导航:首页 > 污水知识 > 退火废水

退火废水

发布时间:2021-03-25 20:48:56

㈠ Alloy D 205材料什么特性蒸氨废水有什么特性

一. 磁性材料的基本特性
1. 磁性材料的磁化曲线
磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2. 软磁材料的常用磁性能参数
饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs
矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,
磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为:
总功率耗散(mW)/表面积(cm2)
3. 软磁材料的磁性参数与器件的电气参数之间的转换
在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。

二、软磁材料的发展及种类
1. 软磁材料的发展
软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。
2. 常用软磁磁芯的种类
铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。
按(主要成分、磁性特点、结构特点)制品形态分类:
(1) 粉芯类: 磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯
(2) 带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金
三 常用软磁磁芯的特点及应用
(一) 粉芯类
1. 磁粉芯
磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。
常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。
磁芯的有效磁导率μe及电感的计算公式为: μe = DL/4N2S × 109
其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2)。
(1) 铁粉芯
常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。

铁粉芯初始磁导率随直流磁场强度的变化
铁粉芯初始磁导率随频率的变化
(2). 坡莫合金粉芯
坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。
MPP 是由81%Ni、2%Mo及Fe粉构成。主要特点是:饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300kHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用, 粉芯中价格最贵。
高磁通粉芯HF是由50%Ni、50%Fe粉构成。主要特点是:饱和磁感应强度值在15000Gs 左右;磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC 偏压、高直流电和低交流电上用得多。价格低于MPP。
(3) 铁硅铝粉芯(Kool Mμ Cores)
铁硅铝粉芯由9%Al、5%Si, 85%Fe粉构成。主要是替代铁粉芯,损耗比铁粉芯低80%,可在8kHz以上频率下使用;饱和磁感在1.05T 左右;导磁率从26~125;磁致伸缩系数接近0,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压能力;具有最佳的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。有时也替代有气隙铁氧体作变压器铁芯使用。
2. 软磁铁氧体(Ferrites)
软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,为1~10 欧姆-米,一般在100kHZ 以下的频率使用。Cu-Zn、Ni-Zn铁氧体的电阻率为102~104 欧姆-米,在100kHz~10 兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器。磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等。在应用上很方便。由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。
国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn铁氧体为例介绍其应用状况。分为三类基本材料:电信用基本材料、宽带及EMI材料、功率型材料。
电信用铁氧体的磁导率从750~2300, 具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系, 是磁导率在工作中下降最慢的一种,约每10年下降3%~4%。广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器。宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000。其特性为具有低损耗因子、高磁导率、高阻抗/频率特性。广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用。功率铁氧体具有高的饱和磁感应强度,为4000~5000Gs。另外具有低损耗/频率关系和低损耗/温度关系。也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大。广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路。

(二) 带绕铁芯
1. 硅钢片铁芯
硅钢片是一种合金,在纯铁中加入少量的硅(一般在4.5%以下)形成的铁硅系合金称为硅钢。该类铁芯具有最高的饱和磁感应强度值为20000Gs;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。是软磁材料中产量和使用量最大的材料。也是电源变压器用磁性材料中用量最大的材料。特别是在低频、大功率下最为适用。常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。但高频下损耗急剧增加,一般使用频率不超过400Hz。从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。在工频下使用时,常用带材的厚度为0.2~0.35毫米;在400Hz下使用时,常选0.1毫米厚度为宜。厚度越薄,价格越高。
2. 坡莫合金
坡莫合金常指铁镍系合金,镍含量在30~90%范围内。是应用非常广泛的软磁合金。通过适当的工艺,可以有效地控制磁性能,比如超过105的初始磁导率、超过106的最大磁导率、低到2‰奥斯特的矫顽力、接近1或接近0的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1μm的超薄带及各种使用形态。常用的合金有1J50、1J79、1J85等。1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3倍。做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100W以下小型较高频率变压器。1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。1J85 的初始磁导率可达十万105以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等。
3. 非晶及纳米晶软磁合金(Amorphous and Nanocrystalline alloys)
硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利。从磁性物理学上来说,原子不规则排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的。非晶态金属与合金是70年代问世的一个新型材料领域。它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场。
我国自从70年代开始了非晶态合金的研究及开发工作,经过“六五”、“七五”、“八五”期间的重大科技攻关项目的完成,共取得科研成果134项,国家发明奖2项,获专利16项,已有近百个合金品种。钢铁研究总院现具有4条非晶合金带材生产线、一条非晶合金元器件铁芯生产线。生产各种定型的铁基、铁镍基、钴基和纳米晶带材及铁芯,适用于逆变电源、开关电源、电源变压器、漏电保护器、电感器的铁芯元件,年产值近2000万元。“九五”正在建立千吨级铁基非晶生产线,进入国际先进水平行列。
目前,非晶软磁合金所达到的最好单项性能水平为:
初始磁导率 μo = 14 × 104
钴基非晶最大磁导率 μm= 220 × 104
钴基非晶矫顽力 Hc = 0.001 Oe
钴基非晶矩形比 Br/Bs = 0.995
钴基非晶饱和磁化强度 4πMs = 18300Gs
铁基非晶电阻率 ρ= 270μΩ/cm
常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。其国家牌号及性能特点见表及图所示,为便于对比,也列出晶态合金硅钢片、坡莫合金1J79 及铁氧体的相应性能。这几类材料各有不同的特点,在不同的方面得到应用。
牌号基本成分和特征:
1K101 Fe-Si-B 系快淬软磁铁基合金
1K102 Fe-Si-B-C 系快淬软磁铁基合金
1K103 Fe-Si-B-Ni 系快淬软磁铁基合金
1K104 Fe-Si-B-Ni Mo 系快淬软磁铁基合金
1K105 Fe-Si-B-Cr(及其他元素)系快淬软磁铁基合金
1K106 高频低损耗Fe-Si-B 系快淬软磁铁基合金
1K107 高频低损耗Fe-Nb-Cu-Si-B 系快淬软磁铁基纳米晶合金
1K201 高脉冲磁导率快淬软磁钴基合金
1K202 高剩磁比快淬软磁钴基合金
1K203 高磁感低损耗快淬软磁钴基合金
1K204 高频低损耗快淬软磁钴基合金
1K205 高起始磁导率快淬软磁钴基合金
1K206 淬态高磁导率软磁钴基合金
1K501 Fe-Ni-P-B 系快淬软磁铁镍基合金
1K502 Fe-Ni-V-Si-B 系快淬软磁铁镍基合金
400Hz: 硅钢铁芯 非晶铁芯
功率(W) 45 45
铁芯损耗(W) 2.4 1.3
激磁功率(VA) 6.1 1.3
总重量(g) 295 276
(1)铁基非晶合金(Fe-based amorphous alloys)
铁基非晶合金是由80%Fe及20%Si,B类金属元素所构成,它具有高饱和磁感应强度(1.54T),铁基非晶合金与硅钢的损耗比较

磁导率、激磁电流和铁损等各方面都优于硅钢片的特点,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电变压器可节能60-70%。铁基非晶合金的带材厚度为0.03mm左右,广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯, 适合于10kHz 以下频率使

2)铁镍基、钴基非晶合金(Fe-Ni based-amorphous alloy)
铁镍基非晶合金是由40%Ni、40%Fe及20%类金属元素所构成,它具有中等饱和磁感应强度〔0.8T〕、较高的初始磁导率和很高的最大磁导率以及高的机械强度和优良的韧性。在中、低频率下具有低的铁损。空气中热处理不发生氧化,经磁场退火后可得到很好的矩形回线。价格比1J79便宜30-50%。铁镍基非晶合金的应用范围与中镍坡莫合金相对应, 但铁损和高的机械强度远比晶态合金优越;代替1J79,广泛用于漏电开关、精密电流互感器铁芯、磁屏蔽等。铁镍基非晶合金是国内开发最早,也是目前国内非晶合金中应用量最大的非晶品种,年产量近200吨左右.空气中热处理不发生氧化铁镍基非晶合金( 1K503) 获得国家发明专利和美国专利权。
(4) 铁基纳米晶合金(Nanocrystalline alloy)
铁基纳米晶合金是由铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为10-20 nm的微晶,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料或纳米晶材料。纳米晶材料具有优异的综合磁性能:高饱和磁感(1.2T)、高初始磁导率(8×104)、低Hc(0.32A/M), 高磁感下的高频损耗低(P0.5T/20kHz=30W/kg),电阻率为80μΩ/cm,比坡莫合金(50-60μΩ/cm)高, 经纵向或横向磁场处理,可得到高Br(0.9)或低Br 值(1000Gs)。是目前市场上综合性能最好的材料;适用频率范围:50Hz-100kHz,最佳频率范围:20kHz-50kHz。广泛应用于大功率开关电源、逆变电源、磁放大器、高频变压器、高频变换器、高频扼流圈铁芯、电流互感器铁芯、漏电保护开关、共模电感铁芯。
(三)常用软磁磁芯的特点比较
1. 磁粉芯、铁氧体的特点比较:
MPP 磁芯:使用安匝数< 200,50Hz~1kHz, μe :125 ~ 500 ; 1 ~ 10kHz; μe :125 ~ 200; > 100kHz:μe: 10 ~ 125
HF 磁芯:使用安匝数< 500,能使用在较大的电源上,在较大的磁场下不易被饱和,能保证电感的最小直流漂移,μe :20 ~ 125
铁粉芯:使用安匝数>800, 能在高的磁化场下不被饱和, 能保证电感值最好的交直流叠加稳定性。在200kHz以内频率特性稳定;但高频损耗大,适合于10kHz以下使用。
FeSiAlF磁芯:代替铁粉芯使用,使用频率可大于8kHz。DC偏压能力介于MPP与HF之间。
铁氧体:饱和磁密低(5000Gs),DC偏压能力最小
3. 硅钢、坡莫合金、非晶合金的特点比较:
硅钢和FeSiAl 材料具有高的饱和磁感应值Bs,但其有效磁导率值低,特别是在高频范围内;
坡莫合金具有高初始磁导率、低矫顽力和损耗,磁性能稳定,但Bs 不够高,频率大于20kHz时,损耗和有效磁导率不理想,价格较贵,加工和热处理复杂;
钴基非晶合金具有高的磁导率、低Hc、在宽的频率范围内有低损耗,接近于零的饱和磁致伸缩系数,对应力不敏感,但是Bs 值低,价格昂贵;
铁基非晶合金具有高Bs值、价格不高,但有效磁导率值较低。
纳米晶合金的磁导率、Hc值接近晶态高坡莫合金及钴基非晶,且饱和磁感Bs与中镍坡莫合金相当,热处理工艺简单,是一种理想的廉价高性能软磁材料;虽然纳米晶合金的Bs值低于铁基非晶和硅钢,但其在高磁感下的高频损耗远低于它们,并具有更好的耐蚀性和磁稳定性。纳米晶合金与铁氧体相比,在低于50kHz时,在具有更低损耗的基础上具有高2至3倍的工作磁感,磁芯体积可小一倍以上。
四、几种常用磁性器件中磁芯的选用及设计
开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。
(一)、高频功率变压器
变压器铁芯的大小取决于输出功率和温升等。变压器的设计公式如下:
P=KfNBSI×10-6T=hcPc+hWPW
其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。
由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。但B值的增加受到材料的Bs值的限制。而频率f可以提高几个数量级,从而有可能使体积重量显著减小。而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大; 同时要求高的脉冲磁导率。特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。
线圈储能的多少取决于两个因素: 一个是材料的工作磁感Bm值或电感量L, 另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。对于工作在±Bm之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。

通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器。已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20-50kHz、功率50kW以下,是变压器最佳磁芯材料。
近年来发展起来的新型逆变弧焊电源单端脉冲变压器,具有高频大功率的特点,因此要求变压器铁芯材料具有低的高频损耗、高的饱和磁感Bs和低的Br以获得大的工作磁感B,使焊机体积和重量减小。常用的用于高频弧焊电源的铁芯材料为铁氧体,虽然由于其电阻率高而具有低的高频损耗, 但其温度稳定性较差,工作磁感较低,变压器体积和重量较大,已不能满足新型弧焊机的要求。采用纳米晶环形铁芯后,由于其具有高的Bs 值(Bs>1.2T),高的ΔB 值(ΔB>0.7T),很高的脉冲磁导率和低的损耗,频率可达100kHz. 可使铁芯的体积和重量大为减小。近年来逆变焊机已应用纳米晶铁芯达几万只,用户反映用纳米晶变压器铁芯再配以非晶高频电感制成的焊机,不仅体积小、重量轻、便于携带,而且电弧稳定、飞溅小、动态特性好、效率高及可靠性高。这种环形纳米晶铁芯还可用于中高频加热电源、脉冲变压器、不停电电源、功率变压器、开关电源变压器和高能加速器等装置中。可根据开关电源的频率选用磁芯材料。
环形纳米晶铁芯具有很多优点,但它也有绕线困难的不利因素。为了在匝数较多时绕线方便,可选用高频大功率C 型非晶纳米晶铁芯。采用低应力粘结剂固化及新的切割工艺制成的非晶纳米晶合金C 型铁芯的性能明显优于硅钢C 型铁芯。目前这种铁芯已批量用于逆变焊机和切割机等。逆变焊机主变压器铁芯和电抗器铁芯系列有: 120A、160A、200A、250A、315A、400A、500A、630A 系列。
(二)、脉冲变压器铁芯
脉冲变压器是用来传输脉冲的变压器。当一系列脉冲持续时间为td (μs)、脉冲幅值电压
为Um (V)的单极性脉冲电压加到匝数为N 的脉冲变压器绕组上时,在每一个脉冲结束时,铁芯中的磁感应强度增量ΔB (T)为: ΔB = Um td / NSc × 10-2 其中Sc为铁芯的有效截面积(cm2)。即磁感应强度增量ΔB 与脉冲电压的面积(伏秒乘积)成正比。对输出单向脉冲时,ΔB=Bm-Br , 如果在脉冲变压器铁芯上加去磁绕组时,ΔB = Bm + Br 。在脉冲状态下,由动态脉冲磁滞回线的ΔB 与相应的ΔHp 之比为脉冲磁导率μp。理想的脉冲波形是指矩形脉冲波,由于电路的参数影响,实际的脉冲波形与矩形脉冲有所差异,经常会发生畸变。比如脉冲前沿的上升时间tr 与脉冲变压器的漏电感Ls、绕组和结构零件导致的分布电容Cs 成比例,脉冲顶降λ 与励磁电感Lm成反比,另外涡流损耗因素也会影响输出的脉冲波形。
脉冲变压器的漏电感 Ls = 4βπN21 lm / h
脉冲变压器的初级励磁电感 Lm = 4μπp Sc N2 / l ×10-9
涡流损耗 Pe = Um d2td lF / 12 N21 Scρ
β为与绕组结构型式有关的系数,lm为绕组线圈的平均匝长,h 为绕组线圈的宽度,N1为初级绕组匝数,l为铁芯的平均磁路长度,Sc为铁芯的截面积,μp为铁芯的脉冲磁导率,ρ 为铁芯材料的电阻率,d为铁芯材料的厚度,F为脉冲重复频率。
从以上公式可以看出,在给定的匝数和铁芯截面积时,脉冲宽度愈大,要求铁芯材料的磁感应强度的变化量ΔB 也越大;在脉冲宽度给定时,提高铁芯材料的磁感应强度变化量ΔB,可以大大减少脉冲变压器铁芯的截面积和磁化绕组的匝数,即可缩小脉冲变压器的体积。要减小脉冲波形前沿的失真,应尽量减小脉冲变压器的漏电感和分布电容,为此需使脉冲变压器的绕组匝数尽可能的少,这就要求使用具有较高脉冲磁导率的材料。为减小顶降,要尽可能的提高初级励磁电感量Lm,这就要求铁芯材料具有较高的脉冲磁导率μp。为减小涡流损耗,应选用电阻率高、厚度尽量薄的软磁带材作为铁芯材料,尤其是对重复频率高、脉冲宽度大的脉冲变压器更是如此。
脉冲变压器对铁芯材料的要求为:
① 高饱和磁感应强度Bs 值;
② 高的脉冲磁导率,能用较小的铁芯尺寸获得足够大的励磁电感;
③ 大功率单极性脉冲变压器要求铁芯具有大的磁感应强度增量ΔB,使用低剩磁感应材料;当采用附加直流偏磁时,要求铁芯具有高矩形比,小矫顽力Hc。
④ 小功率脉冲变压器要求铁芯的起始脉冲磁导率高;
⑤ 损耗小。
铁氧体磁芯的电阻率高、频率范围宽、成本低,在小功率脉冲变压器中应用较多,但其ΔB
和μp 均较低,温度稳定性差,一般用于对顶降和后沿要求不高的场合。
(三). 电感器磁芯
铁芯电感器是一种基本元件,在电路中电感器对于电流的变化具有阻抗的作用, 在电子设备中应用极为广泛。对电感器的主要要求有以下几点:
① 在一定温度下长期工作时,电感器的电感量随时间的变化率应保持最小;
② 在给定工作温度变化范围内,电感量的温度系数应保持在容许限度之内;
③ 电感器的电损耗和磁损耗低;
④ 非线性歧变小;
⑤ 价格低,体积小。
电感元件与电感量L、品质因素Q、铁芯重量W、绕线的直流电阻R 有着密切的关系。
电感L 抗拒交流电流的能力用感抗值ZL来表示: ZL = 2πfL , 频率f 越高,感抗值ZL 越大?/ca> 这也是我参考别人的

㈡ 含氟废水用什么材质不锈钢

2304(UNS S32304)不锈钢是由23%铬、4%镍、不含钼的双相不锈钢。2304双相不锈钢的抗腐蚀特性与316L相似,屈服强度是304L/316L奥氏体不锈钢的两倍。这个特性使设计者在设计产品,尤其是设计压力容器时,可以减轻产品的重量。与304 和316 奥氏体不锈钢相比,由于2304双相不锈钢的抗应力腐蚀能力更强。
2304(UNS S32304)双相不锈钢的化学成分:
平均值 (重量 %)
C:0.020
Cr:23.00
Ni:4.00
Mo:0.20
N:0.10
PREN (Cr%) + 3.3 (Mo%) = 16 (N%) ≥ 24
2304(UNS S32304)双相不锈钢的应用领域:
⒈304 和316 所用的大部分领域;
⒉纸浆和造纸业(芯片、碎片储存罐、黑色或白色液体罐、分类器);
⒊苛性碱溶液、有机酸(抗SCC);
⒋食品工业;
⒌压力容器(减轻重量);
⒍采矿业(磨蚀/腐蚀)。

㈢ 急急急急急急急急!!!!!!!!!!!!!!!!!!!!

生产工艺流程具体介绍如下:
固定:将单晶硅棒固定在加工台上。
切片:将单晶硅棒切成具有精确几何尺寸的薄硅片。此过程中产生的硅粉采用水淋,产生废水和硅渣。
退火:双工位热氧化炉经氮气吹扫后,用红外加热至300~500℃,硅片表面和氧气发生反应,使硅片表面形成二氧化硅保护层。
倒角:将退火的硅片进行修整成圆弧形,防止硅片边缘破裂及晶格缺陷产生,增加磊晶层及光阻层的平坦度。此过程中产生的硅粉采用水淋,产生废水和硅渣。
分档检测:为保证硅片的规格和质量,对其进行检测。此处会产生废品。
研磨:用磨片剂除去切片和轮磨所造的锯痕及表面损伤层,有效改善单晶硅片的曲度、平坦度与平行度,达到一个抛光过程可以处理的规格。此过程产生废磨片剂。
清洗:通过有机溶剂的溶解作用,结合超声波清洗技术去除硅片表面的有机杂质。此工序产生有机废气和废有机溶剂。
RCA清洗:通过多道清洗去除硅片表面的颗粒物质和金属离子。具体工艺流程如下:

SPM清洗:用H2SO4溶液和H2O2溶液按比例配成SPM溶液,SPM溶液具有很强的氧化能力,可将金属氧化后溶于清洗液,并将有机污染物氧化成CO2和H2O。用SPM清洗硅片可去除硅片表面的有机污物和部分金属。此工序会产生硫酸雾和废硫酸。
DHF清洗:用一定浓度的氢氟酸去除硅片表面的自然氧化膜,而附着在自然氧化膜上的金属也被溶解到清洗液中,同时DHF抑制了氧化膜的形成。此过程产生氟化氢和废氢氟酸。
APM清洗: APM溶液由一定比例的NH4OH溶液、H2O2溶液组成,硅片表面由于H2O2氧化作用生成氧化膜(约6nm呈亲水性),该氧化膜又被NH4OH腐蚀,腐蚀后立即又发生氧化,氧化和腐蚀反复进行,因此附着在硅片表面的颗粒和金属也随腐蚀层而落入清洗液内。此处产生氨气和废氨水。
HPM清洗:由HCl溶液和H2O2溶液按一定比例组成的HPM,用于去除硅表面的钠、铁、镁和锌等金属污染物。此工序产生氯化氢和废盐酸。
DHF清洗:去除上一道工序在硅表面产生的氧化膜。
磨片检测:检测经过研磨、RCA清洗后的硅片的质量,不符合要求的则从新进行研磨和RCA清洗。
腐蚀A/B:经切片及研磨等机械加工后,晶片表面受加工应力而形成的损伤层,通常采用化学腐蚀去除。腐蚀A是酸性腐蚀,用混酸溶液去除损伤层,产生氟化氢、NOX和废混酸;腐蚀B是碱性腐蚀,用氢氧化钠溶液去除损伤层,产生废碱液。本项目一部分硅片采用腐蚀A,一部分采用腐蚀B。
分档监测:对硅片进行损伤检测,存在损伤的硅片重新进行腐蚀。
粗抛光:使用一次研磨剂去除损伤层,一般去除量在10~20um。此处产生粗抛废液。
精抛光:使用精磨剂改善硅片表面的微粗糙程度,一般去除量1 um以下,从而的到高平坦度硅片。产生精抛废液。
检测:检查硅片是否符合要求,如不符合则从新进行抛光或RCA清洗。
检测:查看硅片表面是否清洁,表面如不清洁则从新刷洗,直至清洁。
包装:将单晶硅抛光片进行包装。

㈣ 实际的电缆生产过程中都有哪些废气、废水、固体废物出来啊都是在什么环节啊多谢了

电线电缆的主要工艺:
电线电缆是通过:拉制、绞制、包覆三种工艺来制作完成的,型号规格越复杂,重复性越高。
1.拉制
在金属压力加工中.在外力作用下使金属强行通过模具(压轮),金属横截面积被压缩,并获得所要求的横截面积形状和尺寸的技术加工方法称为金属拉制。
拉制工艺分:单丝拉制和绞制拉制。
2.绞制
为了提高电线电缆的柔软度、整体度,让2根以上的单线,按着规定的方向交织在一起称为绞制。
绞制工艺分:导体绞制、成缆、编织、钢丝装铠和缠绕。
3.包覆
根据对电线电缆不同的性能要求,采用专用的设备在导体的外面包覆不同的材料。包覆工艺分:
A.挤包:橡胶、塑料、铅、铝等材料。
B.纵包:橡皮、皱纹铝带材料。
C.绕包:带状的纸带、云母带、无碱玻璃纤维带、无纺布、塑料带等,线状的棉纱、丝等纤维材料。
D. 浸涂:绝缘漆、沥青等
塑料电线电缆制造的基本工艺流程:
1.铜、铝单丝拉制
电线电缆常用的铜、铝杆材,在常温下,利用拉丝机通过一道或数道拉伸模具的模孔,使其截面减小、长度增加、强度提高。拉丝是各电线电缆公司的首道工序,拉丝的主要工艺参数是配模技术。
2.单丝退火
铜、铝单丝在加热到一定的温度下,以再结晶的方式来提高单丝的韧性、降低单丝的强度,以符合电线电缆对导电线芯的要求。退火工序关键是杜绝铜丝的氧化.
3.导体的绞制
为了提高电线电缆的柔软度,以便于敷设安装,导电线芯采取多根单丝绞合而成。从导电线芯的绞合形式上,可分为规则绞合和非规则绞合。非规则绞合又分为束绞、同心复绞、特殊绞合等。
为了减少导线的占用面积、缩小电缆的几何尺寸,在绞合导体的同时采用紧压形式,使普通圆形变异为半圆、扇形、瓦形和紧压的圆形。此种导体主要应用在电力电缆上。
4.绝缘挤出
塑料电线电缆主要采用挤包实心型绝缘层,塑料绝缘挤出的主要技术要求:
4.1.偏心度:挤出的绝缘厚度的偏差值是体现挤出工艺水平的重要标志,大多数的产品结构尺寸及其偏差值在标准中均有明确的规定。
4.2.光滑度:挤出的绝缘层表面要求光滑,不得出现表面粗糙、烧焦、杂质的不良质量问题
4.3.致密度:挤出绝缘层的横断面要致密结实、不准有肉眼可见的针孔,杜绝有气泡的存在。
5.成缆
对于多芯的电缆为了保证成型度、减小电缆的外形,一般都需要将其绞合为圆形。绞合的机理与导体绞制相仿,由于绞制节径较大,大多采用无退扭方式。成缆的技术要求:一是杜绝异型绝缘线芯翻身而导致电缆的扭弯;二是防止绝缘层被划伤。
大部分电缆在成缆的同时伴随另外两个工序的完成:一个是填充,保证成缆后电缆的圆整和稳定;一个是绑扎,保证缆芯不松散。
6.内护层
为了保护绝缘线芯不被铠装所疙伤,需要对绝缘层进行适当的保护,内护层分:挤包内护层(隔离套)和绕包内护层(垫层)。绕包垫层代替绑扎带与成缆工序同步进行。
7.装铠
敷设在地下电缆,工作中可能承受一定的正压力作用,可选择内钢带铠装结构。电缆敷设在既有正压力作用又有拉力作用的场合(如水中、垂直竖井或落差较大的土壤中),应选用具有内钢丝铠装的结构型。
8.外护套
外护套是保护电线电缆的绝缘层防止环境因素侵蚀的结构部分。外护套的主要作用是提高电线电缆的机械强度、防化学腐蚀、防潮、防水浸人、阻止电缆燃烧等能力。根据对电缆的不同要求利用挤塑机直接挤包塑料护套。

㈤ 想请教您一些漆包线行业的问题,谢谢!!

蒸汽发生器的作用,在漆包线或拉丝退火炉炉管当中,大部分选用蒸汽进行保护,防止铜线在退火过程中被氧化,当然,也有使用N2作为保护气体的。

拉丝油兑水是为了集约使用资源,拉丝油的作用于原理你可以像你的拉丝油供方所要资料说明。大部分拉线油都是一种乳化剂,在遇到水的时候产生乳化液,乳化你要网络一下,很多资料。油水在有乳化剂的情况下,一般都会很好的混合。乳化剂的分子中油两性成分,一极是呈电阳性,一极是呈电阴性,一极溶于水,一极溶于油,实现油水混合。

退火液与拉丝液可以使用硫酸分解,氢氧化钠中和的办法处理,当然也可以找一个废液处理公司帮你处理。

㈥ 怎样分辨别污水处埋中好氧池中的甲烷汽泡和氮气泡

退火炉中有氧气怎样通过甲烷和氮气去除
(1)二氧化碳通过澄清石灰水会生成碳酸钙沉淀,而本题混合气通过澄清石灰水没有现象,所以混合气中没有二氧化碳,故答案为:二氧化碳,(2)无水硫酸铜遇水变蓝色,说明点燃后生成了水,根据质量守恒定律可知,原混合气中含有氢元素,故答案为:甲烷,(3)根据(2)的推断,可知混合气中含有甲烷,假如也有一氧化碳,经过点燃后,甲烷和一氧化碳都转化成了水和二氧化碳,而氢氧化钠可以吸收二氧化碳,浓硫酸可以吸收水,最后只剩氮气了,故答案为:氮气,(4)根据表中的数据可知,生成了水1.8克,二氧化碳2.2克, H:2 18 ×1.8=0.2克 C:12 44 ×2.2=0.6克碳氢原子个数比=0.6 12 :0.2 1 =1:4 所以该气体为甲烷.可以确定经过点燃的是甲烷,故答案为:甲烷、氮气.

㈦ 工业排热废水管用什么金属材料

将钢加热到一定温度并保温一段时间,然后使它慢慢冷却,称为退火。钢的退火是将钢加热到发生相变或部分相变的温度,经过保温后缓慢冷却的热处理方法。退火的目的,是为了消除组织缺陷,改善组织使成分均匀化以及细化晶粒,提高钢的力学性能,减少残余应力;同时可降低硬度,提高塑性和韧性,改善切削加工性能。所以退火既为了消除和改善前道工序遗留的组织缺陷和内应力,又为后续工序作好准备,故退火是属于半成品热处理,又称预先热处理。正火:将钢加热到临界温度以上,使钢全部转变为均匀的奥氏体,然后在空气中自然冷却的热处理方法。它能消除过共析钢的网状渗碳体,对于亚共析钢正火可细化晶格,提高综合力学性能,对要求不高的零件用正火代替退火工艺是比较经济的。淬火:将钢加热到临界温度以上,保温一段时间,然后很快放入淬火剂中,使其温度骤然降低,以大于临界冷却速度的速度急速冷却,而获得以马氏体为主的不平衡组织的热处理方法。淬火能增加钢的强度和硬度,但要减少其塑性。淬火中常用的淬火剂有:水、油、碱水和盐类溶液等。将已经淬火的钢重新加热到一定温度,再用一定方法冷却称为回火。其目的是消除淬火产生的内应力,降低硬度和脆性,以取得预期的力学性能。回火分高温回火、中温回火和低温回火三类。回火多与淬火配合使用。淬火后高温回火的热处理方法称为调质处理。高温回火是指在500-650℃之间进行回火。调质可以使钢的性能,材质得到很大程度的调整,其强度、塑性和韧性都较好,具有良好的综合机械性能。时效处理:为了消除精密量具或模具、零件在长期使用中尺寸、形状发生变化,常在低温回火后(低温回火温度150-250℃)精加工前,把工件重新加热到100-150℃,保持5-20小时,这种为稳定精密制件质量的处理,称为时效。表面处理:表面淬火:将钢件的表面通过高频快速加热到临界温度以上,但热量还未来得及传到心部之前迅速冷却,这样就可以把表面层被淬在马氏体组织,而心部没有发生相变,这就实现了表面淬硬而心部不变的目的。适用于中碳钢。化学热处理:是指将化学元素的原子,借助高温时原子扩散的能力,把它渗入到工件的表面层去,来改变工件表面层的化学成分和结构,从而达到使钢的表面层具有特定要求的组织和性能的一种热处理工艺。按照渗入元素的种类不同,化学热处理可分为渗碳、渗氮、氰化和渗金属法等四种。渗碳:渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。渗氮:又称氮化,是指向钢的表面层渗入氮原子的过程。其目的是提高表面层的硬度与耐磨性以及提高疲劳强度、抗腐蚀性等。氰化:又称碳氮共渗,是指在钢中同时渗入碳原子与氮原子的过程。它使钢表面具有渗碳与渗氮的特性。渗金属:是指以金属原子渗入钢的表面层的过程。它是使钢的表面层合金化,以使工件表面具有某些合金钢、特殊钢的特性,如耐热、耐磨、抗氧化、耐腐蚀等。

㈧ 污水处理制剂注册商标属于哪一类

污水处理制剂属于商标分类第1类0104群组;
经路标网统计,注册污水处理制剂的商标达1件。
注册时怎样选择其他小项类:
1.选择注册(工业用化学品,尤其是用于生产溶剂、稀释剂的、工业清洁和擦洗制剂、表面保护用防腐剂以及润滑剂和冷却润滑剂的基体材料、原材料、辅助材料和活性物质,群组号:0101)类别的商标有1件,注册占比率达100%
2.选择注册(工业用化学品,尤其是用于生产溶剂、稀释剂的、工业清洁和擦洗制剂、表面保护用防腐剂以及润滑剂和冷却润滑剂的基体材料、原材料、辅助材料和活性物质,群组号:0102)类别的商标有1件,注册占比率达100%
3.选择注册(工业用化学品,尤其是用于生产溶剂、稀释剂的、工业清洁和擦洗制剂、表面保护用防腐剂以及润滑剂和冷却润滑剂的基体材料、原材料、辅助材料和活性物质,群组号:0103)类别的商标有1件,注册占比率达100%
4.选择注册(净水用化学品,群组号:0104)类别的商标有1件,注册占比率达100%
5.选择注册(工业用化学品,尤其是用于生产溶剂、稀释剂的、工业清洁和擦洗制剂、表面保护用防腐剂以及润滑剂和冷却润滑剂的基体材料、原材料、辅助材料和活性物质,群组号:0104)类别的商标有1件,注册占比率达100%
6.选择注册(油净化剂,尤其是凝结剂,隔离剂,中和剂,发泡剂,凝聚剂,群组号:0104)类别的商标有1件,注册占比率达100%
7.选择注册(用于油类的化学添加剂,群组号:0104)类别的商标有1件,注册占比率达100%
8.选择注册(表面保护用化学防腐剂,尤其是用于钢铁部件和车辆表面,群组号:0104)类别的商标有1件,注册占比率达100%
9.选择注册(金属腐蚀剂,群组号:0104)类别的商标有1件,注册占比率达100%
10.选择注册(金属退火剂,群组号:0111)类别的商标有1件,注册占比率达100%

㈨ 退火可以提高刚的耐磨性吗

不锈钢303和304那个更耐磨
303不锈钢机械性能退火去应力后,抗拉515MPa,屈服205MPa,延伸率40%。不锈钢303的标准硬度HRB 90-100, HRC 20-25,注:HRB100 = HRC22.9。303是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表面光洁度高的场合。303不锈钢提高切削性能和抗高温粘结性能。最适用于自动车床,螺栓和螺母。304不锈钢是应用最为广泛的一种铬-镍不锈钢,作为一种用途广泛的钢,具有良好的耐蚀性、耐热性,低温强度和机械特性;冲压、弯曲等热加工性好,无热处理硬化现象(使用温度-196℃~800℃)。在大气中耐腐蚀, 如果是工业性气氛或重污染地区,则需要及时清洁以避免腐蚀。适合用于食品的加工、储存和运输。 具有良好的加工性能和可焊性。 板式换热器、波纹管、家庭用品(1、2类餐具、橱柜、室内管线、热水器、锅炉、浴缸),汽车配件(风挡雨刷、消声器、模制品),医疗器具,建材,化学,食品工业,农业,船舶部件、等。
那种不锈钢最耐磨
用不锈钢材料制作研磨棒?为什么要使用不锈钢材料来制作研磨棒而不使用铸铁材料来制作研磨棒呢?铸铁材料的最大特点就是耐磨,所以一般的研磨平台,研磨棒,机床的导轨,都是使用的铸铁材料制作的。铸铁材料本身有空隙,可以容研磨膏在里面,提高研磨的效率。铸铁本身也很耐磨,不容易走形。即使一定要使用不锈钢材料来制作研磨棒的话,也要使用本身比较软的不锈钢材料来制作研磨棒。比如304奥氏体不锈钢,或者405铁素体不锈钢,本身不能通过淬火来增加硬度,所以硬度是不高的,这样研磨膏、粉才可以镶嵌在材料表面,提高研磨的效率。


黄铜与不锈钢哪个更耐磨?
要看你用到什么地方了,做为轴套,肯定是黄铜了,但要润滑油润滑,这是因为黄铜质比较软,能够吸收轴对套一定的冲击力,但做为平面摩擦 ,不锈钢肯定比黄铜要硬。
不锈钢和碳钢的耐磨性哪个好
不能简单比较。和具体的材料的合金成分及工艺处理后的金相组织状态有关。如优质不锈钢OCr18NI9固溶后的正常供货状态肯定比不了淬火态的高碳钢。金属化合物或碳化物对耐磨性影响也很大。如OCr18NI9就缺少Cr的碳化物,对耐磨性是很大的损失。极端例子是激冷白口铸铁做成的犁头,因为大量的碳化铁的存在,就具有其他材料无以比拟的耐磨性能。
不锈钢怎么样耐磨
改善不锈钢耐磨性的表面处理技术及其研究现状, 分析了这些表面处理技术的优势和局限性,
指出综合应用涂镀技术和新兴的表面改性技术将成为提高不锈钢耐磨性的发展方向。

1、引言

不锈钢阀门网。不锈钢由于具有良好的耐蚀性能,
在石油、化工、宇航、医药、造纸、原子能、海洋工程和装饰工程领域得到了广泛的应用。但是通常不锈钢的硬度较低(通常情况下为200~250Hv), 耐磨性较差,
表面易出现发花现象, 这不仅会影响装饰性产品的美观, 而且表面出现微划痕时会形成腐蚀微电池, 从而降低产品的耐腐蚀性能,
导致产品过早报废。以不锈钢为基体的传动轴、啮合件或动配合件经常会因为不锈钢质软不耐磨、表面强度低、摩擦系数大等因素发生咬合或粘滞现象。为了提高不锈钢的耐磨性,
许多学者在不锈钢表面进行了各种处理和强化研究, 如利用化学镀在不锈钢表面沉积耐磨镀层,
能提高产品表面硬度,并保证产品的耐腐蚀性能。本文就涂镀技术和表面改性处理在提高不锈钢表面耐磨性时的工艺局限性和优势作了简要综述,
并展望了改善不锈钢耐磨性的发展方向。

2、不锈钢表面涂镀技术

2.1、化学镀

化学镀是 1947年由A.Brenner和G.Riddell提出的沉积非粉末状镍的镀膜方法,
该方法是一种沉积金属的、可控制的、无外加电源的氧化还原反应过程。相对于电镀, 化学镀有如下优点:能在形状复杂的零件表面沉积均匀一致的镀层;自润滑性好;
镀层较厚; 空隙少; 设备简单, 操作容易; 镀层具有特殊的机械、物理和化学性能等。其缺点是: 镀液寿命短, 废水多, 镀速慢,成本高。

不锈钢阀门网。化学镀提高不锈钢表面耐磨性的途径主要是镀镍及其合金镀层。镀镍前需要进行特殊的预处理, 以除去不锈钢表面的钝化膜,
提高不锈钢与镀层的结合力。不锈钢化学镀镍包括单层化学镀镍、双层化学镀镍、有氧化皮不锈钢单层化学镀镍等。

高岩等在316L不锈钢基体上获得了结合力良好的化学镀 Ni2PPNi2W2P 合金镀层, 在保证产品原有光泽度的前提下,
镀层硬度较原不锈钢基体有了较大幅度的提高, 从而为不锈钢产品的耐磨抗划伤性能的改善提供了有效的解决途径。Yi2Ying Tsai , Fan2Bean Wu
等采用化学镀的方式也在420不锈钢基体上成功沉积了Ni2PPNi2W2P合金镀层, 并进行了适当的热处理, 发现Ni2W2P 较Ni2P
合金镀层具有更高的显微硬度和化学稳定性; 划痕实验则表明, 合金镀层的抗磨损性能较不锈钢基体均有明显改善。

2.2、物理气相沉积

物理气相沉积技术是利用蒸发或溅射等物理形式把材料从靶源移走,
然后通过真空或半真空空间使这些携带能量的粒子沉积到基片或零件的表面以形成膜层。物理气相沉积有真空蒸镀(VE)、溅射镀膜(SIP)、离子镀
(IP))等。按加热蒸发源分类, 真空蒸镀包括电阻加热蒸镀、电子束加热蒸镀、感应加热蒸镀等;
溅射镀膜包括磁控溅射沉积、离子束溅射镀等。其中真空蒸镀是比较早的镀膜技术, 膜的结合力较低, 目前已不多用。而阴极溅射和离子镀所得膜结合力较高,
应用范围正在扩大。物理气相沉积镀膜的实用领域有: 装饰膜、装饰耐磨膜、耐磨超硬膜、减摩润滑膜等。

韩修训等采用磁过滤沉积装置( FCAP) 在1Cr18Ni9Ti不锈钢表面沉积得到的TiN涂层具有高的硬度和膜基结合力, 在载荷1N 和3N
下都表现出较低的摩擦系数和良好的耐磨性能。

2.3、化学气相沉积

化学气相沉积(CVD) 技术是指在较高温度下, 混合气体与基体的表面相互作用, 使混合气体中的某些成分发生分解,
并在基体上形成一种金属或化合物的固态膜或薄膜镀层。其特点如下:

(1) 镀层致密均匀, 可以较好控制镀层的密度、纯度、结构和晶粒度;

(2) 因沉积温度高,镀层与基体结合强度高;

(3) 可以在大气压或者低于大气压下进行沉积;

(4) 通常沉积层具有柱状晶结构, 不耐弯曲。

谢飞, 何家文等对1Cr18Ni9Ti奥氏体不锈钢进行离子渗氮-等离子增强化学气相沉积(PECVD) TiN 复合处理,
研究了复合处理层的组织与性能。结果表明: 复合处理层具有优良的膜基结合强度, 较之不锈钢基体, 耐磨性显著提高; N. Yamauchi 等在AISI304
奥氏体不锈钢表面沉积了菱形碳薄膜, 该过程采用了无线电频率(13156 MHz) 等离子增强化学气相沉积工艺,
腐蚀环境下的对比实验表明薄膜样品和基体的摩擦系数分别约为0.1和0.5, 同时前者的磨损体积明显低于后者。

2.4、热喷涂

热喷涂是利用某些热源将涂层材料加热到熔融或半熔融状态, 同时借助于焰流和高速气体将其雾化, 并推动这些雾化后的粒子喷射到基体表面,
沉积成具有某种功能的涂层。热喷涂能为工件表面提供耐磨、耐蚀、耐高温的涂层。涂层材料与基体之间通常存在三种结合方式:
机械结合、物理结合和冶金结合。随着低压等离子喷涂, 高能、高速等离子喷涂, 高速火焰喷涂技术的出现, 涂层的性能得到进一步提高: 孔隙率可以降至0.5%~1%;
涂层与基体的结合强度可以达到70~140MPa。

潘继岗等利用超音速火焰喷涂(HVOF)技术和等离子喷涂(ASP)技术, 分别在0Cr13Ni5Mo不锈钢基体上制备了铁基非晶合金涂层和铁基非晶纳米晶涂层,
研究了两种涂层在室温下的摩擦磨损特性, 结果表明两种喷涂工艺制备的铁基涂层均具有较高的显微硬度和较小的孔隙率, 组织致密, 呈典型的层状结构,
提高了涂层的耐磨性能。

2.5、电镀

为了弥补不锈钢质软不耐磨、摩擦系数大的弱点, 常用电镀的方法提高不锈钢传动轴等配合件的表面硬度和自润滑性能。不锈钢是一种表面极易钝化的金属,
在电镀前必须除去表面钝化膜, 不锈钢经去油、浸渍、活化、预镀镍和电镀等工序, 可得到铬、锌、铜、锡、贵金属等镀层。

飚等在不锈钢水轮机母材上, 用周期反相电镀稀土铬, 镀层厚度约0.3mm , 镀层由金属基相和稀土盐颗粒第二相组成,
硬度可达到900~1000Hv,镀层的抗磨蚀性为母材的25~28倍,产品工作寿命比原不锈钢件高2~6倍。

3、不锈钢表面改性处理

3.1、离子注入

离子注入是利用经过加速和分离的高能量离子束作用于材料表面, 使之产生一定厚度的注入层, 从而改变材料的表面特性。具体方法是: 把工件(金属、合金、陶瓷等)
放在离子注入机的真空靶室中, 在几十至几百千伏的电压下,
把所需元素的离子加速、聚焦、注入到工件表面。用离子注入的方法可获得过饱和固溶体、亚稳相、非晶态、和平衡态合金等不同组织的结构, 大大改善工件的使用性能。

其优点是:

(1) 可注入任何元素, 不受固溶度和扩散系数的影响;

(2) 元素注入量可以精确控制, 可实现大面积和局部的表面改性;

(3) 真空下进行, 工件表面不会氧化;

(4) 可得到两层及两层以上性能不同的复合镀层, 对工件尺寸影响小;

(5) 借助磁分析器,可以获得纯的离子束流;

(6) 离子注入的直进性, 横向扩展小, 适合微细加工要求;

(7) 高速离子可通过薄膜注入到金属基体, 在薄膜和基体界面处形成合金层,
增强薄膜与基体的结合力,实现辐射增强合金化与离子束辅助增强粘合。

㈩ 冷轧硅钢碱性废水难以絮凝是什么原因

有影响的。
(1)冷轧硅钢片的磁饱和点高,磁通密度在1.9T(19000Gs)时开始饱内和容;热轧硅钢片的饱和点约为1.6T(16000Gs)。
(2)在磁通密度及频率相同的情况下,冷轧硅钢片比热轧硅钢片的单位损耗低。
(3)冷轧硅钢片有无取向和取向两种。取向冷轧硅钢片有明显的方向性,即沿着轧制的方向的磁性能好,饱和磁通密度高,单位损耗和单位励磁容量小。现在变压器上均采用冷轧取向硅钢片。热轧硅钢片都无取向。
(4)采用剪切或冲压对硅钢片进行加工时,对冷轧硅钢片性能影响特别明显,对热轧硅钢片影响较小,因此小容量变压器采用冷轧硅钢片时,可采取退火措施,退火后一般可使空载损耗下降8%左右。

阅读全文

与退火废水相关的资料

热点内容
净水器龙头安装哪里合适 浏览:887
马桶里的水垢太厚了怎么清除 浏览:690
二手反渗透膜怎么存储 浏览:437
净水器七级超滤是什么意思 浏览:172
家用纯净水桶盖怎么拧下来 浏览:243
科诗达净水器怎么接线 浏览:91
提升机减速器包括的主要形式有什么 浏览:312
蒸馏水有氯 浏览:685
纯水机废水可以用来干什么 浏览:640
铍废水 浏览:523
南部县污水处理厂招聘 浏览:334
做树脂瓦机器的温度 浏览:413
内压式超滤膜需要增压泵吗 浏览:389
富氢净水器价值多少钱 浏览:363
滁州市沙河镇污水处理厂 浏览:410
咸宁废水处理工招工 浏览:188
如何去除铜水龙上水垢 浏览:268
现在家里面都用什么样的饮水机 浏览:804
去涿州回北京用隔离吗 浏览:345
三菱丽阳q303净水器怎么样 浏览:320