Ⅰ 废水中氨氮的去除
随着环保科技的不断进步,废水中氨氮的去除方法也在不断完善。
废水中氨氮的去除方法运用比较多的有生物法、空气吹脱、化学法等。
1
生物法
目前,生物法是比较传统、成熟的废水中氨氮的去除方法,能在一定程度上去除污水中的氨氮。
传统生物脱氮途径一般包括硝化和反硝化两个阶段。这两个阶段的反应分别由硝化菌和反硝化菌作用完成。
由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行。
即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。
使用要求
1
pH:控制在8左右;
2
温度:维持在20℃~40℃;
3
溶解氧:硝化阶段保持在2~3mg/L,反硝化阶段保持在1mg/L以下。
2
空气吹脱法
让废水与空气充分接触,则水中挥发性的氨气将由液相向气相转移,达到废水中氨氮的去除效果。
吹脱塔内装填木质或塑料板条填料,空气流由塔的下部进入,而废水则由塔顶落至塔底集水池。
使用要求
1
pH:控制在10.8~11.5;
2
温度:水温降低时氨的溶解度增加,吹脱效率降低;
3
气/水比:可取2500~5000(m3/m2)
4
水力负荷:2.5~5m3/m2•h
3
化学法
该废水中氨氮的去除方法也因使用简单、去除率高、时间短而受到众多环保人的欢迎。
在污水中直接投加一种可以去除废水中氨氮的药剂——氨氮去除剂。
该方法可以在5分钟左右,氨氮去除率96%以上,达到深度脱氮的效果。
使用要求
1
pH:可以在很宽的范围使用;
2
温度:即便很低的温度都可以使用;
3
无污染:真正环保的脱氮方法,没有2次污染,无沉淀物。
Ⅱ 废水中氨氮应该如何去除
高氨氮废水处理方法:
一、物化法
1. 吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持"假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。"遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法
传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
1.A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。其特点是缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。
2.两段活性污泥法能有效的去除有机物和氨氮,其中第二级处于延时曝气阶段,停留时间在36小时左右,污水浓度在2g/l以下,可以不排泥或少排泥从而降低污泥处理费用。
3.强氧化好氧生物处理其典型代表有粉末活性炭法(PACT工艺)
粉末活性碳法的主要特点是向曝气池中投加粉末活性炭(PAC)利用粉末活性炭极为发达的微孔结构和更大的吸附能力,使溶解氧和营养物质在其表面富集,为吸附在PAC 上的微生物提供良好的生活环境从而提高有机物的降解速率。
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。
5. 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。
全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。
6. 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
7.超声吹脱处理氨氮
超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的吹脱方法的基础上,引入超声波辐射废水处理技术,将超声波和吹脱技术联用而衍生出来的一种处理氨氮的方法。将这两种方法联用不仅改进了超声波处理废水成本较高的问题,也弥补了传统吹脱技术去除氨氮不佳的缺陷,超生吹脱法在保证处理氨氮的效果的同时还能对废水中有机物的降解起到一定的提高作用。技术特点(1)高浓度氨氮废水采用90年代高新技术--超声波脱氮技术,其总脱氮效率在70~90%,不需要投加化学药剂,不需要加温,处理费用低,处理效果稳定。(2)生化处理采用周期性活性污泥法(CASS)工艺,建设费用低,具有独特的生物脱氮功能,处理费用低,处理效果稳定,耐负荷冲击能力强,不产生污泥膨胀现象,脱氮效率大于90%,确保氨氮达标。
Ⅲ 各种污水处理设施的去除效率是多少
一般的情况:
沉砂池;SS去除率在1-5%,COD与BOD均有所下降,但去除率很低,可忽略不计。
初沉池:SS去除率在5-30%,COD去除率在5-20%,BOD去除率在10%以下,氨氮和磷也可能下降,但去除率一般不明显。
生化池:BOD一般在80-95%,COD去除率90%以上,氮的氧化率在100%以上.磷的去除率不明显。
二沉池:SS的降低率在80%以上,达到<20mg/L,BOD与COD也有部分下降,与沉淀性能有关。
不同的进水采用不同的处理工艺,各个池子的功能也不一样,因此去除率也不一样。
(3)废水中氨氮的去除效率扩展阅读:
《国务院办公厅关于开展行政法规规章清理工作的通知》(国办发〔2007〕12号),我局决定对《水污染物排放许可证管理暂行办法》等7件规章和规范性文件予以废止或者修改:一、决定予以废止的规章和规范性文件 。
1、《水污染物排放许可证管理暂行办法》(1988年3月20日,国家环境保护局〔88〕环水字第111号)
2、《污水处理设施环境保护监督管理办法》(1988年5月9日,国家环境保护局〔88〕环水字第187号)
3、《放射环境管理办法》(1990年5月28日,国家环境保护局令第3号)
4、《核电厂放射性废物管理安全规定》(1991年8月29日,国家核安全局令第2号)
Ⅳ 废水处理厂氨氮去除率下降怎么办
两种可能性来比较大
第一种: 氨氮浓源度高,从化学平衡上促进了氨氮硝化作用,由于氨氮硝化作用会产生H+,所以pH会降低,一般情况下氨氮硝化都需要往池子里投加碱度,以中和产生的酸。
投加碱度一般是投加石灰。 建议你先少量加一些,然后过段时间去测一下pH,如果pH提升不明显的话就再多加一些,加上几次之后你心里就有数了。
第二种可能:
你的曝气池可能存在厌氧的因素,因为有些有机物在分解时产生乙酸。
建议检查一下你的曝气头布置,看看是不是有些地方没有曝气到(一般称之为“死区”)。
如果有死区的话,就要重新布置曝气头,如果没有死区的话,可以适当增加曝气量,看看效果。
希望能帮到你
满意请采纳 O(∩_∩)O~
Ⅳ 废水中氨氮去除,有什么方法
去除氨氮的主要方法有:物理法、化学法、生物法。物理法有反渗透、蒸馏、土壤灌回溉等处理技答术;化学法有离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法有藻类养殖、生物硝化、固定化生物技术等处理技术。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
Ⅵ 污水中氨氮去除的最好方法是什么
生物法机理——生物硝化和反硝化机理:在污水的生物脱氮处理过程中,首先在好氧条件下回,通过好氧硝化菌的作用答 ,将污水中的氨氮氧化为亚硝酸盐或硝酸盐 ;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。因而,污水的生物脱氮包括硝化和反硝化两个阶段。生物脱氮工艺流程见图1 。
硝化反应是将氨氮转化为硝酸盐的过程 ,包括两个基本反应步骤 : 由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌) 的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源) 。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%—95%,二次污染小且比较经济,因此在国内外运用最多。但缺点是占地面积大,低温时效率低。
Ⅶ 什么是氨氮去除率
NH3-N 去除率=(C进-C出)/ C进 x 100%
即:进口氨氮监测浓度减去出口氨氮监测浓度再除以进口氨氮浓度,用百分数表示。是城市污水处理的主要指标。
Ⅷ 目前氨氮最高的去除率可达多少
氨氮的去除率要看氨氮在水中的含量,一般的市政污水处理厂使用的好氧活性污泥工艺,对氨氮的去除率能够达到95%~98%。
Ⅸ 污水中的氨氮应该怎么处理
化学法除氨氮(原理):在氨氮废水中添加氨氮去除剂SN-1,是氨氮转化为难溶物质从而从水体去除的方法;
化学法除氨氮(优点):处理氨氮废水原理简单,操作灵活,处理效果好。