『壹』 学校食堂去年上半年每月用水量如下表,请你算出平均每月的用水量.
(36+32+45+42+43+48)÷6, =246÷6, =41(吨). 答:平均每月的用水量是41吨. |
『贰』 饭堂废水成分
饭堂废水与通常生活污水成分差别不大,主要污染物为有机物(主要来自冲洗油污,可用COD/BOD表征,浓度大约在100-400mg/L),无机物颗粒(灰尘渣土等,用SS表征),以及一定盐分。
由于有机物浓度低、水量小、有盐分的特点,最适宜的方法简单沉淀后用膜-生物反应器(MBR)处理。MBR的简介附在后边,另外,生物膜法也进行了解释。
生物膜法(biomembrance process)
生物膜法是利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的生态系统,其附着的固体介质称为滤料或载体。生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。生物膜法的原理是,生物膜首先吸附附着水层有机物,由好气层的好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新的生物膜,如此往复以达到净化污水的目的。生物膜法具有以下特点:(1)对水量、水质、水温变动适应性强;(2)处理效果好并具良好硝化功能;(3)污泥量小(约为活性污泥法的3/4)且易于固液分离;(4)动力费用省。
生物膜法又称固定膜法
基本特征是:
在污水处理构筑物内设置微生物生长聚集的载体(一般称填料),在充氧的条件下,微生物在填料表面聚附着形成生物膜,经过充氧的污水以一定的流速流过填料时,生物膜中的微生物吸收分解水中的有机物,使污水得到净化,同时微生物也得到增殖,生物膜随之增厚。当生物膜增长到一定厚度时,向生物膜内部扩散的氧受到限制,其表面仍是好氧状态,而内层则会呈缺氧甚至厌氧状态,并最终导致生物膜的脱落。随后,填料表面还会继续生长新的生物膜,周而复始,使污水得到净化。
微生物在填料表面聚附着形成生物膜后,由于生物膜的吸附作用,其表面存在一层薄薄的水层,水层中的有机物已经被生物膜氧化分解,故水层中的有机物浓度浓度比进水要低得多,当废水从生物膜表面流过时,有机物就会从运动着的废水中转移到附着在生物膜表面的水层中去,并进一步被生物膜所吸附,同时,空气中的氧也经过废水而进入生物膜水层并向内部转移。
生物膜上的微生物在有溶解氧的条件下对有机物进行分解和机体本身进行新陈代谢,因此产生的二氧化碳等无机物又沿着相反的方向,即从生物膜经过附着水层转移到流动的废水中或空气中去。这样一来 ,出水的有机物含量减少,废水得到了净化。
生物膜法的主要形式有哪些?
按生物膜与废水的接触方式分为:
填充式和浸渍式两种
填充式包括生物滤池和生物转盘
浸渍式包括接触氧化法和生物流化床
在污水处理,水资源再利用领域,MBR又称膜生物反应器(Membrane Bio-Reactor ),是一种由膜分离单元与生物处理单元相结合的新型水处理技术。膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜(生物膜)和合成膜(有机膜和无机膜) ;按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等。
一、 MBR 工艺的组成
膜 - 生物反应器主要由膜分离组件及生物反应器两部分组成。通常提到的膜 - 生物反应器实际上是三类反应器的总称: ① 曝气膜 - 生物反应器 (Aeration Membrane Bioreactor, AMBR) ; ② 萃取膜 - 生物反应器( Extractive Membrane Bioreactor, EMBR ); ③ 固液分离型膜 - 生物反应器( Solid/Liquid Separation Membrane Bioreactor, SLSMBR, 简称 MBR )。
二、曝气膜 - 生物反应器
曝气膜 - 生物反应器最早见于 Cote.P 等 1988 年报道,采用透气性致密膜(如硅橡胶膜)或微孔膜(如疏水性聚合膜),以板式或中空纤维式组件,在保持气体分压低于泡点( Bubble Point )情况下,可实现向生物反应器的无泡曝气。该工艺的特点是提高了接触时间和传氧效率,有利于曝气工艺的控制,不受传统曝气中气泡大小和停留时间的因素的影响。如图 [1] 所示。
图 [1]
三、萃取膜 - 生物反应器
萃取膜 - 生物反应器 又称为 EMBR ( Extractive Membrane Bioreactor )。因为高酸碱度或对生物有毒物质的存在,某些工业废水不宜采用与微生物直接接触的方法处理;当废水中含挥发性有毒物质时,若采用传统的好氧生物处理过程,污染物容易随曝气气流挥发,发生气提现象,不仅处理效果很不稳定,还会造成大气污染。为了解决这些技术难题,英国学者 Livingston 研究开发了 EMB 。其工艺流程见图 2 。废水与活性污泥被膜隔开来,废水在膜内流动,而含某种专性细菌的活性污泥在膜外流动,废水与微生物不直接接触,有机污染物可以选择性透过膜被另一侧的微生物降解。由于萃取膜两侧的生物反应器单元和废水循环单元是各自独立,各单元水流相互影响不大,生物反应器中营养物质和微生物生存条件不受废水水质的影响,使水处理效果稳定。系统的运行条件如 HRT 和 SRT 可分别控制在最优的范围,维持最大的污染物降解速率。
[ 图 2] (暂缺)
四、固液分离型膜 - 生物反应器
固液分离型膜 - 生物反应器是在水处理领域中研究得最为广泛深入的一类膜 - 生物反应器,是一种用膜分离过程取代传统活性污泥法中二次沉淀池的水处理技术。在传统的废水生物处理技术中,泥水分离是在二沉池中靠重力作用完成的,其分离效率依赖于活性污泥的沉降性能,沉降性越好,泥水分离效率越高。而污泥的沉降性取决于曝气池的运行状况,改善污泥沉降性必须严格控制曝气池的操作条件,这限制了该方法的适用范围。由于二沉池固液分离的要求,曝气池的污泥不能维持较高浓度,一般在 1.5~3.5g/L 左右,从而限制了生化反应速率。水力停留时间( HRT )与污泥龄( SRT )相互依赖,提高容积负荷与降低污泥负荷往往形成矛盾。系统在运行过程中还产生了大量的剩余污泥,其处置费用占污水处理厂运行费用的 25% ~ 40% 。传统活性污泥处理系统还容易出现污泥膨胀现象,出水中含有悬浮固体,出水水质恶化。针对上述问题, MBR 将分离工程中的膜分离技术与传统废水生物处理技术有机结合,大大提高了固液分离效率,并且由于曝气池中活性污泥浓度的增大和污泥中特效菌 ( 特别是优势菌群 ) 的出现,提高了生化反应速率。同时,通过降低 F/M 比减少剩余污泥产生量(甚至为零),从而基本解决了传统活性污泥法存在的许多突出问题。
五、 MBR 工艺类型
以下讨论的均为固液分离型膜 - 生物反应器。 根据膜组件和生物反应器的组合方式,可将 膜 - 生物反应器 分为分置式、一体式以及复合式三种基本类型。分置式和一体式的 MBR 请参见图 3 。
分置式膜 - 生物反应器把膜组件和生物反应器分开设置,如图 3 所示。生物反应器中的混合液经循环泵增压后打至膜组件的过滤端,在压力作用下混合液中的液体透过膜,成为系统处理水;固形物、大分子物质等则被膜截留,随浓缩液回流到生物反应器内。分置式膜 - 生物反应器的特点是运行稳定可靠,易于膜的清洗、更换及增设;而且膜通量普遍较大。但一般条件下为减少污染物在膜表面的沉积,延长膜的清洗周期,需要用循环泵提供较高的膜面错流流速,水流循环量大、动力费用高 (Yamamoto, 1989) ,并且泵的高速旋转产生的剪切力会使某些微生物菌体产生失活现象 ( Brockmann and Seyfried, 1997 ) 。
一体式膜 - 生物反应器是把膜组件置于生物反应器内部,如图 4 所示。进水进入膜 - 生物反应器,其中的大部分污染物被混合液中的活性污泥去除,再在外压作用下由膜过滤出水。这种形式的膜 - 生物反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑,近年来在水处理领域受到了特别关注。但是一般膜通量相对较低,容易发生膜污染,膜污染后不容易清洗和更换。
复合式膜 - 生物反应器在形式上也属于一体式膜 - 生物反应器,所不同的是在生物反应器内加装填料,从而形成复合式膜 - 生物反应器,改变了反应器的某些性状,如图 5 所示:
MBR 工艺的特点
与许多传统的生物水处理工艺相比, MBR 具有以下主要特点:
一、出水水质优质稳定
由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈, 悬浮物和浊度接近于零,细菌和病毒被大幅去除 ,出水水质优于建设部颁发的生活杂用水水质标准( CJ25.1-89 ),可以直接作为非饮用市政杂用水进行回用。
同时,膜分离也使 微生物被完全被截流在生物反应器内, 使得系统内能够维持较高的微生物浓度,不但 提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器 对进水负荷(水质及水量)的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质。
二、剩余污泥产量少
该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低(理论上可以实现零污泥排放),降低了污泥处理费用。
三、占地面积小,不受设置场合限制
生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积大大节省; 该工艺流程简单、结构紧凑、占地面积省,不受设置场所限制,适合于任何场合,可做成地面式、半地下式和地下式。
四、可去除氨氮及难降解有机物
由于微生物被完全截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高。同时,可增长一些难降解的有机物在系统中的水力停留时间,有利于难降解有机物降解效率的提高。
五、操作管理方便,易于实现自动控制
该工艺实现了水力停留时间( HRT )与污泥停留时间( SRT )的完全分离,运行控制更加灵活稳定,是污水处理中容易实现装备化的新技术,可实现微机自动控制,从而使操作管理更为方便。
六、易于从传统工艺进行改造
该工艺可以作为传统污水处理工艺的深度处理单元,在城市二级污水处理厂出水深度处理(从而实现城市污水的大量回用)等领域有着广阔的应用前景。
膜 - 生物反应器也存在一些不足。主要表现在以下几个方面:
• 膜造价高,使膜 - 生物反应器的基建投资高于传统污水处理工艺;
• 膜污染容易出现,给操作管理带来不便;
• 能耗高:首先 MBR 泥水分离过程必须保持一定的膜驱动压力,其次是 MBR 池中 MLSS 浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大流速,冲刷膜表面,造成 MBR 的能耗要比传统的生物处理工艺高。
MBR 工艺用膜
膜可以由很多种材料制备,可以是液相、固相甚至是气相的。目前使用的分离膜绝大多数是固相膜。根据孔径不同可分为:微滤膜、超滤膜、纳滤膜和反渗透膜;根据材料不同,可分为无机膜和有机膜,无机膜主要是微滤级别膜。膜可以是均质或非均质的,可以是荷电的或电中性的。广泛用于废水处理的膜主要是由有机高分子材料制备的固相非对称膜。
膜的分类如图所示:
一、 MBR 膜材质
1、高分子有机膜材料: 聚烯烃类、聚乙烯类、聚丙烯腈、聚砜类、芳香族聚酰胺、含氟聚合物等。
有机膜成本相对较低,造价便宜,膜的制造工艺较为成熟,膜孔径和形式也较为多样,应用广泛,但运行过程易污染、强度低、使用寿命短。
2、无机膜 :是固态膜的一种,是由无机材料,如金属、金属氧化物、陶瓷、多孔玻璃、沸石、无机高分子材料等制成的半透膜。
目前在 MBR 中使用的无机膜多为陶瓷膜,优点是:它可以在 pH = 0~14 、压力 P<10MPa 、温度 <350 ℃ 的环境中使用,其通量高、能耗相对较低,在高浓度工业废水处理中具有很大竞争力;缺点是:造价昂贵、不耐碱、弹性小、膜的加工制备有一定困难。
二、 MBR 膜孔径
MBR 工艺中用膜一般为微滤膜( MF )和超滤膜( UF ),大都采用 0.1 ~ 0.4 μ m 膜孔径,这对于固液分离型的膜反应器来说已经足够。
微滤膜常用的聚合物材料有:聚碳酸酯、纤维素酯、聚偏二氟乙烯、聚砜、聚四氟乙烯、聚氯乙烯、聚醚酰亚胺、聚丙烯、聚醚醚酮、聚酰胺等。
超滤常用聚合物材料有:聚砜、聚醚砜、聚酰胺、聚丙烯腈( PAN )、聚偏氟乙烯、纤维素酯、聚醚醚酮、聚亚酰胺、聚醚酰胺等。
三、 MBR 膜组件
为了便于工业化生产和安装,提高膜的工作效率,在单位体积内实现最大的膜面积,通常将膜以某种形式组装在一个基本单元设备内,在一定的驱动力下,完成混合液中各组分的分离,这类装置称为膜组件( Mole )。
工业上常用的膜组件形式有五种:
板框式( Plate and Frame Mole )、螺旋卷式 (Spiral Wound Mole) 、圆管式 (Tubular Mole) 、中空纤维式 (Hollow Fiber Mole) 和毛细管式 (Capillary Mole) 。前两种使用平板膜,后三者使用管式膜。圆管式膜直径 >10mm; 毛细管式- 0.5~10.0mm ;中空纤维式 <0.5mm> 。
表:各种膜组件特性
名称/项目 中空纤维式 毛细管式 螺旋卷式 平板式 圆管式
价格(元 /m 3 ) 40~150 150~800 250~800 800~2500 400~1500
冲填密度 高 中 中 低 低
清洗 难 易 中 易 易
压力降 高 中 中 中 低
可否高压操作 可 否 可 较难 较难
膜形式限制 有 有 无 无 无
MBR 工艺中常用的膜组件形式有:板框式、圆管式、中空纤维式。
板框式:
是 MBR 工艺最早应用的一种膜组件形式,外形类似于普通的板框式压滤机。优点是:制造组装简单,操作方便,易于维护、清洗、更换。缺点是:密封较复杂,压力损失大,装填密度小。
圆管式:
是由膜和膜的支撑体构成,有内压型和外压型两种运行方式。实际中多采用内压型,即进水从管内流入,渗透液从管外流出。膜直径在 6~24mm 之间。圆管式膜优点是:料液可以控制湍流流动,不易堵塞,易清洗,压力损失小。缺点是:装填密度小。
中空纤维式:
组装形式如下图所示:
[ 图 ]
外径一般为 40 ~ 250 μm ,内径为 25 ~ 42μm 。优点是:耐压强度高,不易变形。在 MBR 中,常把组件直接放入反应器中,不需耐压容器,构成浸没式膜 - 生物反应器。一般为外压式膜组件。优点是:装填密度高;造价相对较低;寿命较长,可以采用物化性能稳定,透水率低的尼龙中空纤维膜;膜耐压性能好,不需支撑材料。缺点是:对堵塞敏感,污染和浓差极化对膜的分离性能有很大影响。
MBR 膜组件设计的一般要求:
• 对膜提供足够的机械支撑,流道通畅,没有流动死角和静水区;
• 能耗较低,尽量减少浓差极化,提高分离效率,减轻膜污染;
• 尽可能高的装填密度,安装,清洗、更换方便;
• 具有足够的机械强度、化学和热稳定性。
膜组件的选用要综合考虑其成本,装填密度、应用场合、系统流程、膜污染及清洗、使用寿命等。
MBR 的应用领域
进入 90 年代中后期,膜 - 生物反应器在国外已进入了实际应用阶段。加拿大 Zenon 公司首先推出了超滤管式膜 - 生物反应器,并将其应用于城市污水处理。为了节约能耗,该公司又开发了浸入式中空纤维膜组件,其开发出的膜 - 生物反应器已应用于美国、德国、法国和埃及等十多个地方,规模从 380m 3 /d 至 7600m 3 /d 。日本三菱人造丝公司也是世界上浸入式中空纤维膜的知名提供商,其在 MBR 的应用方面也积累了多年的经验,在日本以及其他国家建有多项实际 MBR 工程。日本 Kubota 公司是另一个在膜 - 生物反应器实际应用中具有竞争力的公司,它所生产的板式膜具有流通量大、耐污染和工艺简单等特点。国内一些研究者及企业也在 MBR 实用化方面进行着尝试。
现在,膜 - 生物反应器已应用于以下领域:
一、 城市污水处理及建筑中水回用
1967 年第一个采用 MBR 工艺的废水处理厂由美国的 Dorr-Oliver 公司建成,这个处理厂处理 14m 3 /d 废水。 1977 年,一套污水回用系统在日本的一幢高层建筑中得到实际应用。 1980 年,日本建成了两座处理能力分别为 10m 3 /d 和 50m 3 /d 的 MBR 处理厂。 90 年代中期,日本就有 39 座这样的厂在运行,最大处理能力可达 500m 3 /d ,并且有 100 多处的高楼采用 MBR 将污水处理后回用于中水道。 1997 年,英国 Wessex 公司在英国 Porlock 建立了当时世界上最大的 MBR 系统,日处理量达 2 , 000 m 3 , 1999 年又在 Dorset 的 Swanage 建成了 13 , 000m 3 /d 的 MBR 工厂 [14] 。
1998 年 5 月,清华大学进行的一体式膜 - 生物反应器中试系统通过了国家鉴定。 2000 年初,清华大学在北京市海淀乡医院建起了一套实用的 MBR 系统,用以处理医院废水,该工程于 2000 年 6 月建成并投入使用,目前运转正常。 2000 年 9 月,天津大学杨造燕教授及其领导的科研小组在天津新技术产业园区普辰大厦建成了一个 MBR 示范工程,该系统日处理污水 25 吨,处理后的污水全部用于卫生间的冲洗及绿地浇洒,占地面积为 10 平方米,处理每吨污水的能耗为 0.7kW · h 。
二、. 工业废水处理
90 年代以来, MBR 的处理对象不断拓宽,除中水回用、粪便污水处理以外, MBR 在工业废水处理中的应用也得到了广泛关注,如处理食品工业废水、水产加工废水、养殖废水、化妆品生产废水、染料废水、石油化工废水,均获得了良好的处理效果。 90 年代初,美国在 Ohio 建造了一套用于处理某汽车制造厂的工业废水的 MBR 系统,处理规模为 151m 3 /d ,该系统的有机负荷达 6.3kgCOD/m 3 · d , COD 去除率为 94% ,绝大部分的油与油脂被降解。在荷兰,一脂肪提取加工厂采用传统的氧化沟污水处理技术处理其生产废水,由于生产规模的扩大,结果导致污泥膨胀,污泥难以分离,最后采用 Zenon 的膜组件代替沉淀池,运行效果良好。
三、. 微污染饮用水净化
随着氮肥与杀虫剂在农业中的广泛应用,饮用水也不同程度受到污染。 LyonnaisedesEaux 公司在 90 年代中期开发出同时具有生物脱氮、吸附杀虫剂、去除浊度功能的 MBR 工艺, 1995 年该公司在法国的 Douchy 建成了日产饮用水 400m 3 的工厂。出水中氮浓度低于 0.1mgNO 2 /L ,杀虫剂浓度低于 0.02 μ g/L 。
四、. 粪便污水处理
粪便污水中有机物含量很高,传统的反硝化处理方法要求有很高污泥浓度,固液分离不稳定,影响了三级处理效果。 MBR 的出现很好地解决了这一问题,并且使粪便污水不经稀释而直接处理成为可能。
日本已开发出被称之为 NS 系统的屎尿处理技术,最核心部分是平板膜装置与好氧高浓度活性污泥生物反应器组合的系统。 NS 系统于 1985 年在日本琦玉县越谷市建成,生产规模为 10kL/d , 1989 年又先后在长崎县、熊本县建成新的屎尿处理设施。 NS 系统中的平板膜每组约 0.4m 2 共几十组并列安装,做成能自动打开的框架装置,并能自动冲洗。膜材料为截流分子量 20000 的聚砜超滤膜。反应器内污泥浓度保持在 15000~18000mg/L 范围内。到 1994 年,日本已有 1200 多套 MBR 系统用于处理 4000 多万人的粪便污水。
五、土地填埋场 / 堆肥渗滤液处理
土地填埋场 / 堆肥渗滤液含有高浓度的污染物,其水质和水量随气候条件与操作运行条件的变化而变化。 MBR 技术在 1994 年前就被多家污水处理厂用于该种污水的处理。通过 MBR 与 RO 技术的结合,不仅能去除 SS 、有机物和氮,而且能有效去除盐类与重金属。最近美国 Envirogen 公司开发出一种 MBR 用于土地填埋场渗滤液的处理,并在新泽西建成一个日处理能力为 40 万加仑 ( 约 1500m 3 /d) 的装置,在 2000 年底投入运行。该种 MBR 使用一种自然存在的混合菌来分解渗滤液中的烃和氯代化合物,其处理污染物的浓度为常规废水处理装置的 50 ~ 100 倍。能达到这一处理效果的原因是, MBR 能够保留高效细菌并使细菌浓度达到 50 , 000g/L 。在现场中试中,进液 COD 为几百至 40 , 000mg/L ,污染物的去除率达 90% 以上。
国内外 MBR 主要应用领域及相应百分比率:
污水类型 所占百分比率(%) 污水类型 所占百分比率(%)
工业污水 27 城市污水 12
建筑污水 24 垃圾 9
家庭污水 27
MBR 发展前瞻
一、MBR 应用的重点领域和方向
•现有城市污水处理厂的更新升级,特别是出水水质难以达标或处理流量剧增而占地面积无法扩大的水厂。
• 无排水管网系统的小区,如居民点、旅游度假区、风景区等。
• 有污水回用需求的地区或场所,如宾馆、洗车业、客机、流动厕所等充分发挥 MBR 占地面积小、设备紧凑、自动控制、灵活方便的特点。
• 高浓度、有毒、难降解工业废水处理。如造纸、制糖、酒精、皮革、合成脂肪酸等行业,是一种普遍的点源污染。 MBR 可以对这些常规处理工艺无法达标的废水进行有效的处理,并实现回用。
• 垃圾填埋厂渗滤液的处理及回用。
• 小规模污水厂(站)的应用。膜技术的特点十分适合处理小规模污水。
二、MBR 未来的研究重点如下
• 膜污染的机理及防治。
• MBR 工艺流程形式及运行条件的优化。
• MBR 污泥产率与运行条件的关系,以合理减少污泥产量,降低污泥处理费用。
• MBR 生物反应器内微生物的代谢特性及其对出水水质、污泥活性等的影响,从而确定适宜的微生物生长及代谢条件。
• MBR 工艺经济性研究。在目前国内经济发展水平、膜产品供应状况和规范设计要求的条件下, MBR 用于污水处理的最大经济流量的确定。
• 以节能、处理特殊水质对象、兼具脱氮除磷、操作维护简便、可以长期稳定运行等为目标,开发新型的膜 生物反应器 .
成熟、系统 MBR 的工艺设计方法
『叁』 食堂废水 利用
首先,必须先对食堂的废水进行分类。
食堂的废水有:食堂洗内菜洗米后的废水
食堂洗碗筷后带有洗洁精容的废水
食堂烹饪饭菜中的废水
这些废水有的可以马上再利用,有的必须经过处理。
如食堂洗菜洗米后的废水可以再用于洗碗筷或者用来洗地板,也可以用来冲WC等等。食堂洗碗筷后带有洗洁精的废水,如果不是用于和人体直接接触的项目的洗涤,还是可以接着利用的。食堂烹饪饭菜中的废水其实很干净,完全可以再用来洗菜等等~
『肆』 餐饮废水流量按人数如何计算,比如学校食堂,只知道人数,怎么计算排水流量,谢谢!
可以根据用水定额,人数,以及时、秒变化系数,南北差异系数,用餐历时等版来估计。比如权你说的学校食堂,最高日生活用水定额为20L/cap.餐,南北差异系数为1.1,用餐历时为0.5小时,时变化系数为1.3,秒变化系数也是1.3,则废水量等于人数*20*1.1*0.5*1.3*1.3。
不同餐饮行业的用水定额详见《建筑给水排水设计规范》(GB50015-2003)
看不明白回复我好了
『伍』 废水排放量与用水量的关系(比例多少)
一、统计用水、排水等有关指标,必须首先对给水系统有个概略了解。在工业生产中按给水的路线和利用程度,分为直流、循环和循序三种给水系统。
1、直流给水系统指工业生产用水由就近水源取消,水经过一次使用后便以废水形式全部或大部分排走。其生产用水量等于企业从地下水源和地面水源取用的新鲜水量。
2、循环给水系统指使用过后的水经适当处理重新回用,不再排走。在循环过程中所损耗的水量,须从水源取水加以补充。
3、循序给水系统是根据各车间对水质的要求,将水重复利用,将水源送来的水先供甲车间使用,甲车间使用后的水或直接送乙车间使用,或经适当处理(冷却、沉淀等)后加压送乙车间或丙车间使用,然后排放。这种系统也叫串级给水系统。
二、废水排放量的计算有两种:
1、使用各种流量计进行测量,如监测数据、各种流量计测得的数据和连续自动监控测得的数据等。
2、系数估算法。从排污单位的新鲜用水量来估算其污水排放量。
(1)排污单位的新鲜水量没有进入其产品,一般其污水排放量可以估算为新鲜水量的0.8―0.9倍。
(2)有相当部分变成产品(如啤酒、饮料行业),则其污水排放量应以新鲜水量减去转成产品数量的0.8―0.9倍。
(3)部分行业水的重复利用率很高,如轧钢、选矿等行业水的重复利用率都高达80%~90%,水经过多次使用,蒸发和流失都很大,这时用新鲜水量推算污水排放量时所用的系数就比较小,有时甚至会达到40%~50%。还可以利用产污系数进行测算。
『陆』 食堂废水和生活污水混合后各污染物的浓度怎么计算
混合后实际测定合污染物的浓度。或者先确定两种水质的水量和污染浓度,复合叠加计算
『柒』 用水量预测 三种方法 何时使用
隧道涌水量预测方法综述
1 引言
目前,在浅埋或深埋隧道建设中,隧道涌水是一种相当普遍而又复杂的地质灾害。隧道涌水易发生在渗透性强、水量丰富、岩体破碎的地层岩体中,特别是褶皱和断层发育的地区,对地下水渗透通道的大小和连通性都会产生显著影响。隧洞掘进时,破坏了含水层结构,改变了水动力条件,且围岩应力重新分布,打破了原有的力学平衡状态,在部分洞侧和洞顶出现切向拉应力,从而使岩体裂隙或原有的细微裂缝增宽增大,以致地下水体所储存的能量以流体(有时有固体物质伴随)高速运移形式瞬间释放而产生的一种动力破坏。隧道施工中突发涌水,不仅会造成仪器设备的损失,被迫停工,延误工期;而且如果涌水量过大,还会造成人员的伤亡,消耗大量的施工费用。因此,如何较为准确的计算隧道涌水量的大小,为以后的工程防排水措施提供技术准备,然而,由于隧道所处自然环境的复杂多变,其工程地质条件与水文地质条件的高度不确定性,给隧道涌水量的准确预测和计算带来极大的困难。
隧道涌水量预测研究已经有近半个多世纪的历史,特别是近几十年来,无论研究的深度和广度都有了很大的拓展,但也存在许多缺点和不足。工程上应用较多的为传统的专业理论计算公式,许多专家和学者根据工程的具体情况对传统公式进行了修正或引入一些新理论方法对隧道涌水量进行预测,并取得了一定的成效。但从科学与应用的角度来看,这些方法仍然还不够完善,其实用性和推广性也还有待提高。
国内隧道涌水量预测研究多为结合工程个别实例作简要的零碎的地质描述,与整个隧道工程系统地结合和分析研究相对较少[1]。隧道涌水量的预测计算是水文地质学科中的一个重要的理论问题,迄今为止尚无成熟的理论和公认的准确计算方法[2]。
1.1 隧道涌水量预测研究现状
国内隧道涌水量在隧道工程中多为结合工程个别实例作简要的零碎的地质描述,与整个隧道工程系统的结合和分析研究相对少。隧道涌水量的预测计算是水文地质学科中的一个重要的理论问题,同时也是隧道防排水设计和施工中一个亟待解决的实际问题,迄今为止尚无成熟的理论和公认的准确计算方法,表1是几个涌水大的铁路隧道预估值和实测值的对比关系,从表中可看出,预估值和实测值相差很大,究其原因,主要是因为隧道涌水的复杂性和多变性以及人们对现场水文工程地质条件的认识不完善。要解决这个问题,一方面,应强调通过各种先进的勘察手段,尽可能多地获取涌水系统的重要信息;另一方面,应提倡科学思维,用新的观念和新的理论来完善与充实。
1.2 隧道涌水量预测的研究分类
隧道涌水量是高水区富水位隧道设计和施工的重要参数。为了更好的设计和施工,把隧道涌水量计算可分为两阶段:
(1)针对围岩尚未开挖部分,根据各种方法计算出的、用于指导隧道设计、施工的涌水量称之为正演涌水量。在隧道围岩尚未开挖前和施工初期,根据勘查阶段的钻孔资料、当地的地质条件(岩性、构造、含水层富水带等)及气象条件、河流水文状况资料,推断可能的隧道涌水点,运用地下水动力学法、经验解析法、数值法(有限元和有限差分法)等,计算涌水点可能发生的涌水量的大小及排水后围岩渗流场的分布,为堵水预注浆方案、排水设施方案、抗水压衬砌形式做出初步的设计。
(2)根据隧道已经施工部分监测涌水量计算出的、用于指导隧道已开挖部分建筑设计的涌水量称之为反演涌水量。当隧道掘进以后,通过对围岩的变形、结构、构造、岩性等信息大量的采集,对前方的掌子面地质情况做出预测,对已出现的涌水点可采用时间序列分析法、灰色理论方法、模糊数学方法等预测和计算涌水量的大小。该阶段预测的涌水量,能够对未来涌水量发展趋势做出估计,可作为下一步隧道设计和施工的参考,具有一定的参考价值,但遇到围岩局部突变部位(断层、裂隙、破碎带等),就应该采取更加保险的预防措施,避免可能出现较大的涌水量,造成不必要的经济损失。
2 隧道涌水量预测的主要方法
目前隧道涌水量的计算方法较多,为了能准确的预测涌水量的大小,采用有效的预测和计算方法是保证安全设计和正常施工的前提。现在隧道工程中比较适用的预测和计算方法有以下几种。
2.1 地下水动力学法
地下水动力学法又称解析法,属于正演涌水量的计算,它是根据地下水动力学原理用数学解析的方法对给定边界条件和初值条件下的地下水运动建立解析式,结合工程经验给出的隧道涌水量预测的公式从而达到预测隧道涌水量的目的。该法是根据施工前和施工初期的勘测资料,计算隧道初期最大涌水量q0-经常涌水量qs、递减涌水量qt。主要的计算方法有如下几种:
(1)大岛洋志公式:
(2)铁路勘测规范中经验公式:
(3)佐藤帮明公式[1]:
(4)铁路勘测规范中经验公式:
由于正演涌水量的计算中,对隧道围岩的结构及地质情况作了较大简化,与隧道开挖后的实际情况可能有一定出入,这是由于当隧道开始出现涌水时,地下水开始从岩体向临空面渗流并排出。由于扰动区压力水头的作用,渗流通道(裂隙、断层破碎带)被冲刷和侵蚀并不断的获得补给,导致渗流通道变大变宽。涌水点涌水的最终结果可分为两种:(1)水流逐渐衰减,部分疏干,最终达到稳定,并形成涌水点为顶点的降落漏斗,(2)水流逐渐衰减,全部疏干,最终断流。
对于扰动区附近有控制性边界(如定水头边界)的含水层,降落漏斗扩展并连通了边界后,获得了稳定的补给,此时水头不一定会降落到隧道底板标高,可能在隧道顶部一定标高形成稳定的降落漏斗;对于附近没有控制性边界的无限含水层,随漏斗的扩展,扰动区的边界不断向外移动,直到地下水位降落到隧道底板附近且变成稳定流为止。从上面的分析,可以用如图1来表示涌水量大小变化过程。
2.2 水理统计法[1]
水理统计法的基础系将河流枯水期单位流域集水面积上之径流量视为是隧道通过地区地下水的单位面积径流量,并且,在此范围内之地下水都流人隧道内,因此隧道之总涌水量可以近似地认为等于隧道集水面积乘以枯水期地表水之径流量。此法在有河流枯水期流量记录处最为适用。
2.3 水平衡法[3]
自Thomthwait等人(1948,1957)建立水平衡法以来,它已成为水文和环境分析中最常用的工具和手段。水平衡法是根据水平衡原理,查明隧道施工期水平衡各收入、支出部分之间的关系进而获得施工段的涌水量。当施工地段地下水的形成条件较简单时,采用水平衡法有良好的效果,如分水岭地段、小型自流盆地等。但是,使用水平衡法计算时,由于天然水平衡场受到矿坑采动等因素的影响,使渗入系数、均衡期、最大涌水量起峰期等参数难于确定。这些问题长期妨碍水平衡法的广泛应用。
2.4 比拟法
比拟法应用类似的隧道水文地质资料来计算,立足于勘探区与借以比拟的施工区条件一致。因此,这种方法的预测精度取决于试验段和施工段的相似性,两者越相似则精度越高,反之则越差。比拟法适用于已开工隧道,通过导坑开挖的实测涌水量推算主坑涌水量,或用主坑已开挖地段之实测涌水量推算未开挖地段之涌水量的方法。此法系在地质比较均匀,比拟地段的水文地质条件相似,且涌水量与隧道体积成正比的条件下进行的。
2.5 数值分析法
数值分析法也是一种传统的数学分析方法(如差分法,有限元法等)。自从R.W.Clough_1 在5O年代将有限元运用于航空工程飞机结构的矩阵分析,经过几十年的发展,尤其是近20年来广泛迅速的发展,计算技术促进了数值分析方法的变革与创新。数值法是一种具有远大前景的分析法,近几年发展很快。
2.6 地下径流模数法
该法与水文地质比拟法有些相似,一般来说,在岩溶发育较为均匀的一定流域内,其补给条件一般比较相近。故只要求出流域的地下径流模数和圈出拟建隧洞的集水面积,把通过的拟建隧洞等同于暗河,即可求出通过该流域隧道的地下水涌水量(即暗河径流总量)。
2.7 非线性理论方法
通过对隧道涌水的深入研究,人们发现隧道涌水往往是一个非线性系统[4] ,系统本身是一个不断与外部环境进行物质、能量和信息交换的开放系统,具有协同性、自组织性、信息性的特点。显然用线性理论或线性化理论来研究一个非线性系统是与客观实际相悖的,隧道涌水预测的可靠性也必然受影响。
2.8 动态设计阶段隧道涌水量的计算
在隧道开挖后, 使用获取的全部或部分数据,反分析隧道的实际涌水量并对涌水量未来的发展趋势作出预测的方法为反演方法。反演涌水量以实际观测的数据为依据,采用时间序列分析、灰色理论或神经网络等方法[5]对已开挖部分的涌水量作出预测,减少了对地质体认识中的主观因素,因而在客观性方面具有一定优势,可以作为隧道设计中修正的数据使用。
由于有些关键因素无法观测,有规律的预测不能给出局部突变部位,因而这种后验方法给出的涌水量只能作为该段衬砌设计的参考,虽然可使用于前方未开挖岩体涌水量的预测,但也是相当粗糙且不是很可靠的。
3 结论
隧道涌水量的预测计算方法很多,目前较为常用的是上述几种方法,但其预测精度远远不够,究其原因主要是隧道是一个复杂的开放系统,是非线性的。目前人们对隧道的认识还不是很完善,因此涌水量的预测必须采用多种方法结合,多学科交叉的手段,以提高预测精度。必须走综合勘探的路子,在地面测绘的基础上必需采用多种勘探手段相互印证,查清其水文地质的补、径、排条件,这是预测隧道涌水量最基础的工作。
对隧道涌水预测计算要贯穿于从勘测设计到施工这一整个过程,要在施工阶段对设计阶段的计算成果不断地进行反馈修正,以完善隧道涌水预测的准确率,提高掌子面施工前方的涌水预报效果,更好地服务于施工。
『捌』 倒班宿舍和食堂的室内消防用水量按什么类别确定
这个按照公共场所的的消防用水量,也就是上面的1-2类公共建筑的。