⑴ 水的物理性質和化學性質有哪些
物理性質:
沸點:99.975℃(氣壓為一個標准大氣壓時,也就是101.375kPa)。
凝固點:0℃
比熱容:4.186kJ/(kg·℃) 0.1MPa 15℃蒸發潛熱:2257.2kJ/(kg) 0.1MPa 100℃
密度:水的密度在3.98℃時最大,為1×103kg/m3,水在0℃時,密度為0.99987×103 kg/m3,冰在0℃時,密度為0.9167×103 kg/m3。
。
化學性質:
1.穩定性:在2000℃以上才開始分解。
水的電離:純水中存在下列電離平衡:H₂O==可逆==H⁺+OH⁻ 或 H₂O+H₂O=可逆=H₃O⁺+OH⁻。
註:「H₃O⁺」為水合氫離子,為了簡便,常常簡寫成H⁺,更准確的說法為H9O4⁺,純水中氫離子物質的量濃度為10⁻⁷mol/L。
2.水的氧化性:水跟較活潑金屬或碳反應時,表現氧化性,氫被還原成氫氣。
2Na+2H₂O=2NaOH+H₂↑
Mg+2H₂O=Mg(OH)₂↓+H₂↑
3Fe+4H₂O(水蒸氣)=Fe₃O₄+4H₂(加熱)
C+H₂O=CO+H₂(高溫)
3.水的還原性:水跟氟單質反應時,表現還原性,氧被還原成氧氣
2F₂+2H₂O=4HF+O₂↑。
4.水的電解:
水在直流電作用下,分解生成氫氣和氧氣,工業上用此法制純氫和純氧 2H₂O=2H₂↑+O₂↑。
5.水化反應:
水可跟活潑金屬的鹼性氧化物、大多數酸性氧化物以及某些不飽和烴發生水化反應。
Na₂O+H₂O=2NaOH
CaO+H₂O=Ca(OH)₂
SO₃+H₂O=H₂SO₄
P₂O₅+3H₂O=2H₃PO₄
CH₂=CH₂+H₂O←→C₂H₅OH
6.水解反應
鹽的水解:
氮化物水解:Mg₃N₂+6H₂O(加熱)=3Mg(OH)₂↓+2NH₃↑
NaAlO₂+HCI+H₂O=Al(OH)₃↓+NaCI(NaCI少量)
碳化鈣水解: CaC₂(電石)+2H₂O(飽和氯化鈉)=Ca(OH)₂+C₂H₂↑
鹵代烴水解: C₂H₅Br+H₂O(加熱下的氫氧化鈉溶液)←→C₂H₅OH+HBr
對於人來說,水是僅次於氧氣的重要物質。在成人體內,60~70%的質量是水。兒童體內水的比重更大,可達近80%。如果一個人不吃飯,僅依靠自己體內貯存的營養物質或消耗自體組織,可以活上一個月。
但是如果不喝水,連一周時間也很難度過。體內失水10%就威脅健康,如失水20%,就有生命危險,足可見水對生命的重要意義。
水還有治療常見病的效果,比如:清晨一杯涼白開水可治療色斑;餐後半小時喝一些水,可以用來減肥;熱水的按摩作用是強效的安神劑,可以緩解失眠;大口大口地喝水可以緩解便秘;睡前一杯水對心臟有好處;惡心的時候可以用鹽水催吐。
⑵ 高分!水的結構
水的結構
1.氣態水的結構
以單水分子(H2O)、雙水分子([H2O]2)和三水分子([H2O]3)存在。
水分子具有極性結構。
單水分子(H2O)的鍵角是104º31¹,O-H鍵的鍵長是0.96Å。
2.固態水的結構(冰)
水分子通過氫鍵與另外四個水分子連結,具有較為完整的正四面體結構形態。
鍵角增為109º28¹,鍵長增為1.01Å,故其密度較低。
3.液態水的結構
液態水的結構較復雜,目前廣泛接受的是「閃動簇團」模型。
把液態水看成以氫鍵結合的水分子的閃動簇團,在略為「自由」的水中游泳的一種液態體系,這些簇團的尺寸較小,且處於不斷轉化成「閃動」的狀態,因而整個液體是均勻的,穩定流動的。液態水的結構既包含有水分子的締合體(簇團),又包含著水分子的微粒,此二者在液態溫度0—100℃的條件下共居共存,且處於連續的轉化「閃動」中。
⑶ 水是強電解質還是弱電解質
弱電解質。
弱電解質是在水溶液里部分電離的電解質。弱電解質包括弱酸、弱鹼、水與少數鹽。不同的弱電解質在水中電離的程度是不同的,一般用電離度和電離常數來表示。
弱酸:如H₂S、H₂CO₃、CH₃COOH、HF、HCN、HClO等。HF酸是具有強極性共價鍵的弱電解質。H₃PO₄、H₂SO₃從其酸性強弱看屬於中強酸,但仍屬於弱電解質。弱電解質必須是化合物,單質不是電解質。
弱鹼:一水合氨(氨水) 兩性氫氧化物:氫氧化鋁,氫氧化鋅
個別的鹽:如HgCl₂、Pb(Ac)₂、HgBr₂、CdI₂等
水:是由強極性鍵構成的極弱的電解質。
不同的弱電解質在水中電離的程度是不同的,一般用電離度和電離常數來表示。
電離度的定義和計算:
電離度--弱電解質在溶液里達電離平衡時,已電離的電解質分數占原來總分子數(包括已電離的和未電離的)的百分數。
電離度(α)= (已電離弱電解質分子數/原弱電解質分子數)*100%= (分子、分母同除以阿氏常數)= (分子、分母同除以溶液體積)
弱電解質的電離平衡屬於化學平衡中的一種,具有以下一些特徵:
"逆"--弱電解質的電離是可逆的
"動"--電離平衡是動態平衡
"等"-- v(離子化)=v (分子化)≠0
"定"--在電離平衡狀態時,溶液中分子和離子的濃度保持不變。
"變"--電離平衡是相對的、暫時的,當外界條件改變時,平衡就會發生移動
⑷ 什麼是電解質水
水電解質是化學現象之一,是指科學家對於水分子發生電離產生的現象的概括 。水是極弱的電解質,在室溫下平均每n個水分子發生電離。
離子化合物在水溶液中或熔化狀態下能導電;共價化合物:某些也能在水溶液中導電。導電的性質與溶解度無關,強電解質一般有:強酸強鹼,大多數鹽;弱電解質一般有:(水中只能部分電離的化合物)弱酸。另外,水是極弱電解質。
(4)純水是強極性擴展閱讀:
電解質包括離子型或強極性共價型化合物;非電解質包括弱極性或非極性共價型化合物。電解質水溶液能夠導電,是因電解質可以離解成離子。
至於物質在水中能否電離,是由其結構決定的。因此,由物質結構識別電解質與非電解質是問題的本質。
另外,有些能導電的物質,如銅、鋁等不是電解質。因它們並不是能導電的化合物,而是單質,不符合電解質的定義。
⑸ 如何分辨強弱電解質
我們通常把在水溶液中或熔化狀態下能導電的化合物叫做電解質,水溶液中或熔化狀態下不能導電的化合物叫做非電解質,其中在水溶液里完全電離成離子的電解質叫做強電解質,在水溶液里只有一部分分子電離成離子的電解質叫做弱電解質。如何去理解電解質特別是強弱電解質的概念呢?現通過辯析以下六個典型問題來正確理解強弱電解質的概念。
1.碳酸鈣難溶於水,碳酸鈣是弱電解質
碳酸鈣在水中的溶解度很小,水溶液也幾乎不導電,但因為溶於水中的碳酸鈣發生了完全電離,因此碳酸鈣也是強電解質。電解質的強弱與其水溶性沒有必然的聯系,溶解度大的不一定是強電解質,如醋酸在水中溶解度很大,但是弱電解質,溶解度小的不一定是弱電解質,碳酸鈣、硫酸鋇、氯化銀等在水中的溶解度都很小,但它們都是強電解質。
2.鹽酸中溶質完全電離,鹽酸是強電解質
鹽酸中不存在著溶質分子,氯化氫溶於水後完全電離為H+與Cl-,但鹽酸不能稱之為強電解質,因為強弱電解質必須首先是電解質,而電解質又必須是純凈物,故嚴格意義上講不能把屬於混合物的鹽酸叫做強電解質,氯化氫是強電解質。同樣的原因,「氨水」也不能叫做弱電解質,因為NH3·H2O才是氨水中的電解質,NH3·H2O是一種弱電解質。
3.SO3溶於水後完全電離,SO3是強電解質
SO3極易溶於水,並與水發生反應生成硫酸,硫酸在水溶液中完全電離,但這只能說明硫酸是強電解質,而SO3自身在水溶液中或熔化時都不能發生電離,因此,SO3不是電解質,也就沒有強弱電解質可言。同理,CO2、SO2、NH3等氣體,雖然它們溶於水後都能導電,但它們都不是電解質,當然也就不可能有強弱電解質之分。
4.純水不導電,純水是非電解質
純水不導電,不是因為純水不發生電離,而是因為純水電離出的氫離子與氫氧根離子太少,純水中的氫離子與氫氧根離子濃度極小,不足以發生明顯的導電現象。由於純水是可以電離的,因此,純水也是一種電解質,是一種較為常見的弱電解質
5.碳酸氫鈉在溶液未電離完全,碳酸氫鈉是弱電解質
碳酸氫鈉在水溶液中完全電離為Na+、HCO3-,確實存在著未電離完全的HCO3-,但這並不影響對碳酸氫鈉是強電解質的認定。因為強電解質是指只要能在水溶液中能完全電離為陰、陽離子兩部分,而與溶液中有無電離完全的分子與離子無關。
6.某電解質溶液導電性弱,該電解質是弱電解質
溶液的導電性與多種因素有關,影響溶液導電性強弱的因素主要有:⑴離子濃度,相同條件下離子濃度大的溶液導電性強;⑵離子電荷,一般情況下離子電荷越高,導電能力越強;⑶電解質強弱,相同條件下強電解質的溶液導電能力強;⑷溶液溫度,溫度越高,溶液導電能力越強;⑸電解質類型,相同條件下,電解質類型不同,其溶液的導電性不同,如相同溫度下同濃度的CaCl2與NaCl溶液導電性不同。某溶液的導電性弱,不能說明電解質的電離程度小,即使是強電解質的水溶液,如果其中的離子濃度很小,導電性也會很弱。
綜合可見,判斷強弱電解質的唯一依據是:電解質在水溶液中是否完全電離,完全電離的電解質即是強電解質,不完全電離的電解質即是非電解質。
⑹ 極性液體和非極性液體的區別
是指液體的分子為極性或非極性
比如,水是極性液體的一種,CCl4是非極性的。極性液體可以溶解其他極性,但不能溶解非極性物質。反之亦然
⑺ 水的 物理性質: 化學性質: 用途:
水的物理性質:
純凈的水沒有顏色、沒有氣味、沒有味道的液體。在101KPa時,水的凝固點是0攝氏度,沸點是100攝氏度,4攝氏度是密度最大,為1g /cm3.水結冰時體積膨脹,所以冰的密度小於水的密度,能浮在水的上面。
水的化學性質:
1、通電產生氫氣和氧氣 2H2O 通電 2H2↑+ O2 ↑
2、與鹼性氧化物反應生成鹼 CaO + H2O ==Ca(OH)2
3、與酸性氧化物反應生成酸 H2O + CO2==H2CO3
用處:
水是地球上最常見的物質之一,是包括無機化合、人類在內所有生命生存的重要資源,也是生物體最重要的組成部分。水在生命演化中起到了重要作用。它是一種狹義不可再生,廣義可再生資源。
純水可以導電,但十分微弱(導電性在日常生活中可以忽略),屬於極弱的電解質。日常生活中的水由於溶解了其他電解質而有較多的正負離子,導電性增強。
(7)純水是強極性擴展閱讀:
性質
三態變化
眾所周知,水有三態,分別為:固態、液態、氣態。
但是水卻不止只有三態,還有:超臨界流體、超固體、超流體、費米子凝聚態、等離子態、
玻色-愛因斯坦凝聚態等等。
地下水與地表水
地下水——有機物和微生物污染較少,而離子則溶解較多,通常硬度較高,蒸餾燒水時易結水垢;有時錳氟離子超標,不能滿足生產生活用水需求。
地表水——較地下水有機物和微生物污染較多,如果該地屬石灰岩地區,其地表水往往也有較大的硬度,如四川的德陽、綿陽、廣元、阿壩等地區。
原水與凈水
原水——通常是指水處理設備的進水,如常用的城市自來水、城郊地下水、野外地表水等,常以TDS值(水中溶解性總固體含量)檢測其水質,中國城市自來水TDS值通常為100~400ppm。
凈水——原水經過水處理設施處理後即稱之為凈水。
⑻ 純凈水的性質
從學術角度講,純水又名高純水,是指化學純度極高的水,其主要應用在生物、化學化工、冶金、宇航、電力等領域,但其對水質純度要求相當高,所以一般應用最普遍的還是電子工業。例如電力系統所用的純水,要求各雜質含量低達到「微克/升」級。在純水的製作中,水質標准所規定的各項指標應該根據電子(微電子)元器件(或材料)的生產工藝而定(如普遍認為造成電路性能破壞的顆粒物質的尺寸為其線寬的1/5-1/10),但由於微電子技術的復雜性和影響產品質量的因素繁多,至今尚無一份由工藝試驗得到的適用於某種電路生產的完整的水質標准。不過近年來電子級水標准也在不斷地修訂,而且高純水分析領域的許多突破和發展,新的儀器和新分析方法的不斷應用都為制水工藝的發展創造了條件。
炎炎夏季,難免大汗淋漓,身體就容易脫水,補水這個問題每個人都知道,但補水是很有講究的,補得不正確可能會帶來其他損失呢!高純水的國家標准為:GB1146.1-89至GB1146.11-89[168],目前我國高純水的標准將電子級水分為五個級別:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級和Ⅴ級,該標準是參照ASTM電子級標准而制定的。高純水的水質標准中所規定的各項指標的主要依據有:1.微電子工藝對水質的要求;2.制水工藝的水平;3.檢測技術的現狀。 在高純水的生產過程中,水中的陰、陽離子可用電滲析法、反滲透法及離子交換樹脂技術等去除;水中的顆粒一般可用超過濾、膜過濾等技術去除;水中的細菌,目前國內多採用加葯或紫外燈照射或臭氧殺菌的方法去除;水中的TOC則一般用活性炭、反滲透處理。在高純水應用的領域中,水的純度直接關繫到器件的性能、可靠性、閾值電壓,導致低擊穿,產生缺陷,還影響材料的少子壽命,因此高純水要求具有相當高的純度和精度。
那麼什麼為純凈水呢?所謂純凈水是指其水質清純,不含任何有害物質和細菌,如有機污染物、無機鹽、任何添加劑和各類雜質,有效的避免了各類病菌入侵人體,其優點是能有效安全地給人體補充水份,具有很強的溶解度,因此與人體細胞親合力很強,有促進新陳代謝的作用。它是採用離子交換法、反滲透法、精微過濾及其他適當的物理加工方法進行深度處理後產生的水。一般情況下純凈水在生產過程中,源水只有50%-75%被利用,也就是說,1公斤自來水或地下水大約只能生產出0.4公斤左右的純凈水,而剩下的0.6公斤左右的水不能當作飲用水,只能另作它用。在我國,相關機構專門為此制定了一系列規定條文,並於1998年分別發布了GB17323-1998《瓶裝飲用純凈水》標准和GB17324-1998《瓶裝飲用純凈水衛生標准》,充分體現了國家對人民身體健康的重視和關心。我國的純凈水標準是參考了美國、加拿大、日本等有關國家的標准而制訂的,如果喝純凈水真的不好的話,那為什麼美國連續30年一直飲用純凈水呢?為什麼美國的FDA1994年制訂的瓶裝水標准把純凈水加進去呢? 通常來講,內含有過多礦物質的水會給人體造成不必要的負擔,而且有的礦物質人體不一定能吸收,如果長期積聚體內,會直接影響人體健康。嚴格來講的話,礦泉水作為一種飲料,每人每天只能攝入500毫升。如果過量,其內含的氟化物對人體相當不利,甚而會產生嚴重的後果。所以說,礦泉水再好,也只能作為飲料,而純凈水則不然,它不會對人體產生負面影響,反而能夠幫助排泄人體內的毒素。 從科學角度講,任何事物都具有雙重性。因此,同礦泉水比較而言,雖然純凈水在去除有害物質的同時也去除了水中的營養物質,但終其而言,它對人體健康無害。目前有部分人認為純凈水太純了,沒有營養可言,殊不知人體所需營養95%都是從食物攝入的。如果它不純凈,那還叫什麼純凈水呢?一般說來,水中雜質的主要形態是氣體、液體霧滴、水中懸浮物、固體顆粒及微生物等,其濃度隨排放量、人員流動及氣候等條件的變化而改變。這么多的污染物,豈是只經過淺層處理就能飲用的?而礦泉水只進行了淺層過濾,所以它在保留礦物質和營養物質的同時也保留了有害物質。而有害物質中通常含有致癌物質,該物質的作用是無閥值的,即使是最小量,也會產生一定的反應。因此從長遠來看,純凈水不失為一種安全的日常飲用水。 另據業內人士透露,在生產過程中,純凈水的生產成本比礦泉水的生產成本高,這倒使我聯想到「農夫山泉」為什麼要停產純凈水一事。 終其而言,有部分人稱國外不喝「純水」,並且根本不制定「純凈水」標準的言論,是誤導消費者,故意混淆視聽。需要糾正的是,「純水」不等於「純凈水」。「純水」當然不能喝,那是用在特殊行業的,當然不能作為飲用水。
⑼ 水是不是電解質請速回
純水是電解質,是弱電解質。而不純的水是非電解質。
概念:在水溶液里或熔融狀態下能導電的化合物叫電解質。
化合物導電的前提:其內部存在著自由移動的陰陽離子。
離子化合物在水溶液中或熔化狀態下能導電;共價化合物:某些也能在水溶液中導電。
導電的性質與溶解度無關,強電解質一般有:強酸強鹼,大多數鹽;弱電解質一般有:(水中只能部分電離的化合物)弱酸。另外,水是極弱電解質。
註:能導電的不一定是電解質判斷某化合物是否是電解質,不能只憑它在水溶液中導電與否,還需要進一步考察其晶體結構和化學鍵的性質等因素。例如,判斷硫酸鋇、碳酸鈣和氫氧化鐵是否為電解質。硫酸鋇難溶於水,溶液中離子濃度很小,其水溶液不導電,似乎為非電解質。但熔融的硫酸鋇卻可以導電。因此,硫酸鋇是電解質。碳酸鈣和硫酸鋇具有相類似的情況,也是電解質。從結構看,對其他難溶鹽,只要是離子型化合物或強極性共價型化合物,盡管難溶,也是電解質。
氫氧化鐵的情況則比較復雜,Fe3+與OH-之間的化學鍵帶有共價性質,它的溶解度比硫酸鋇還要小;而溶於水的部分,其中少部分又有可能形成膠體,其餘亦能電離成離子。但氫氧化鐵也是電解質。
判斷氧化物是否為電解質,也要作具體分析。非金屬氧化物,如SO2、SO3、P2O5、CO2等,它們是共價型化合物,液態時不導電,所以不是電解質。有些氧化物在水溶液中即便能導電,但也不是電解質。因為這些氧化物與水反應生成了新的能導電的物質,溶液中導電的不是原氧化物,如SO2本身不能電離,而它和水反應,生成亞硫酸,亞硫酸為電解質。金屬氧化物,如Na2O,MgO,CaO,Al2O3等是離子化合物,它們在熔融狀態下能夠導電,因此是電解質。
可見,電解質包括離子型或強極性共價型化合物;非電解質包括弱極性或非極性共價型化合物。電解質水溶液能夠導電,是因電解質可以離解成離子。至於物質在水中能否電離,是由其結構決定的。因此,由物質結構識別電解質與非電解質是問題的本質。
另外,有些能導電的物質,如銅、鋁等不是電解質。因它們並不是能導電的化合物,而是單質,不符合電解質的定義。
電解質是指在水溶液中或熔融狀態下能夠導電的化合物,例如酸、鹼和鹽等。凡在上述情況下不能導電的化合物叫非電解質,例如蔗糖、酒精等。