① 含乙腈和表氯醇的污水该如何处理
乙腈(acetonitrile,ethanenitrile,CH3CN)亦称甲基腈(methyl cyanide),分子量41.05,熔点(-43±2)℃,沸点81.6℃,常温常压下为无色液体,密回度0.7768g/cm3(25/4℃),带芳香气味,但答久闻则可致嗅觉疲劳而不易感知其存在。易挥发,24℃时,蒸气压为11.53kPa,蒸气密度1.42g/L,在空气中的饱和浓度为9.6%(20℃,101.31kPa),饱和空气密度为1.04g/L;溶于水,亦易与乙醇、乙醚、丙酮、氯仿、四氯化碳、氯乙烯等混溶,水溶液不稳定,可水解为醋酸和氨;乙腈受热则可释出HCN。
希望对你有点用,你们那污水含有乙腈,那废水的质量可太差了 ,
② 化学分析法中较常用的检测方法是
(1) 化学分析法:目前常规的糖类检测方法如斐林氏法、高锰酸钾法等化学分析方法只能测定总还原糖,不能测定其他糖含量。
(2) 气相色谱法:气相色谱法也可用于糖类测定,但由于糖类本身不具挥发性,须进行衍生化处理后才能用气相色谱检测。
(3) 高效液相色谱法。高效液相色谱法(HPLC)更适用于糖类检测,样品无需衍生化,分辨率高,重现性好,特别适用于某些热敏性糖类和多糖分子量的检测。迪信泰检测平台提供HPLC、LC-MS检测多种糖类服务。
检测器
(1) 示差折光检测器:可直接测定,操作简便,但灵敏度较低;
(2) 紫外检测器或光检测器:灵敏度较高,但由于糖类本身在紫外区没有吸收或不产生荧光,因此样品需提前进行衍生化,操作较复杂。
(3) 蒸发光散射检测器:对于没有紫外吸收、不产生荧光或电活性的物质均能检测,通用性好,灵敏度高,可用于梯度洗脱。
流动相
一般为水、乙腈和甲醇的混合溶液,影响流动相的因素主要有以下几种:
(1) 配比:由糖类的组分含量、分子量范围、结构组成等决定,且有研究表明水的比例越高,分离速度越快,但若出现果糖和葡萄糖色谱峰重叠,分离效果则会下降。
(2) 流速:也是影响分离效果的主要因素之一,若流速增大,保留时间缩短但分离效果下降,若流速过快,则会缩短色谱柱的使用寿命,不同的色谱柱,其配合柱效的最佳流速也不同。
(3) 检测温度:会影响色谱的检测结果,有研究发现提高温度,可以缩短保留时间,但分离效果下降,降低温度更有利于峰分离。
(4) pH:一般使用中性的有机溶剂或水进行提取。为了避免离子化,检测物质呈碱性时,可以增大流动相pH,检测物质呈弱酸性时,可以降低流动相pH。
③ 高效液相色谱流动相中含有乙腈,实验完成后。这些含有乙腈的废液该如何处理
你的量大么?我们是做有机的,量比较大,我们都是付钱给人,有专门的人收。(一般按瓶收费)
④ 乙腈的检验方法
乙腈的检验方法你可以到工标网搜索后下载啊!
方法:先网络下工标网,再到工标网搜内索乙腈,以容下的资料就是在那找到的,你看看吧!
标准编号:GB/T 7717.12-1994
标准名称:工业用丙烯腈中乙腈、丙酮和丙烯醛含量的测定 气相色谱法
英文标题:Acrylonitrile for instrial use-Determination of content of acetonitrile acetone and acrolein-Gas chromatographic method
替代情况:替代GB 7717.12-1987;被GB/T 7717.12-2008代替
实施日期:1995-4-1
颁布部门:国家技术监督局
内容简介:本标准规定了测定工业用丙烯腈中乙腈、丙酮和丙烯醛含量的气相色谱法。本标准适用于乙腈含量大于0.001%(m/m),丙酮含量大于0.001%(m/m)和丙烯醛含量大于0.0001%(m/m)的工业用丙烯腈试样。
⑤ 高效液相色谱法可以对环境中哪些污染物进行分析检测
近年来,高效液相色谱仪技术发展较快,尤其在环境监测中得到广泛应用。在发达国专家更是将高属效液相色谱方法作为常用的环境监测方法,如美国EPA531方法,用高效液相色谱仪配置荧光检测器测定饮用水中的N—甲基氨基甲酸酯杀虫剂;EPA547方法用高效液相色谱/荧光法测定饮用水中的草甘膦;EPA550方法用高效液相色谱/UV和荧光法测定饮用水中的多环芳烃;EPA605方法是用高效液相色谱仪中电化学法测定废水中的联苯胺类化合物;EPA610方法用高效液相色谱/UV和荧光法测定废水中的多环芳烃;EPA6610方法里用高效液相色谱柱后衍生荧光法测定废水中的氨基甲酸酯农药;EPA6651方法用高效液相色谱方法测定废水中的草甘膦除草剂;EPA8310方法用LC/荧光分析固体废弃物中的多环芳烃,就连气体中的有害有机物不少也是用高效液相色谱方法测定。(鲁创仪器)
⑥ 电镀废水中含氰废水的处理方法有哪些
1·各种处理方法简述
国内含氰废水处理方法比较多[3,4],但应用哪一种工艺主要决定于含氰废水的质量浓度、性质以及实际处理的效果。废水中氰的质量浓度可粗略分为高、中、低3种。一般情况下,成分复杂的高质量浓度废水CN>800 mg/L,也有多种废水氰的质量浓度在(1-10)×103 mg/L之间,可先采用酸化法回收氰化物,残液再继续氧化处理。中质量浓度含氰废水一般在200 mg/L~800 mg/L之间,根据废水成分的复杂程度选择处理工艺;废水成分简单、回收氰化物有经济效益的,适合先采用酸化法,残液再继续采用二次处理;酸化回收无经济效益的废水,可直接采用氧化法进行破坏。在国内实际生产时,高、中质量浓度(接近800 mg/L)含氰废水一般根据成分复杂程度而决定采用的工艺方法;有些成分简单的废水,也可以先回收氰化物,回收后残液再直接进行氧化破坏CN-,中、低质量浓度的废水均采用直接氧化处理工艺。近些年,回收氰化物的方法较多,如酸化挥发-碱吸收法、萃取法、酸沉淀-中和法(两步沉淀法)、三步沉淀法等。目前,厂矿企业实际采用单一处理工艺的较少,因单一工艺处理很难达到国家排放标准,大部分企业均采用多种组合的工艺进行处理。主要组合处理工艺是酸化回收与直接氧化的技术结合,另一种组合是直接氧化、自然净化[5]与活性炭吸附工艺[6]的技术组合,许多新的废水全循环技术组合工艺也是主要发展趋势之一。含氰废水处理方法的选择主要根据废水的来源、性质及水量来决定。其中包括化学法、物理化学法、物理法及生化法,但是运用最多的是采用化学法来处理含氰废水。以下主要对几种常用的物理、化学法处理含氰废水进行介绍。
2·常用处理技术
2.1加酸曝气法
这是已进入实用化阶段的方法,在美国等一些国家中正在兴建一定规模的设施。最初试验室在中性液中利用曝气来把氰排除到大气中去,以后改进为先加酸使污水最大限度地酸化,然后进行曝气,这样可以更有效地去除氰。所使用的酸通常是硫酸。虽然也有利用烟气来进行酸性化的建议,但尚未到成熟阶段,所以没有普及。此法的效果受曝气程度和酸性化程度的支配,按照实例来看,当pH为2.8时,对含氰浓度达500 mg/L的污水进行曝气,可以获得含氰浓度为0.09 mg/L~0.14 mg/L的处理水。因为在实施此法以后,氰仍保持原有状态,作为有毒气体而被排放到大气中,既要有利的厂址条件,又必须具备高烟囱,因而只有在极有限的地区,才有采用此法的可能。如用液碱来捕集已气化的氰,这样既可弥补上述缺点,还可回收氰。
2.2络盐法
20世纪70年代,国内企业有的曾经采用该方法,但现在均不采用。从环境安全防范的观点出发,这种方法可以作为氰化物产生突发性污染事故时而采用快速补救的方法之一,硫酸亚铁溶液投入水中可以迅速降低水中含氰污染物所造成的危害程度,减小对环境的危害,特别是对水生生物的伤害。废水中CN-质量浓度很低时,该方法处理效果不好。可以使用的药品虽多种多样,但最广泛使用的是硫酸亚铁。该法利用硫酸亚铁与氰形成络盐,然后使络盐沉淀并加以除去。硫酸亚铁法将氰化物转化为铁的亚铁氰化物,再转化成普鲁士蓝型不溶性化合物[7],然后倾析或过滤出来。
其特点是操作简单,处理费用低,且可回收普鲁士蓝沉淀作颜料。缺点是处理效果差,淤渣很多,分离出不溶物后的废水呈蓝色,浓度超过一定限度,就不能被去除。从反应的平衡来看,上述浓度过高,去除率下降是难以避免的问题,按一般情况来说,用石灰等使水的pH值保持在7.5~10.5之间,这样就使沉淀生成处于最佳状态。但即使采用上述措施,因为含氰量在一定数值以下,就不再降低,在处理含氰浓度低的污水时,其效果是微小的。如改用镍做处理剂,其效果虽比铁有利,但价格昂贵。熊正为[8]对硫酸亚铁法处理电镀含氰废水进行了试验研究,探讨了硫酸亚铁除氰的原理及其去除效果。试验结果表明:硫酸亚铁法处理电镀含氰废水,硫酸亚铁加入量为理论值的1.69倍,0.1%PAM絮凝剂用量为1 mg/L时,氰化物的去除率可达98%,同时还可去除部分重金属污染物和COD,COD可去除约59%;pH值对除氰效果的影响较大,CN-与硫酸亚铁络合成亚铁氰化物时pH值控制在9.50~10.50,生成的亚铁氰化物再转化成较稳定的普鲁士蓝型不溶性化合物须将pH值反调控制在7.00~8.00时,除氰效果较好。
2.3臭氧处理法
近年来,用臭氧处理氰化物方法的研究,开展得相当普遍,但由于电力费用高昂的缺点,所以还没达到一般性的实用化阶段
O3+KCN→KCNO+O2
KCNO+O3+H2O→KHCO3+N2+O2
臭氧在水溶液中可释放出原子氧参加反应,表现出很强的氧化性,能彻底氧化游离状态的氰化物。铜离子对氰离子和氰根离子的氧化分解有触媒作用,添加10 mg/L左右的硫酸铜能促进氰的分解反应。
臭氧法的突出特点是在整个过程中不增加其他污染物质,污泥量少,且因增加了水中的溶解氧而使出水不易发臭。采用臭氧氧化法处理废水中的氰化物,只需臭氧发生设备,无需药剂购置和运输,而且工艺简单、方便,处理后废水总氰化物质量浓度可以达到国家污水综合排放标准,处理废液中不增加其它有害物质,无二次污染,不需要进一步处理。但是,由于臭氧发生器产生臭氧的成本高、设备维修困难,工业应用受到了一定限制。只要臭氧发生器能突破产生臭氧的瓶颈,工业应用前景非常广阔。臭氧氧化法要消耗大量的电能[9],在缺少电力的地方难以应用。我国已有臭氧发生装置成品出售,一些工厂目前正在使用这种处理技术。应该指出的是目前的臭氧发生器能耗很大,生产1 kg O3耗电12 kW·h~15 kW·h,处理费用较高。除个别地方外,一般难以达到废水处理的经济要求。另外,单独使用臭氧不能使络合状态存在的氰化物彻底氧化。颜海波[10]等采用臭氧技术对电镀含氰废水进行处理,电镀含氰废水中的CN-浓度在30 mg/L~36 mg/L之间,采用以臭氧为氧化剂的活性炭催化氧化技术处理后,CN-的出口浓度<0.5 mg/L,去除率在97.7%以上。该处理系统实现了废水处理自动化,具有投资省、效果好、成本低、运行稳定等优点,且不会产生二次污染,值得推广应用。
2.4过氧化氢法
2.4.1碱性条件
在常温、碱性(pH=9.5~11)、有Cu2+作催化剂的条件下,H2O2能使游离氰化物及其金属络合物(但不能使铁氰化物)氧化成氰酸盐,以金属氰络合物形式存在的铜、镍和锌等金属,一旦氰化物被氧化除去后,他们就会生成氢氧化物沉淀。那些过量的过氧化氢也能迅速分解成水和氧气。污水中亚铁氰化物被铜沉淀而除去。其反应方程式如下。游离氰化物与过氧化氢反应的方程式:
上述反应中生成的氰酸盐水解生成铵离子和碳酸盐离子或碳酸氢盐离子,水解速度取决于pH值。一般情况下,硫氰酸盐不会或很少被氧化。污水处理过程中,含氰络合物的反应顺序如下:
2.4.2酸性条件
一般将废水加热至40℃,在不断搅拌条件下加入含有少量金属离子作催化剂的H2O2和37%甲醛的混合溶液,再搅拌1 h左右完成反应。反应在酸性条件下分两步进行:
此法适用于浓度波动较大的含氰废水的处理,整个过程无HCN气体产生,操作安全,但所需试剂费用较高。山东黄金集团有限公司三山岛金矿采用过氧化氢对含氰污水酸化回收后尾液进行二次处理[11]。
近1 a的生产应用情况表明,该法具有工艺操作简单、投资省、成本低等优点,能容易地将含氰(CN)-5 mg/L~50 mg/L的酸化回收尾液处理到<0.5 mg/L,药剂费用为7.56元/m3。
2.5碱性氯化处理法
目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它废水严格分流,避免混入镍、铁等金属离子,否则处理困难。
通过氯处理来分解氰化物的可能性,早已肯定,可是在初期氯处理是在酸性溶液中进行,因而有浓度相当大的氯化氢有毒气体产生,操作也很不安全。但如果在碱性条件下进行氯处理,中间产物氯化氢几乎在一刹那间都转化为氰酸盐,于是此法在氰化物处理方面已成为实际的而且安全的方法。该法的原理是废水在碱性条件下,采用氯系氧化剂将氰化物破坏而除去的方法,处理过程分为两个阶段,第一阶段是将氰氧化为氰酸盐,对氰破坏不彻底,叫做不完全氧化阶段,该工艺的原理是在碱性条件下(一般pH≥10),用次氯酸盐将氰化物氧化成氰酸盐。
CN-+ClO-+H2O→CNCl+2OHCNCl+2OH-→
CNO-+Cl-+H2O
将两式合并,得
CN-+ClO-→CNO-+Cl-
CNO-+2H2O→CO2+NH3+OH-
局部氧化法破氰反应生成的氰酸根的毒性是CN-的1/1 000,所以有的厂在废水浓度比较低时,废水经局部破氰处理后就排入后续的处理金属离子的处理设施。但是,CNO-毕竟是有毒物质,在酸性条件下极易水解生成氨(NH)3。pH反应条件控制:一级氧化破氰:值10~11;理论投药量:简单氰化物CN-:Cl2=1:2.73,复合氰化物CN-:Cl2=1:3.42。用ORP仪控制反应终点为300 mv~350 mv,反应时间10 min~15 min。
第二阶段是将氰酸盐进一步氧化分解成二氧化碳和水,叫完全氧化阶段。在局部氧化处理的基础上,调节废水的pH(一般pH≥8.5),再投加一定量的氧化剂,经搅拌使CNO-完全氧化为N2和CO2。
pH反应条件控制:二级氧化破氰:pH值7-8(用H2SO4回调);理论投药量:简单氰化物CN-:Cl2=1:4.09,复合氰化物CN-:Cl2=1:4.09。用ORP仪控制反应终点为600mv~700mv;反应时间10min~30min。反应出水余氯浓度控制在3 mg/L~5 mg/L。
滕华妹[12]等采用两级碱性氯化法处理工艺对杭州西尔灵钟厂含氰废水进行处理,间隙法操作,手工控制投药量,原废水含氰浓度59.8 mg/L~141.1 mg/L,平均为84.6 mg/L,分段调节pH,采用自制的机械搅拌器搅拌,根据在实验室测得的氰化物浓度,分段计算投药量,废水处理取得很好的效果,排放废水中氰化物浓度均小于国家排放标准0.5 mg/L。另有采用次氯酸钠、亚氯酸钠、漂粉等替代氯气的方法,其原理和方法与通氯气相同,而类似加氯器的特殊装置却不再需要,而且可以避免氯气泄露的危险,它适用于小规模的污水处理。在已决定采用这种处理法的场合,必须考虑到残存的氯在放流目的地所发生的影响。
2.6食盐电解法
通过食盐水电解同时生成氯气和强碱,把他们使用于氰的分解。以电镀厂而言,因为容易获得电力供应,所以操作方便,处理药品费用非常低廉。尤其在分批操作时,能够在夜间空闲时间,充分利用原来供电镀操作用的整流器,因而设备费用也可以降低。此法的缺点是电解阳极用的碳极的使用寿命较短。它适用于较小规模的工厂。
(1)隔膜电解法:这是在食盐电解法中使用隔膜的方法,其原理是碱性氯化处理法。食盐中如有很多杂质,隔膜所用的石棉就容易发生间隙堵塞的缺点。在连续运转的场合,使用饱和食盐水,如管理不善,容易发生食盐补充不足的情况,因而分解反应不能继续进行,所以必须经常注意。
(2)无隔膜电解法:进行食盐水的无隔膜电解时,在阳极上有氯气发生,它与阴极上生成的碱反应后,即生成次氯酸盐。
Cl2+2NaOH→NaOCl+NaCl+H2O
如把生成的此氯酸盐加注在含氰污水中,氰就被氧化而生成氰酸盐。
NaCN+NaOCl→NaCNO+NaCl
并且进一步分解为碳酸气和氮气。
2NaCNO+3NaOCl+H2O→2CO2+N2+NaOH+3NaCl
3·含氰废水生物处理方法的应用进展
有学者[13]采用BOD5/COD比值法和好氧呼吸曲线法在国内外首次针对高浓度有机氰废水及其污染物进行了全面的好氧可生化性研究,结果表明,低浓度氰工艺含氰废水在低浓度下,可生化性较好,在高浓度下,可生化性较差,浓度过高的甚至无法被好氧生物降解;肖敏[14]等在30℃条件下,采用血清瓶液体置换系统,撒气厌氧水化反应设备条件,测定了丙烯腈、腈纶生产过程废水等各种高浓度有机氰废水的厌氧生物可降解性及废水中丙烯腈、乙腈和氰化物等主要污染物对产甲烷菌的毒性。结果表明,丙烯腈在低质量浓度下为代谢毒素,厌氧菌产甲烷活性在恢复试验中得到恢复,在高质量浓度(>120 mg/L)为生理毒素,毒性引起的产甲烷活性受抑制,但在短时期内得到恢复;氰化物在低质量浓度下为生理毒;较高质量浓度下(25 mg/L)为杀菌性毒素,厌氧菌细胞已遭受严重破坏,无法修复;乙腈始终为代谢毒素;张力等[15]采用膜分离技术处理丙烯晴含氰废水,处理后外排氰根离子浓度CN-<0.0005%,COD<1 500 mg/L,表明了使用超滤膜对原水能有效的净化,并在一定程度上能降低原水的COD含量。
⑦ 高效液相色谱仪中的示差检测器进入了废液(含乙腈和水),请问该怎么办才好
神啊,你是怎么弄进去的呀?
如果走错了,一不小心走成流动相循环了?版那你就冲吧。没别的办权法。当然,如果里面没有样品就比较容易冲洗。里面有样品那就费劲了。
两个通道都要冲一下,因为示差检测器比较敏感,所以一定要多冲。不然进样的时候冒出杂质峰来不好解释。
如果你是废液流进去,那就拆开了擦拭。这个问题不大,没进管路就没事儿。
⑧ 实验室中乙腈应该如何保存做乙腈的实验需要防护吗
现在乙腈可真贵,以前20多块,现在8.9十块了。
实验室就放在玻璃瓶中就可以了,避光保存,不危险。
做实验也不需要什么特殊的防护,带个手套,在通风橱操作就可以了
⑨ 废水气样的采集与检测方法,要具体方法包括操作过程什么的,推荐本书也行
仅供参考! 所谓水质指标是用以评价一般淡水水域、海水水域特性的重要参数.可以根据这些参数对水质的类型进行分类,对水体质量进行判断和综合评价.水质指标已形成比较完整的指标体系.
许多水质指标是表示水中某一种或一类物质的含量,常直接用其浓度表示,有些水质指标则是利用某一类物质的共同特性来间接反映其含量.例如水中有机物质具有易被氧化的共同特性,可用其耗氧量作为有机物含量的综合性指标;还有一些水质指标是同测定方法直接联系的,例如混浊度,色度等用人为规定的并配制某种人工标准溶液作为衡量的尺度.水质指标按其性质不同,可分为物理的,生物的和化学的指标.关于生物指标,根据水生生物的组成(种类与数量)以及它们的生态学特征而提出的各项指标已在有关课程中介绍.本节概要讨论一下几项常用的水质物理指标的含义.对于化学指标的含义将在本书的其他有关部门章节中作有关深入的讨论,这里按测定所使用的不同方法作粗略的分类.
(一)水质的物理指标
水体环境的物理指标项 目颇多,包括 水温、渗透压、混浊度(透明度)、色度、悬浮固体、蒸发残渣以及其它感官指标如味觉、嗅觉属性等等.
1. 温度 温度是最常用的物理 指标 之一.由于水的许多物理特性、水中进行的化学过程和生物过程 都同 温度有关,所以它经 常是必须加以测定的.天然水的温度因水源的不同而异.地表水的温度与季节气候条件有关,其变化范围大约在0.1--30℃;地下水的温度则比较稳定,一般变化于8--12℃左右,而海水的温度变化范围为-2--30℃.
2. 嗅与味 被污染的水体往 往具有不正 常 的气味,用鼻闻到的称为嗅,口尝到的称为味.有时嗅与味 不能截然分开.常常根据水的气味,可以推测水中所含杂质和有害成分.水中的嗅与味的来 源可能有:水生植物或微生物的繁殖和衰亡;有机物的腐败分解;溶解气体H2S等;溶解的矿物盐或混入的泥土;工业废水中 的 各种 杂质 如 石油、酚等;饮用水消毒过程的余氯等.不同的物质有着不同的气味,例如湖 沼水因藻类繁生或有机物产生的鱼腥及霉烂气味;浑浊河水常含有泥土的涩 味;温泉水常有硫酸味;有些地下水的H2S气味;含溶解氧较多的带甜味;含有机物较多的也常具有甜味;水中含NaCl带有咸味,含MgSO4,Na2SO4等带有苦味;含CuSO4带有甜味,而Fe的水带有涩味. 人的感官分辨嗅与味,不可避免带有主观性.目前对嗅与味尚无完全客观的标准和检测的仪器,只有极清洁或 已消毒过的 水才可用口尝试.由于水温对水的气味有很大影响,所以测定嗅 与味常常在室温20℃和加热(40-50℃)两种情况下进行. 此外,有人提出 以臭气浓度及臭气强度指数来度量水质的嗅觉属性.臭气浓度(TO)=200/a,式中a为感觉到臭气的最小水样量(mL).在给水水源的标准中,要求(TO)值低于3-5. 臭气 强度指数(PO)系指被测水样稀释到没有臭气为止时以百分率表示的稀释倍数. PO与TO通常具有如下关系:PO=lgTO/lg2(合田健,1989).
3.颜色与色度 天然水经常表现出各种颜色.湖沼水常有黄褐色、或黄绿色, 这往往是由腐殖质造成的.水 中悬浮泥沙和不溶解 的矿物质也长带有颜色,例如粘土使水呈黄色;铁的氧化物使水呈黄褐色; 硫化氢氧化析出的硫使水呈蓝色等等.各种水藻如球藻、硅藻等的繁殖使水 呈黄绿色、褐色等.根据水的颜色,可以推测水中杂质的数量和种类.色 度是对天然的或处理之后的各种用水进行水色测定时所规定的指标.目前世 界各国统一用氯化铂酸钾(K2PtCl6)和 氯 化钴(CoCl2.6H2O)配制的混合溶液作为色度的标准.
4.混浊度与透明度 水中若含有悬浮及胶体状态的物质,常会发生混浊现象.地表水的混浊是由泥沙、粘土、有机物造成的.地下水一般比较清澈透明,但若水中含有Fe2+盐,与空气接触后就可能产生Fe(OH)3,使水呈棕黄色混浊状态;海洋在近岸和河口区由于陆地径流携带大量泥沙、粘土、有机物造成的.不同河流因流经地区的地质土壤条件不同,混浊程度可能有很大的差别.地下水一般比较清澈透明,但若水中含有Fe2+盐,与空气接触后就可能产生Fe(OH)3,使水呈棕黄色混浊状态;海洋在近岸和河口区由于陆地径流携带大量泥沙和其它有机物,水质比较混浊而远岸海区水区水质透明.
混浊度是一种光学效应,它表示光线透过水层时受到阻碍的程度.这种光学效应和和微粒的大小及形状有关.从胶体颗粒到悬浮颗粒都能产生混浊现象,其粒径的变化幅度是很大的.所有有相同悬浮物质含量的两种水体若颗粒粒径分级状况不同,其混浊程度就未必相等.浑浊度的标准单位是以不溶性硅如漂白土、高岭土在光学阻碍作为测量的基础,即规定1mgSiO2.L-1所构成的混浊度为1度.把预测水样与标准混浊度按照比浊法原理进行比较就可以测得其混浊度.
透明度是表示水体透明程度的指标.它与混浊度的意义恰恰相反.都表明水中杂质对透过光线的阻碍程度.若把某一方面白色或黑白相间的圆盘作为观察对象,透过水层俯视圆盘并调节圆盘深度至恰能看到为止,此时圆盘所在深度位置称为透明度.
5. 固体含量 天然水体中所含物质大部分属于固体物质,经常有必要测定其含量作为直接的水质指标.各种固体含量可以分为以下几类:(1)总固体.即水样在一定温度下蒸发干燥后残存的固体物质总量,也称蒸发残留物;(2)悬浮性固体.即将水样过滤①,截留物烘干后的残存的固体物质的量,也就是悬浮物质的含量,包括不溶于水的泥土、有机物、微生物等;(3)溶解性固体.即水样过滤后,滤液蒸干的残余固体量.包括可溶于水的无机盐类及有机物质.总固体量是悬浮固体和溶解性固体二者之和.此外还有可沉降固体,固体的灼烧减重等指标.各种固体含量的测定都是以重量法进行的,测定时蒸干温度对结果的影响很大.一般规定的确105--110℃,不能彻底赶走硫酸钙、硫酸镁等结晶水.不易得到固定不变的重量;若在180℃蒸干,所得结果虽比较稳定,但由于一些盐类如CaCl2 、Ca(NO3)2MgCl2、Mg(NO3)2等具有强烈的吸湿性,极易吸收空气中的水分,在称量时也不易得到满意的结果.因此测定的结果比较粗略.
(二)水质化学指标
利用化学反应、生物化学的反应及物理化学的原理测定的水质指标,总称为化学指标.由于化学组成的复杂性,通常选择适当的化学特性进行检查或作定性、定量的分析.根据不同的分析方法可以把化学指标归纳如下:
1.中和的方法 包括水体的碱度、酸度等;
2.生成螯合物的方法 如Ca2+ Mg2+及硬度等;
3.加热和氧化剂分解法 将含生物体在内的有机化合物的含量以加热分解时产生CO2的量[总有机碳(TOC);微粒有机碳(POC)]、分解时消耗的氧量[总耗氧量(TOD)]或消耗氧化的量[化学耗氧量(COD)]来表示的指标;
4.生物化学反应的方法论 以生物化学耗氧量(BOD)为代表,是测定微生物分解有机物时所需消耗的氧量,包括测定微生物在呼吸过程中产生的CO2的量以及利用脱氢酶等酶活性法来测定有效生物量等指标;
5.氧化还原反应及沉淀法.最典型为溶解氧含量及氯离子含量等指标.
6.电化学法.有水的电导率,氯化-还原电位(pE)以及包括pH在内的离子选择电极的各种指标,如F-、NH4+以及许多金属离子;
7.微量成分.以仪器分析为主要检测手段.包括分光光度法,原子吸收光谱法,气相、液相色谱法,中子活化分析法以及等离子发射光谱法等.指标项目众多,如生物营养元素、各种化学形态的重金属离子及非金属微量元素、微量有机物、水已的污染物(如有机农药、油类)以及放射性元素等等. 总之,系统了解各类水质指标的含义具有重要意义.因为对于任何水生生态系统环境都是通过对一系列的、经过严格选择的、具有典型意义代表性的指标进行调查或监测分析结果,而加以综合评价的.必须强调,水质的生物学指标的调查分析结果对于科学评价水环境质量越来越大越显示其重要性.象英、美、日等国对水环境的要求,都从生态学的观点出发,重视生物监测.例如英国泰晤士河由于进行了常时间的治理,1969年已有鱼群重新出现,其治理效果就是用已有碍100多种鱼类重新回到泰晤士河加以表征的;日本1970年将生物学水知判断法列入有关水环境质量指标中;我国现在已将细菌学指标列为部颁水环境质量标准.
二、 我国当前沿用的主要水质理化指标及测试系统
(一) 主要理化指标 当前许多国家都颁布了各自不同的水质质量标准,规定了为数繁多的指标项目.我国于1973年颁布了《工业“三废”排放试行标准》,规定了工业废水中有14项有害物质的最高排放浓度.1976年颁发《生活饮用水水质标准》,其中感官性指标有4项(色、混浊度、嗅与味、肉眼可见物);化学指标有8项(Ph、总硬度、铁、锰、铜、锌、挥发酚、阴离子合成洗涤剂);毒理学指标有8项(氰化物、砷、硒、汞、镐、六价铬、铅);细菌学指标有3项(细菌总数、大肠菌群、游离余氯).1983年发布《地表水环境质量标准》,规定出20种监测项目的三级质量标准,其中包括pH、水温、色、嗅、溶解氧,生化需氧量,挥发性酚类、氮化物、砷、总汞、镉、六价铬、铅、铜、石油类、大肠菌群等.我国先行的《海水水质标准(GB3097-82)》规定的理化指标包括物理感官指标,化学感官指标和微生物指标计25项;《渔业水域水质标准(GB11607-89)》包括感官和化学指标34项.
水环境调查或监测分析项目在理化指标方面多根据各类水体目前和将来的用途而加以选择和确定的.在养殖生产和有关部门水生生物科学研究中,为了充分利用和改良或控制水的理化条件,常常必须对10多项常规指标进行分析,包括温度、含盐量(盐度)、溶解氧、pH、碱度、硬度、硝酸盐、亚硝酸盐、铵氮、总氮、磷酸盐、总磷、硅酸盐、化学耗氧量等等;对水环境的污染物质的调查中常按基础调查、检测性调查、专题性调查及应急性调查等多种不同类型的用途而选择不同的指标项目.淡水水体和海水水体常常也有所差异.
从国外报道各种类型的水质调查或监测标准来看,由于国情的不同,其侧重点各异.而且调查或监测指标的选择和确定问题本身也还有一个逐步深入和不断发展的过程,例如对污染指标随着新的化学物质的品种的增加、分析技术的发展,以及在流行病学研究中对致癌、致畸及致突变的生理生化过程的深入研究,监测或调查项目会不断的加以改变,方法也会逐步发展和完善.
(二) 测试系统 对水质理化指标进行的测试实验可采用现场测试、船上测试和陆上实验室测试三种方式.采用不同方式测试所得结果的确切程度是不同的,特别是深层水样的 采集和储存,其温度、压力产生变化,都将使化学平衡点产生变化.例如[HCO3-]/[CO32-]等离子成分的浓度比值以及溶解气体的含量等都回发生变化.;储存的水样,即使排除了容器污染和通过容器表面散失的可能性,水质也会因为悬浮物的凝聚沉降以及生物提的代谢过程、死亡分解过程等的影响而发生改变.
目前,可采用现场测试的项目越来越多,遥控遥感技术的发展使许多水质指标项目的测试可以字响当大的范围进行同步观测.但借助仪器的探头作高深度水域(特别是海洋)的现场测试常常遇到很多困难.加在现场测试仪器尚未能普及的情况下,水质理化指标测试工作常常必须先采样后在船上实验室或陆上实验室进行.
天猫美国普卫欣提示:雾霾天气出行记得做好防护。
随着自动化分析技术的发展,水质指标的调查、监测分析已经逐步使用自动测试系统.该系统一般由采样装置,水质连续监测仪器,数据传输、记录及处理几部分组成,其特点是自动化、仪器化和连续性.目前已采用自动化试系统的有:水温、Ph、电导率、氧化还原电位、混浊度、悬浮物、溶解氧、COD、TOC、TOD、某些金属离子、氰化物等等.自动测试系统可避免人工采样所得数据的不全面性,大大缩短采样分析到获得结果之间的时间.但自动测试系统也有局限性,不能对大部分指标逐一单项进行测定,因为水质化学组成(尤其是污染物)复杂,组分价态、形态多变,干扰严重,需要一系列的化学预处理操作和各种高灵敏度的检测方法.因此,发展规律连续自动测试技术并和实验室(船上和陆上)采样分析技术相结合,是完善水质理化指标的一系列切实可行的途径