『壹』 急急急!!!污水中氮和磷对环境有哪些危害分析生物脱氮除磷过程中不同阶段微生物作用的特点
第1 卷第1 期
2 0 0 0 年2 月
环境污染治理技术与设备
Techniques and Equipment for Environmental Pollution Control
Vol . 1 , No . 1
Feb . , 2 0 0 0
生物脱氮除磷工艺中的
微生物及其相互关系
X
郭劲松 黄天寅 龙腾锐
(重庆建筑大学城市建设学院,重庆400045)
摘 要
本文着重对近年来脱氮除磷微生物学方面的研究进展进行了综述,分析了生物脱氮除磷
反应器中各类功能微生物间的相互作用关系,营养物代谢机理和对处理效率的贡献,讨论了
脱氮除磷生物学应深入研究的一些问题。
关键词:废水处理 脱氮除磷 微生物
一、前 言
生物方法脱氮除磷由于其处理效率高、运行成本较低、污泥相对易处理,受到广泛重
视。目前已经发展了诸如A/ O、A2/ O、Bardenpho 、UCT、VIP、SBR 及氧化沟等较为成功
的脱氮除磷工艺。在生物脱氮除磷过程中,微生物的种类、数量和代谢活性以及它们之间
相互作用关系所形成的微生态系统的特征,直接影响着废水处理的效率。因此,分析研究
脱氮除磷微生物的种类及其相互作用的关系,对于生物脱氮除磷工艺的优化控制管理和
开发新工艺将会起到重要作用。
二、生物脱氮除磷活性污泥微生物组成
11 脱氮微生物
一般生物废水处理反应器内的微生物都能降解蛋白质、多肽、氨基酸、尿素等含氮化
合物以获得生命活动所需能量和其它小分子物质,并生成氨氮,这个过程称为氨化[1 ] 。
蛋白质的分解过程如下[2 ] :
蛋白质
蛋白酶
蛋白胨
蛋白酶
多肽
肽酶
氨基酸
不同微生物所具有的蛋白酶也不尽相同,如枯草杆菌有明胶酶和酪蛋白酶,而大肠杆
菌没有这两种酶,因此不能分解明胶和酪蛋白。污水中能分解蛋白质的微生物种类很多,
特别是假单胞菌属、牙孢菌属中某些种均能产生蛋白酶。真菌中的曲霉、毛霉和木霉也能
X 本研究得到国家自然科学基金资助(59838300)
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
产生蛋白酶分解蛋白质。
氨基酸被吸收进入微生物细胞后,有的转化为另一种氨基酸用于合成菌体蛋白质或
某些含氮化合物的合成。而另一部分氨基酸的降解主要通过脱氨基和脱羧基两种方式。
由于微生物类型、氨基酸种类与环境条件不同,脱氨方式也不同,主要有:
a. 氧化脱氮:在有氧条件下好氧微生物将氨基酸氧化成酮基酸和氨。
b. 还原脱氮:在厌氧条件下,专性厌氧菌和兼性厌氧菌将氨基酸还原成饱和脂肪酸和
氨。
c. 水解脱氮和减饱和脱氮:不同氨基酸经此两种方式脱氨生成不同的产物。如大肠
杆菌及变形杆菌水解色氨酸,生成吲哚、丙酮酸及氨;粪链球菌使精氨酸产生瓜氨酸;大肠
杆菌、变形杆菌、枯草杆菌和酵母菌等能将半胱氨酸分解为丙酮酸、氨和硫化氢。
硝化反应是在好氧状态下由亚硝酸菌( Nit rosomonas ) 与硝酸菌( Nit robacter) 共同完
成的。亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和硝酸球菌属等,硝酸菌有硝酸杆
菌、螺菌属和球菌属等,两者都属专性好氧菌。硝化细菌几乎生活在所有污水处理过程
中,它们都是革蓝氏染色阴性,具有强烈的好氧性,不能在酸性条件下生长,由于这两类细
菌不需要有机物作为养料,且是通过氧化无机的氮化合物得到所需的能量,故它们是化能
自养型的细菌[3 ] 。亚硝酸菌和硝酸菌以无机化合物CO2 -
3 、HCO -
3 及CO2 等为碳源,以
NH+
4 及NO -
2 为电子供体,O2 为电子受体,使氨氮氧化并合成新细胞,反应式可表示为:
55NH+
4 + 76O2 + 109HCO-
3
亚硝酸菌
C5H7NO2 + 54NO -
2 + 57H2O + 104H2CO3
400NO -
2 + NH+
4 + 4H2CO3 + HCO -
3 + 195O2
硝酸菌
C5H7NO2 + 3H2O + 400NO -
3
污水生物处理系统中微生物在无氧条件下大多具有反硝化能力,常见的有变形杆菌、
微球菌属、假单胞菌属、芽胞杆菌属等[4 ] 。这些细菌利用硝酸盐中的氧进行呼吸,氧化分
解有机物,将硝态氮还原为N2 或N2O ,其过程如下[5 ] :
NO -
3
硝酸盐还原酶
NO -
2
亚硝酸盐还原酶
NO
氧化氮还原酶
N2O
氧化亚氮还原酶
N2
Payne[6 ] (1973) 系统回顾了具有反硝化能力的废水处理微生物,指出有些类群只具有
硝酸盐还原酶,故只能将NO -
3 还原至NO-
2 ,如无色杆菌属、放线杆菌属、气单胞菌属、琼
脂杆菌属、芽孢杆菌属等;而其它类群由于具有反硝化中的全部酶系,因此能将NO-
3 还
原成N2 ,如微球杆菌属、丙酸杆菌属、螺菌属等。在所有反硝化菌中,有些是专性好氧菌,
有些是兼性厌氧菌。它们在好氧、厌氧或缺氧条件下,即使利用相同的有机基质,但通过
不同的呼吸途径,产生的能量不同,同时细胞产量也不同。此外,少数专性和兼性自养细
菌也能还原硝酸盐,如硫杆菌属细菌能以氢气还原性H2S 等无机物为电子供体,在厌氧
条件下利用NO -
3 作为电子受体来氧化还原性硫。
Kuenen J G等[7 ] (1987) 及Robert son L A. 等[8 ] (1992) 发现,许多异养型硝化细菌能
进行好氧反硝化反应,在产生NO -
3 和NO -
2 的过程中将这些产物还原,这为在同一反应
器中在同一条件下完成生物脱氮提供了可能。Vandegraaf 等[9 ] (1995) 研究发现异养硝
化、好氧反硝化细菌Thiosphaera pantot ropha 能把NH+
4 氧化成NO-
2 ,尔后通过反硝化途
径将NO-
2 (与外源提供的NO -
2 和NO -
3 一起) 还原为N2 ,从而完成脱氮。
1 期 郭劲松等:生物脱氮除磷工艺中的微生物及其相互关系 9
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Mnlder A 等[10 ] (1995) 发现氨确实可以直接作为电子供体进行反硝化反应,并称之
为Anaerobic Ammonium Oxidation (厌氧氨生物氧化) 。Vandegraaf 等[11 ] (1996) 通过研
究,证实了厌氧氨生物氧化是一个微生物过程,在厌氧分批培养中,氨与硝酸盐同时被转
化,仅有微量的亚硝酸盐积累,一旦硝酸盐耗尽,氨转化即停止,但其中起作用的菌属还待
进一步研究。
21 除磷微生物
在有氧条件下摄取磷,在厌氧条件下释放磷原理[12 ,13 ,14 ,15 ] ,目前已被普遍接受。
Fuhs 等[16 ] (1975) 对Baltimore Black River 和Seneca Falls 这两个具有很好除磷效果的污
水厂曝气池中的活性污泥进行检测,发现不动杆菌属( Acinetobacter) 与磷的去除密切相
关。Buchan[17 ] (1983) 研究分析了除磷效果良好的几个试验装置及污水厂的曝气活性污
泥,表明不动杆菌是其中的优势菌种,他认为废水生物除磷过程首先是富集不动杆菌属,
然后通过该菌过量吸收磷达到除磷的目的。此后,Lotter[18 ] (1985) ,Cloete 等[19 ] (1985) ,Bay2
ly 等[20 ] (1989) 和Beacham[21 ] (1990) 也分别在除磷活性污泥中检测到了大量的不动杆菌属。
然而,Brodich 等[22 ] (1983) 发现其生物除磷试验装置活性污泥的微生物中,不动杆菌属是少
数菌属,只占总量的1 %~10 %,而优势菌属为气单胞菌属和假单胞菌属。Hiraishi 等[23 ]
(1989) 比较了生物除磷工艺活性污泥与非除磷工艺活性污泥的微生物组成,发现两者中的
不动杆菌都不占优势,在除磷A/ O 法活性污泥中不动杆菌属只占大约1 %。由此可见不动
杆菌并不是唯一的除磷微生物,还有其它微生物的除磷能力也不容忽视。
Mino[24 ] (1987) 提出内源糖通过EMP 途径(酵解途径) 降解,获得的能量用来吸收醋
酸以合成PHB(聚羟基丁酸盐) ,除磷菌在厌氧段降解内源糖的反应式为:
CH2O + 0. 083C6H10O5 (CH) + 0. 44HPO2 -
3 + 0. 023H2O
1. 33CH1. 5O0. 5 (PHB) + 0. 17CO2 + 0. 44H3PO4
图1 厌氧状态放磷[ 21 ]
在好氧或有NO -
3 存在条件下,因消耗
PHB 及内源碳而建立起的三羧酸循环和呼
吸链产生氢离子,为维持细胞质子动力pmf
的恒定趋向,细胞吸收过量磷,并合成丰富的
Poly - P[25 ] 。除磷菌生化反应模型如图2 所
示。
31 具有反硝化能力的除磷菌(DPB)
在污水生物处理中,生物除磷通常是与
生物脱氮(硝化与反硝化) 工艺一起应用。如
图2 所示,有些除磷菌亦能利用NO -
3 作为电子受体,在吸收磷的同时进行反硝化。许多
研究者[27 ] [28 ,29 ,30 ]在活性污泥系统和实验室培养中发现了具有反硝化能力的除磷菌
(DPB) 。NO -
3 被用来氧化细胞内储存的PHB ,然后以氮分子的形式从废水中排除。这样
引起水体富营养化的氮、磷两大主要元素都被去除。Kuba[31 ] (1994) 发现DPB 除磷能力
与传统A/ O 工艺中普通除磷菌相似,同时也具有建立在内源PHB 和糖类物质(Carbohy2
drate) 基础上类似的生物代谢机理。在特定的条件下,除磷菌具有很强的反硝化能力。
1 0 郭劲松等:生物脱氮除磷工艺中的微生物及其相互关系 1 卷
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Kuba[32 ] (1997) 在Holten 污水处理厂的研究表明,约有50 %的除磷菌参与了反硝化活动。
图2 好氧/ 缺氧状态吸磷[ 26 ]
三、生物脱氮除磷工艺反应器中微生物关系
一般来说[33 ] ,微生物的相互关系有三种可能:第一,一种微生物的生长和代谢对另一
种微生物的生长产生有利影响,或者相互有利,形成有利关系,如生物间的共生和互生;第
二,一种微生物的生长与代谢对另一种微生物的生长产生不利影响,或者相互有害,形成
有害关系,如微生物间的拮抗、竞争、寄生和捕食;第三,两种微生物生活在一起,两者间发
生无关紧要、没有意义的相互影响,表现出彼此对生长和代谢无明显的有利或有害影响,
形成中性关系,如种间共处。
11 有利关系
微生物之间的有利关系可分为互生关系和共生关系。互生关系是微生物间比较松散
的联合,在联合中可以是一方得利,即一方为另一方提供或改善生活条件,或者是双方都
得利。而共生关系是两种微生物紧密地结合在一起,当这种关系高度发展时,就形成特殊
的共同体,在生理上表现出一定的分工,在组织和形态上产生新的结构。
生物脱氮系统中,互生关系主要表现为在化学水平的协作,即微生物间相互提供生长
因子、代谢刺激物或降解对方的代谢抑制物,平衡pH 值,维持适当的氧化还原电位或消
除中间产物的累积。氨化细菌,亚硝酸菌,硝酸菌及反硝化菌之间就表现为互生关系。在
氮素转化过程中,氨化细菌分解有机氮化合物产生氨,为亚硝酸菌创造了必需的生活条
件,但对氨化细菌则无害也无利。亚硝酸菌氧化氨,生成亚硝酸,又为硝酸菌创造了必要
的生活条件。Chai Sung Gee 等[34 ]研究了亚硝化单胞菌属与硝化杆菌在反应器内的相互
作用,运用悬浮生长实验获得的稳态氨和亚硝酸氧化的数据确定了这两种细菌数量的生
长参数,得出结论:硝化杆菌的活性依赖于硝化杆菌对亚硝化单胞菌的数量比例,而亚硝
化单胞菌的活性则不受两者之间数量比例的影响。可以断定这两个种群之间必然存在着
酶促共栖或生物化学的能量转移。反硝化菌则在厌氧条件下将NO-
3 、NO -
2 还原为N2 气
体,从污水的液相中排出,为亚硝化菌和硝化菌解除抑制因子,同时反硝化过程还提高了
反应器内的碱度,部分地补充了硝化过程所消耗的碱度,有利于反应器内pH 值稳定在硝
化菌活性较大的范围内。
『贰』 污、废水为什么要脱氮除磷叙述污、废水脱氮、除磷的原理。
污水处理的目的就是要保持水体中的物质能够保持在一个相对稳定的程度上,也就是专说能够成为人文环境属的一个基础,为人们的生活提供一个良好的保障。微生物生长需要大量氮磷,尤其是藻类,在氮磷充足的情况下,会大量生长,同时造成水体缺氧,使水中的动物很难存活,造成大量死亡。脱氮除磷原理很简单,通过硝化反硝化去氮,厌氧好氧生物处理去磷
『叁』 如何去除废水中的磷,氨氮
这个问题太笼统了,氨氮,磷的值是多少?处理方法有很多,现在的工艺大部分都有处理的效果,A/A/O,SBR是最常用的,你搞清楚去氮除磷的原理就简单了
『肆』 请问水处理中厌氧池脱氮除磷的原理,比如污水中的氨氮是通过怎样的反应去除的,反应的方程式是什么
1、生物脱氮
反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮()或一氧化二氮(N2O)的过程。微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:
C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量
CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量
少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。可进行以下反应:
5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4
反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利。农业上常进行中耕松土,以防止反硝化作用。反硝化作用是氮素循环中不可缺少的环节,可使土壤中因淋溶而流入河流、海洋中的NO3-减少,消除因硝酸积累对生物的毒害作用。
2.生物除磷
1)生物除磷只要由一类统称为聚磷菌的微生物完成,由于聚磷菌能在厌氧状态下同化发酵产物,使得聚磷菌在生物除磷系统中具备了竞争的优势。
2)在厌氧状态下,兼性菌将溶解性有机物转化成挥发性脂肪酸;聚磷菌把细胞内聚磷水解为正酸盐,并从中获得能量,吸收污水中的易讲解的COD,同化成细胞内碳能源存贮物聚β-羟基丁酸或β-羟基戊酸等
3)在好氧或缺氧条件下,聚磷菌以分子氧或化合态氧作为电子受体,氧化代谢内贮物质PHB或PHV等,并产生能量,过量地从无水中摄取磷酸盐,能量以高能物质ATP的形式存贮,其中一部分有转化为聚磷,作为能量贮于胞内,通过剩余污泥的排放实现高效生物除磷目的
『伍』 污水中BOD,氮磷的处理顺序
你这个概念问题很严重,污水处理是一个兼顾性的问题,SBR拥有同时脱氮除磷的能力,如果你仅仅用它去除BOD,那么就浪费了他的功用
脱氮需要碳源,除磷也需要碳源,你把COD消耗光了,那么N,P就无法用生物方法脱除了,或者说如果你向继续脱除那么就要人工补充碳源,这对成本提高很大。
因此脱氮除磷时要兼顾的,除磷的话只能靠化学除磷了,但是由于你没有厌氧条件,P的浓度很低,效果也不会太好。实在不行只能考虑塘(当时场地占用大),或者使用土地处理法,但是同样耗费土地。
『陆』 污水处理中脱氮除磷的问题如何控制
脱氮除磷是污水处理工艺的重要环节,也是比较容易出问题的地方。对于传统的sbr工艺内氮磷的去除存容在着一些难度,主要是厌氧硝化时间上存在问题。污水未经过厌氧硝化直接进入主反应区,虽然在主反应阶段有厌氧耗氧交替的过程,但是还是存在一些问题,对于进水n含量较高的水体来讲去除就有些难度。虽然如此,经过大量的改进,现在在传统sbr工艺的基础上有了很大的进步,前段加了兼(厌)氧回流等措施,一定程度上解决了sbr工艺脱氮除磷的问题。在实际的运行操作过程中,需要注意污泥回流比、进水速度、进水量等。
『柒』 脱氮除磷的定义是什么
植物和其他生物的吸收、氨化作用、硝化作用、反硝化作用、氨的挥发作用、铵根离子的阳离子交换作用等。人工湿地对磷的去除机理包括:基质吸附、植物吸收和微生物去除,而磷最终从系统中去除依赖于湿地植物的收割和饱和基质的更换。氨氮通过好氧亚硝化、硝化作用生成亚硝酸根、硝酸根,亚硝酸根、硝酸根通过缺氧反硝化生产氮气,从水中逸出。除磷菌在厌氧条件下释放磷,再在好氧条件下过度吸磷,通过排泥除磷。在一般系统中,提高除磷效率往往伴随着脱氮率的下降,因此有研究者设想如果将反硝化与除磷这两个需碳源的过程合二为一,即在缺氧环境下利用亚硝酸盐作为电子受体,同时进行反硝化和超量聚磷,这样可大大减少碳源需求量。已有研究者观察到这种现象,并认为存在反硝化聚磷菌(DNPAO)可同时进行反硝化作用和超量聚磷,但在不同环境条件下,DNPAO的诱导增殖与代谢途径的变化规律等仍有待研究。
『捌』 试述废水生物脱氮除磷的原理
废水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用专好氧段经硝化作用,由硝属化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将 转化为 和 。在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将 (经反亚硝化)和 (经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。
该过程可分为三步:
第一步是氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。(在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施)
第二步是硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐,然后再在硝酸菌的作用下进一步氧化成硝酸盐。
三步是反硝化作用,即在缺氧或厌氧的条件下,硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。
『玖』 废水中脱氮除磷的意义
这个主要是从废水中的氮和磷能够与微生物反应生产对生物有害的物质,另一个方面是氮与磷发生反应的过程中,需要消耗大量的氧气,从而导致水体氧气浓度大幅度下降,使得水中的鱼虾等生存受到严重影响。
『拾』 在生活污水处理,化工污水处理过程中,如何脱氮除磷
众所复周知,氮和磷是生物制的重要营养源,那为什么在生活污水处理和化工污水处理过程中,进行脱氮除磷呢?又需要用什么方法来进行脱氮除磷?
氮和磷是生物的重要营养源,这是没错,但是如果排放的生活污水或化工污水中的氮、磷含量过高,没经过处理的污水排放到天然水体中去,直接导致天然水体中的氮和磷含量升高,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。赤潮就是由于水中氮和磷含量过高而导致的水体富营养化现象。那在生活污水处理过程和化工污水处理过程中,要如何去除氮和磷呢?
一:A2O工艺
A2O工艺也被称作活性污泥法。在该工艺流程内,BOD5、SS和以各种形式存在的氮和磷将一一被去除。A2O生物脱氮除磷系统的活性污泥中,菌群主要由硝化菌和反硝化菌、聚磷菌组成。在好氧段,硝化细菌
将入流中的氨氮及有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入到大气中,从而达到脱氮的目的;在厌氧段,聚
磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷除去。