量=城镇生活污水排放系数×市镇非农业人口×365。
假设污水是生活污水,MBR膜用中空纤维膜,计算如下:假设污水处理厂每天运行10小时,则设计流量为0.5m3/H,膜通量取15L/m2.h,所以所需MBR膜面积为:500/15=33.33平方,取34平方即可,具体用多少膜,和污水种类以及运行时间有关,可自行计算。
(10)中空纤维生产的废水量扩展阅读:
由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈,悬浮物和浊度接近于零,细菌和病毒被大幅去除,出水水质优于建设部颁发的生活杂用水水质标准(CJ25.1-89),可以直接作为非饮用市政杂用水进行回用。
同时,膜分离也使微生物被完全被截流在生物反应器内,使得系统内能够维持较高的微生物浓度,不但提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器对进水负荷(水质及水量)的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质。