㈠ 怎样用茜素磺酸锆目视比色法测定水中氟化物
楼主你好:茜素磺酸锆目视比色法测定水中氟化物的含量,其原理是:在酸性介质中,茜素磺酸钠与锆盐生成红色络合物,当样品中有氟离子存在时,能夺取络合物中的锆离子,生成无色的氟化锆络离子,释放出黄色的茜素磺酸钠,根据溶液由红退至黄色的程度不同,与标准色列比较定量,从而计算出水中氟化物的浓度。茜素磺酸锆目视比色法测定水中氟化物的含量可参见《水质氟化物的测定茜素磺酸锆目视比色法》(GB
7482
87)。其原理是:在酸性介质中,茜素磺酸钠与锆盐生成红色络合物,当样品中有氟离子存在时,能夺取络合物中的锆离子,生成无色的氟化锆络离子,释放出黄色的茜素磺酸钠,根据溶液由红退至黄色的程度不同,与标准色列比较定量,从而计算出水中氟化物的浓度。(更多质量检测、分析测试、化学计量、标准物质相关技术资料请参考中检所对照品查询
www.rmhot.com)水样中的总碱度、氯化物、硫酸盐、磷酸盐、铝离子、铁离子,以及浊度、色度等如果超过一定的限值,均干扰测定。由于使用目视比色,故误差较大。本方法适合于含氟量较低的地表水、地下水、饮用水和废水中的氟化物含量测定,最低检出浓度为含氟0.05mg/L,检出上限为2.5mg/L。怎样用硝酸钍滴定法测定水中氟化物?硝酸钍滴定法测定水中氟化物的原理是:在以氯乙酸为缓冲剂,pH值为3.2~3.5的酸性介质中,以茜素磺酸钠和亚甲蓝作指示剂,用硝酸钍标准溶液滴定氟,当溶液由翠绿色变为灰蓝色即为终点。根据硝酸钍标准溶液的用量即可算出氟离子的浓度。本法适用于含氟量大于50mg/L的废水中氟化物的测定。
㈡ 如何检验氟离子
初高中的实验是没有办法检验,如果有氟离子,一般是用排除法,如果是科研的话,有专门的仪器检验
如果你条件的话可以用以下方法
氟离子选择电极法
一、原理
将氟离子选择电极和外参比电极(如甘汞电极)浸入欲测含氟溶液,构成原电池。该原电池的电动势与氟离子活度的对数呈线性关系,故通过测量电极与已知F—浓度溶液组成的原电池电动势和电极与待测F-浓度溶液组成原电池的电动势,即可计算出待测水样中F—浓度。常用定量方法是标准曲线法和标准加入法。
对于污染严重的生活污水和工业废水,以及含氟硼酸盐的水样均要进行蒸馏。
二、仪器
1.氟离子选择性电极。
2.饱和甘汞电极或银-氯化银电极。
3.离子活度计或pH计,精确到0.1mV。
4.磁力搅拌器、聚乙烯或聚四氟乙烯包裹的搅拌子。
5.聚乙烯杯:100mL,150mL。
6.其他通常用的实验室设备。
三、试剂
所用水为去离子水或无氟蒸馏水。
1.氟化物标准贮备液:称取0.2210g基准氟化钠(NaF)(预先于105—110℃烘干2h,或者于500-650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100ug。
2.氟化物标准溶液:用无分度吸管吸取氟化钠标准贮备液10.00mL,注入100mL容量瓶中,稀释至标线,摇匀。此溶液每毫升含氟离子10ug。
3.乙酸钠溶液:称取15g乙酸钠(CH3COONa)溶于水,并稀释至100mL。
4.总离子强度调节缓冲溶液(TISAB):称取58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5-6,转入1000mL容量瓶中,稀释至标线,摇匀。
5.2mol/L盐酸溶液。
四、测定步骤
1.仪器准备和操作
按照所用测量仪器和电极使用说明,首先接好线路,将各开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。测定前,试液应达到室温,并与标准溶液温度一致(温差不得超过±1℃)。
2.标准曲线绘制:用无分度吸管吸取1.00、3.00、5.00、10.00、20.00mL氟化物标准溶液,分别置于5支50mL容量瓶中,加入10mL总离子强度调节缓冲溶液,用水稀释至标线,摇匀。分别移入100mL聚乙烯杯中,各放入一只塑料搅拌子,按浓度由低到高的顺序,依次插入电极,连续搅拌溶液,读取搅拌状态下的稳态电位值(E)。在每次测量之前,都要用水将电极冲洗净,并用滤纸吸去水分。在半对数坐标纸上绘制E-lgcF-标准曲线,浓度标于对数分格上,最低浓度标于横坐标的起点线上。
3.水样测定:用无分度吸管吸取适量水样,置于50mL容量瓶中,用乙酸钠或盐酸溶液调节至近中性,加入10mL总离子强度调节缓冲溶液,用水稀释至标线,摇匀。将其移入100mL聚乙烯杯中,放入一只塑料搅拌子,插入电极,连续搅拌溶液,待电位稳定后,在继续搅拌下读取电位值(EX)。在每次测量之前,都要用水充分洗涤电极,并用滤纸吸去水分。根据测得的毫伏数,由标准曲线上查得氟化物的含量。
4.空白实验:用蒸馏水代替水样,按测定样品的条件和步骤进行测定。
当水样组成复杂或成分不明时,宜采用一次标准加入法,以便减小基体的影响。其操作是:先按步骤2测定试液的电位值(E1),然后向试液中加入一定量(与试液中氟的含量相近)的氟化物标准液,在不断搅拌下读取稳态电位值(E2)。
五、计算
1.标准曲线法:根据从标准曲线上查知稀释水样的浓度和稀释倍数即可计算水样中氟化物含量(mg/L)。
2.、标准加入法
cx = ( cs·VS)/(Vx+Vs )*(10*ΔE/s -Vx/ (Vx+Vs))-1
式中: cx———水样中氟化物(F-)浓度(mg/L);
Vx———水样体积(mL);
cs———F—标准溶液的浓度(mg/L);
VS———加入F—标准溶液的体积(mL);
ΔE——等于E1–E2(对阴离子选择性电极),其中,E1为测得水样试液的电位值(mV),E2为试液中加入标准溶液后测得的电位值(mV);
S——氟离子选择性电极的实测斜率。
如果VS〈〈VX,则上式可简化为:
cx=cx·VS (10△E/S-1) -1/Vx
注意事项
1.电极用后应用水充分冲洗干净,并用滤纸吸去水分,放在空气中,或者放在稀的氟化物标准溶液中。如果短时间不再使用,应洗净,吸去水分,套上保护电极敏感部位的保护帽。电极使用前仍应洗净,并吸去水分。
2.如果试液中氟化物含量低,则应从测定值中扣除空白试验值。
3.不得用手触摸电极的敏感膜;如果电极膜表面被有机物等沾污,必须先清洗干净后才能使用。
4.一次标准加入法所加入标准溶液的浓度(cS),应比试液浓度(cX)高10-100倍,加入的体积为试液的1/10-1/100,以使体系的TISAB浓度变化不大。
㈢ 用什么可以检验氟离子
这里有食品行业的。另外水处理行业的有离子色普法,氟离子选折电极法,氟试剂比色法茜素磺酸锆比色法和硝酸钍滴定法(水和废水监测分析方法(第四版)上有)。用酸可以融解硫化铜哟,但是会产生剧毒硫化氢,也不知道铜的浸出率高不高。
GB/T 5009.18—1996 食品中氟的测定方法
本标准规定了粮食、蔬菜、水果、豆类及其制品、肉、鱼、蛋等食品中氟的测定方法。
本标准适用于食品中氟的测定。氟离子选择电极法不适用于脂肪含量高而又未经灰化的样品(如花生、肥肉等)
最低检出浓度:0.25mg/kg。
第一篇扩散-氟试剂比色法(第一法)
2原理
食品中氟化物在扩散盒内与酸作用,产生氟化氢气体,经扩散被氢氧化钠吸收。氟离子与镧(Ⅲ)、氟试剂(茜素氨羧络合剂)在适宜pH下生成蓝色三元络合物,颜色随氟离子浓度的增大而加深,用或不用含胺类有机溶剂提取,与标准系列比较定量。
3试剂
本方法所用水均为不含氟的去离子水,试剂为分析纯,全部试剂贮于聚乙烯塑料瓶中。
3.1丙酮
3.2硫酸银-硫酸溶液(20g/L):称取2g硫酸银,溶于100mL硫酸(3+1)中。
3.3氢氧化钠-无水乙醇溶液(40g/L):取4g氢氧化钠,溶于无水乙醇并稀释至100mL。
3.4乙酸(1mol/L):取3mL冰乙酸,加水稀释至50mL。
3.5茜素氨羧络合剂溶液:称取0.19g茜素氨羧络合剂,加少量水及氢氧化钠溶液(40g/L)使其溶解,加0.125g乙酸钠,用乙酸溶液(3.4)调节pH为5.0(红色),加水稀释至500mL,置冰箱内保存。
3.6乙酸钠溶液(250g/L)。
3.7硝酸镧溶液:称取0.22g硝酸镧,用少量乙酸溶液(3.4)溶解,加水至约450mL,用乙酸钠溶液(250g/L)调节pH为5.0,再加水稀释至500mL,置冰箱内保存。
3.8缓冲液(pH4.7):称取30g无水乙酸钠,溶于400mL水中,加22mL冰乙酸,再缓缓加冰乙酸调节pH为4.7,然后加水稀释至500mL。
3.9二乙基苯胺-异戊醇溶液(5+100):量取25mL二乙基苯胺,溶于500mL异戊醇中。
3.10硝酸镁溶液(100g/L)。
3.11氢氧化钠溶液(40g/L):称取4g氢氧化钠,溶于水并稀释至100mL。
3.12氟标准溶液:准确称取0.2210g经95~105℃干燥4h冷的氟化钠,溶于水,移入100mL容量瓶中,加水至刻度,混匀。置冰箱中保存。此溶液每毫升相当于1.0mg氟。
3.13氟标准使用液:吸取1.0mL氟标准溶液,置于200mL容量瓶中,加水至刻度,混匀。此溶液每毫升相当于5.0μg氟。
3.14圆滤纸片:把滤纸剪成φ4.5cm,浸于氢氧化钠(40g/L)—无水乙醇溶液,于100℃烘干、备用。
4仪器
4.1塑料扩散盒:内径4.5cm,深2cm,盖内壁顶部光滑,并带有凸起的圈(盛放氢氧化钠吸收液用),盖紧后不漏气。其他类型塑料盒亦可使用。
4.2恒温箱:55±1℃。
4.3可见分光光度计。
4.4酸度计:PHS-型或其他型号。
4.5马弗炉。
5分析步骤
5.1扩散单色法
5.1.1样品处理
5.1.1.1谷类样品:稻谷去壳,其他粮食除去可见杂质,取有代表性样品50~100g,粉碎,过40目筛。
5.1.1.2蔬菜、水果:取可食部分,洗净、晾干、切碎、混匀,称取100~200g样品,80℃鼓风干燥,粉碎,过40目筛。结果以鲜重表示,同时要测水分。
5.1.1.3特殊样品(含脂肪高、不易粉碎过筛的样品,如花生、肥肉、含糖分高的果实等):称取研碎的样品1.00~2.00g于坩埚(镍、银、瓷等)内,加4mL硝酸镁溶液(100g/L),加氢氧化钠溶液(100g/L)使呈碱性,混匀后浸泡0.5h,将样品中的氟固定,然后在水浴上挥干,再加热炭化至不冒烟,再于600℃马弗炉内灰化6h,待灰化完全,取出放冷,取灰分进行扩散。
5.1.2测定
5.1.2.1取塑料盒若干个,分别于盒盖中央加0.2mL氢氧化钠-无水乙醇溶液(40g/L),在圈内均匀涂布,于55±1℃恒温箱中烘干,形成一层薄膜,取出备用。或把滤纸片(3.14)贴于盒内。
5.1.2.2称取1.00~2.00g处理后的样品于塑料盒内,加4mL水,使样品均匀分布,不能结块。加4mL硫酸银-硫酸溶液(20g/L),立即盖紧,轻轻摇匀。如样品经灰化处理,则先将灰分全部移入塑料盒内,用4mL水分数次将坩埚洗净,洗液均倒入塑料盒内,并使灰分均匀分散,如坩埚还未完全洗净,可加4mL硫酸银-硫酸溶液(20g/L)于坩埚内继续洗涤,将洗液倒入塑料盒内,立即盖紧,轻轻摇匀,置55±1℃恒温箱内保温20h。
5.1.2.3分别于塑料盒内加0,0.2,0.4,0.8,1.2,1.6mL氟标准使用液(相当0,1.0,2.0,4.0,6.0,8.0μg氟)。补加水至4mL,各加硫酸银-硫酸溶液(20g/L)4mL,立即盖紧,轻轻摇匀(切勿将酸溅在盖上),置恒温箱内保温20h。
5.1.2.4将盒取出,取下盒盖,分别用20mL水,少量多次地将盒盖内氢氧化钠薄膜溶解,用滴管小心完全地移入100mL分液漏斗中。
5.1.2.5分别于分液漏斗中加3mL茜素氨羧络合剂溶液,3.0mL缓冲液,8.0mL丙酮,3.0mL硝酸镧溶液,13.0mL水,混匀,放置10min,各加入10.0mL二乙基苯胺-异戊醇溶液(5+100),振摇2min,待分层后,弃去水层,分出有机层,并用滤纸过滤于10mL带塞比色管中。
5.1.2.6用1cm比色杯于580nm波长处以标准零管调节零点,测吸光值绘制标准曲线,样品吸光值与曲线比较求得含量。
5.1.3计算
式中:X1——样品中氟的含量,mg/kg;
m1——测定用样品中氟的质量,μg;
m2——样品的质量,g。
结果的表述:报告平行测定的算术平均值的二位有效数。
5.1.4允许差
相对相差≤10%。
5.2扩散复色法
5.2.1样品处理
同5.1.1。
5.2.2测定
5.2.2.1测定步骤依次按5.1.2.1,5.1.2.2和5.1.2.3并将盒取出,取下盒盖,分别用10mL水分次将盒盖内的氢氧化钠薄膜溶解,用滴管小心完全地移入25mL带塞比色管中。
5.2.2.2分别于带塞比色管中加2.0mL茜素氨羧络合剂溶液、3.0mL缓冲液、6.0mL丙酮、2.0mL硝酸镧溶液,再加水至刻度,混匀,放置20min,以3cm比色杯(参考波长580nm)用零管调节零点,测各管吸光度,绘制标准曲线比较。
5.2.3计算
同5.1.3。
第二篇灰化蒸馏——氟试剂比色法(第二法)
6原理
样品经硝酸镁固定氟,经高温灰化后,在酸性条件下,蒸馏分离氟,蒸出的氟被氢氧化钠溶液吸收,氟与氟试剂、硝酸镧作用,生成蓝色三元络合物,与标准比较定量。
㈣ GB 7483-87 水质 氟化物的测定 氟试剂分光光度法 氟离子显色问题
用氟标液试一下,如果不显蓝色系列,说明有可能是配制的显色剂(氟试剂,缓冲液,硝酸镧)的PH不达标。如果不是这个问题的话,那基本上可以断定是氟试剂药品变质失效,再者氟试剂药品有几种类型,请确认与操作规程上的氟试剂化学式相同
㈤ 氟化物测定仪适合用于测量地表水吗
适合的。深昌鸿氟化物测定仪(型号:CHF-260)仪器采用单色冷光源,利用微电脑自动处理数据,直接显示水样的氟化物浓度值。广泛适用于饮用水、地表水、地面水、污水和工业废水的测定。
㈥ 水质检测分析方法常用哪些分析方法
1、看:用透明度较高的玻璃杯接满一杯水,对着光线看有无悬浮在水中的细微物质?静置三小时,然后观察杯底是否有沉淀物?如果有,说明水中悬浮杂质严重超标。
2、闻:用玻璃杯距离水龙头尽量远一点接一杯水,然后用鼻子闻一闻,是否有漂白粉(氯气)的味道?如果能闻到漂白粉(氯气)的味道,说明自来水中余氯超标。
3、尝:热喝白开水,有无有漂白粉(氯气)的味道,如果能闻到漂白粉(氯气)的味道,说明自来水中余氯超标。也必须使用净水器进行终端处理。
4、观:用自来水泡茶,隔夜后观察茶水是否变黑?如果茶水变黑,说明自来水中含铁、锰严重超标,应选用装有除铁、锰滤芯的净水器进行终端处理。
5、品:品尝白开水,口感有无涩涩的感觉?如有,说明水的硬度过高。
6、查:检查家里的热水器、开水壶,内壁有无结一层黄垢?如果有,也说明水的硬度过高,(钙、镁盐含量过高),应尽早使用软化处理!注意:硬度过高的水很容易造成热水器管道结垢,因热交换不良而爆管;长期饮用硬度过高的水容易使人得各种结石。
(6)废水氟化物的测定方法扩展阅读:
主要意义:
水资源是人类社会发展不可或缺并且不可替代的重要资源之一,对社会经济的发展以及人们的日常生活与生产都发挥着保障的作用。
当前人类社会中的水资源危机问题已经直接对经济的发展起到了限制的作用并且影响着人类的正常生活,所以正视水资源危机以及重视水资源问题具有紧迫性与必要性。而在对水资源质量的调查与把控中,水质分析发挥着重要的作用。
饮用水主要考虑对人体健康的影响,其水质标准除有物理指标、化学指标外,还有微生物指标;对工业用水则考虑是否影响产品质量或易于损害容器及管道。水资源是人类社会发展不可或缺并且不可替代的重要资源之一,对社会经济的发展以及人们的日常生活与生产都发挥着保障的作用。
㈦ 工业废水检测方法
工业废水检测主要是对企业工厂在生产工艺过程中排出的废水、污水和水生物检测的总称。工艺废水检测包括生产废水和生产废水。按工业企业的产品和加工对象可分为造纸废水、纺织废水、制革废水、农药废水、冶金废水、炼油废水等。
一、生化需氧量(BOD)
生化需氧量又称生化耗氧量,缩写BOD,恳表示水中有机物等需氧污染物质含量的一个综合指标,它说明水中有机物出于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量,其单位以ppm成毫克/升表示。其值越高,说明水中有机污染物质越多,污染也就越严重。加以悬浮或溶解状态存在于生活污水和制糖、食品、造纸、纤维等工业废水中的碳氢化合物、蛋白质、油脂、木质素等均为有机污染物,可经好气菌的生物化学作用而分解,由于在分解过程中消耗氧气,故亦称需氧污染物质。若这类污染物质排人水体过多,将造成水中溶解氧缺乏,同时,有机物又通过水中厌氧菌的分解引起腐败现象,产生甲烷、硫化氢、硫醇和氨等恶具气体,使水体变质发臭。
废水中各种有机物得到完会氧化分解的时间,总共约需一百天,为了缩短检测时间,一般生化需氧量条以被检验的水样在20℃下,五天内的耗氧量为代表,称其为五日生化需氧量,简称BOD5,对生活废水来说,它约等于完全氧化分解耗氧量的70%。
我国规定,在工厂排出口,废水的BOD;的最高容许浓度为60毫克/升,地面水的BOD不得超过4毫克/升。
二、化学需氧量COD
化学需氧量又称化学耗氧量简称COD。是利用化学氧化剂(如高锰酸钾)将水中可氧化物质(如有机物、亚硝酸盐、亚铁盐、硫化物等)氧化分解,然后根据残留的氧化剂的量计算出氧的消耗量。它和生化需养量(BOD)一样,是表示水质污染度的重要指标。COD的单位为ppm或毫克/升,其值越小,说明水质污染程度越轻。
水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。目前应用最普遍的是酸性高锰酸钾氧化法与重铬酸钾氧化法。高锰酸钾(KMnO4)法,氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值及清洁地表水和地下水水样时,可以采用。
三、重铬酸钾(K2Cr2O7)法,氧化率高,再现性好,适用于废水监测中测定水样中有机物的总量。有机物对工业水系统的危害很大。含有大量的有机物的水在通过除盐系统时会污染离子交换树脂,特别容易污染阴离子交换树脂,使树脂交换能力降低。有机物在经过预处理时(混凝、澄清和过滤),约可减少50%,但在除盐系统中无法除去,故常通过补给水带入锅炉,使炉水pH值降低。有时有机物还可能带入蒸汽系统和凝结水中,使pH降低,造成系统腐蚀。在循环水系统中有机物含量高会促进微生物繁殖。因此,不管对除盐、炉水或循环水系统,COD都是越低越好,但并没有统一的限制指标。在循环冷却水系统中COD(KMnO4法)>5mg/L时,水质已开始变差。
㈧ 废水中氟化物的测定加入TISAB的作用是什么
TISAB叫做总离子强度调节缓冲溶液,由固定离子强度、保持液接电位稳定的离子强度调节剂、起pH缓冲作用的缓冲剂、掩蔽干扰离子的掩蔽剂组成。 其作用是消除标准溶液与被测溶液的离子强度差异,使离子活度系数保持一致;络合干扰离子,使络合态的氟离子释放出来;缓冲pH变化,保持溶液有合适的pH范围。
㈨ 如何测定水中的氟离子
用分光光度计可以测,我以前用来测废水中的含氟量
㈩ 危险废物鉴别标准中,氟化物的监测为什么氟化钙除外,氟化钙污泥是危险废物吗,怎样对其进行检测
氟化钙为不溶物,氟检测主要为其离子状态,检测方法为离子色谱法,氟化钙在水中不溶。主要还的考虑你的氟化钙具体产生工艺,是否有其他危险成分和因素。如只考虑氟,可以参考GB5085做浸出,测定氟离子浓度。