① 水質純化方法都有哪些
水的凈化和純化
1. 靜置沉澱
目的:沉澱水中不溶性雜質
效果:水較之前澄清,不溶性雜質沉降到了燒杯底。
2. 吸附沉澱
加入明礬,利用生成的膠狀物對雜質進行吸附,使雜質沉降達到凈水的目的。
3. 過濾
目的:使不溶性雜質與水分離
效果:水中不溶性雜質被除去,水變得澄清。 方法:一貼、二低、三靠。
4. 吸附
葯品:活性炭 目的:除去部分可溶性雜質,如異味、色素等。
效果:其中異味被除去,但有炭粉殘留。經過二次過濾,除去炭粉,水變得無色澄清透明。
5. 消毒
葯品:漂白粉溶液或氯氣或二氧化氯 目的:除去水中的細菌和微生物。 效果:與之前一樣澄清,但其中的細菌病毒等已被消滅。 6. 蒸餾
原理:利用混合物中各組分沸點不同,依次分離。 目的:除去可溶性雜質,降低水的硬度
效果:可溶性雜質除去,硬度降低,成為純水。
② 簡述水純化方法的種類
目前來移除飲用水中病源菌的方自法,不外乎是利用氯水、紫外線或是孔徑過濾法,不過這些方法,有些會影響水質的氣味或味道,有些則是價格太過昂貴,於是,來自於美國杜克大學(Duke University)的研究人員,想出了一個新招,就是利用RNAi的技術來純化水質,雖然目前仍在測試階段,不過,這個想法對日後純化飲用水可說是大有可為,此研究發表於6月3日的美國微生物協會(the American Society of Microbiology)年度研討會,由Sara Morey教授主導研究進行。
目前研究人員正在概念驗證(proof-of -concept)實驗階段,他們將能使病菌失活的RNA小片段置入多孔過濾材料中,此小片段的RNA會與病菌中的重要基因黏合,使該基因失去功能,導致病菌無法存活,進而達到純化飲用水的目的,研究人員打算同時對許多不同種類的病菌進行測試,同時也測試置入小片段RNA的最適濃度,相信未來對於第三世界許多未開發國家飲用水純化系統,應能提供很大的幫助。
③ 純水的流程,混床再生怎麼做
爭光混床樹脂
的預處理方法和再生方法
一、樹脂的裝填
1. 在樹脂裝填前,先檢查各設備是否完好,交換柱中是否有焊頭,螺帽等鐵渣;同時檢查水帽是否擰緊,並試水壓,沒有滴漏存在。在將樹脂裝填過程中還應避免包裝袋、內袋、繩子及泥沙等帶入交換柱中。
2. 先將交換柱充入約200mm高度的水,把陽樹脂裝入交換柱,根據交換柱尺寸計算,裝填所需的陽樹脂量,然後從下向上進行反洗,將陽樹脂層托平,確保陽樹脂裝填高度低於中排約30mm。
3. 繼續將水注入交換柱中,直至水高度在陽樹脂層上1000mm處,根據交換柱尺寸計算,裝填所需的陰樹脂量,陰樹脂裝填高度為陽樹脂高度的2倍,樹脂在裝填時應保持樹脂層中無氣泡存在。
4. 陰樹脂裝填好後,將水充滿交換柱,再用水從上向下沖洗,直至出水澄清。
二、樹脂的預處理
1. 從交換柱底部以3~4m/h的流速從下向上通入兩倍樹脂體積(陽陰樹脂總樹脂量)的約4%HCl溶液,然後用交換柱內的鹽酸溶液浸泡4~8h。
2. 用清水從上向下淋洗樹脂,直至出水pH試紙檢測約為5。
3. 將水液面放置樹脂層上約500mm處,從交換柱進鹼管,以3~4m/h的流速從上向下通入兩倍樹脂體積(陽陰樹脂總樹脂量)的約4%NaOH溶液,然後用交換柱內的鹽酸溶液浸泡4~8h。
4. 鹼浸泡之後,不經清洗,直接進行大反洗,反洗開始時,流速宜小,待樹脂松動後,逐漸加大反洗流速,使整個樹脂層的膨脹率在50~70%,維持10min左右,觀察分層是否清楚。
三、樹脂的再生
1. 在反洗分層後,放水到樹脂表面上約100mm處,開再生泵及中排,通過視鏡,調整液面進水平衡後,開始再生,由交換柱上下同時進鹼液和酸液,分別以3~4m/h的流速流經陽、陰樹脂層後,再生廢液由中間排排液裝置同時排出。若酸液進完後,鹼液還未進完,下部仍以同樣的流速通清洗水,以防鹼液串入下部而污染已再生好的陽樹脂。
2. 上下同時以再生同樣流速通過樹脂層進行置換,用清洗水分別流經陽、陰樹脂層,廢液由中間排排液裝置同時排出,置換時間為30~60min。
3. 提高對流清洗流速至10~20m/h,直至中排出水的電導率小於10μs/cm,Na+小於100ppb。之後,降低下部進水流速,同時清洗,至中排出水電導率小於10μs/cm,Na+小於100ppb。反之,提高下部進水流速 ,降低上部進水流速,同時清洗,到中排出水電導率小於10μs/cm,Na+小於100ppb。
4. 對流清洗好後,用水從上向下進行串洗,直至電導率小於10μs/cm以下為止。在正洗過程中,有時為了提高正洗效果,可進行一次2~3min的短時間反洗,以消除死角殘液。
5. 陰、陰樹脂的混合
混合前,應把交換器中的水液面,下降到樹脂表面上100~200mm處,壓縮空氣的壓力一般採用0.1-0.15MPa,流量為2.0-3.0m3/(m2.s)混合時間,一般為3.0~5.0min,時間過長易磨損樹脂,為防止樹脂在沉降過程中又重新分離,而影響樹脂的混合程度,除了必須通入適當的壓縮空氣外,仍需有足夠大的排水速度,迫使樹脂迅速降落,避免樹脂重新分離。
6. 正洗
混合後的樹脂層,還要用除鹽水以10~20m/h的流速進行正洗,直至出水合格後(SiO2含量低於20μg/l,電導率低於0.2μs/cm ),方可投入運行,運行流速為40~60m/h。
7. 樹脂在運行失效之後,用水進行反洗分層,反洗開始時,流速宜小,待樹脂層松動後,逐漸加大流速到10m/h左右,使整個樹脂層的膨脹率在50~70%,維持10~15min,一般即可達到較好的分離效果。
8. 在樹脂反洗分層之後,可對樹脂進行下一周期再生。
④ 關於純化水系統中混床交換樹脂酸鹼再生的有關操作規程及方法
你好!
TNND,原來我喝的純凈水是化學反映過來的。
打字不易,採納哦!
⑤ 制備純化水的方法有哪些
1.蒸餾法,按蒸餾器皿可分為玻璃、石英蒸餾器,金屬材質的有銅、不銹鋼和白金蒸餾器等。按蒸餾次數可分為一次、二次和多次蒸餾法。此外,為了去掉一些特出的雜質,還需採取一些特殊的措施。例如預先加入一些高錳酸鉀可除去易氧化物;加入少許磷酸可除去三價鐵;加入少許不揮發酸可製取無氨水等。蒸餾水可以滿足普通分析實驗室的用水要求。由於很難排除二氧化碳的溶入。所以水的電阻率是很低的,達不到MΩ級。不能滿足許多新技術的需要。
2.離子交換法,主要有兩種制備方式:
A. 復床式,即按陽床—陰床—陽床—陰床—混合床的方式連接並生產去離子水;早期多採用這種方式,便於樹脂再生。
B. 混床式(2-5級串聯不等),混床去離子的效果好。但再生不方便。
離子交換法可以獲得十幾MΩ的去離子水。但有機物無法去掉,TOC和COD值往往比原水還高。這是因為樹脂不好,或是樹脂的預處理不徹底,樹脂中所含的低聚物、單體、添加劑等沒有除盡,或樹脂不穩定,不斷地釋放出分解產物。這一切都將以TOC或COD指標的形式表現出來。例如,當自來水的COD值為2mg/L時,經過去離子處理得到的去離子水的COD值常在5-10mg/L之間。當然,在使用好樹脂時會得到好結果,否則就無法制備超純水了。
3.電滲析法,產生於1950年[4],由於其能耗低,常作為離子交換法的前處理步驟。它在外加直流電場作用下,利用陰陽離子交換膜分別選擇性的允許陰陽離子透過,使一部分離子透過離子交換膜遷移到另一部分水中去,從而使一部分水純化,另一部分水濃縮。這就是電滲析的原理。電滲析是常用的脫鹽技術之一。產出水的純度能滿足一寫工業用水的需要。例如,用電阻率為1.6KΩ·cm(25°C)的原水可以獲得1.03MΩ·cm(25°C)的產出水。換言之,原水的總硬度為77mg/L時產出水的總硬度則為∽10mg/L.
4.反滲透法,目前它是一種應用最廣的脫鹽技術。反滲透膜雖在1977年 就有了,但其規模化生產和廣泛用於脫鹽卻是近幾年的事情。反滲透膜能去除無機鹽、有機物(分子量>500)、細菌、熱源、病毒、懸濁物(粒徑>0.1μm)等。產出水的電阻率能較原水的電阻率升高近10倍。
⑥ 水的純化,凈化有哪些方法
1.氕、氘、氚可以形成的H2組合有種
16O、17O、18O可以形成的O組合有3種
水分子是H2O
所以總的組和數為3×6=18
含量最大的是H2O(16)
有三種物理形態:氣態,液態,固態
水的密度比冰大。水分子的排列比較混亂,不像冰中的分子那樣,按一定的規律排列。分子在液態中的運動雖然比在冰中更自由,但分子與分子間的平均距離比在冰中更小,所以水的密度比冰的密度大。。
2.凈化是為了飲用,純話是為了工業和實驗用
3.1、稀清糖汁脫鈣(軟化)。
用離子交換樹脂中的鈉離子,置換稀清糖汁中的鈣離子,其置換反應為:Ca+++2NaR→2Na+++CaR2
(NaR代表陽離子交換樹脂)
再生反應為:2Na+++CaR2→Ca+++2NaR
再生時,先將不再與鈣離子起作用的樹脂,用清水反沖洗,除去機械污物和沉澱,並使大小粒子重新分層,然後用飽和食鹽溶液(Nacl)再生。再生反應為:2Na+Cl-+CaR2→2NaR+Ca++Cl-2
。
根據法國54家糖廠的統計,稀清糖汁脫鈣前後,鈣鹽含量平均由85毫克CaO/升,降低到25毫克CaO/升,有效地減少了蒸發罐加熱管積垢。
2、二號糖蜜脫鉀、鈉。
稀清糖汁脫鈣後,增加了清糖汁中的鈉離子量,如不除去,將增加廢蜜中的糖分損失;一些糖廠採用鎂離子交換樹脂進行二號糖蜜脫鉀、鈉處理。其置換反應如下:
MgR+2Na+(或K+)→Na2R(或K2R)+Mg++
由於鎂鹽成蜜系數低,因而減少了廢蜜中糖分損失。
據法國八家採用此法的糖廠統計,廢蜜平均純度由60降低到54,由此可多收回糖分0.5%對甜菜重量。
離子交換樹脂的再生,也是先用清水反沖洗,然後用氯化鎂(MgCl2)溶液再生。反應式如下:
Na2R+Mg++Cl-2→MgR+2Na+Cl-
法國糖廠所使用的鈉離子交換樹脂為荷蘭產IMACTI牌號;所使用的鎂離子交換樹脂為德國產Reichling牌號。據介紹,每個製糖期樹脂損耗不超過6%。(星
火)
參考資料:(星
火)
⑦ 水的純化,凈化有哪些方法
1.氕、氘、氚可以形成的H2組合有6種
16O、17O、18O可以形成的O組合有3種
水分子是H2O
所以總的組和數為3×=18
含量最大的是H2O(16)
有三種物理形態:氣態,液態,固態
水的密度比冰大。水分子的排列比較混亂,不像冰中的分子那樣,按一定的規律排列。分子在液態中的運動雖然比在冰中更自由,但分子與分子間的平均距離比在冰中更小,所以水的密度比冰的密度大。。
2.凈化是為了飲用,純話是為了工業和實驗用
3.1、稀清糖汁脫鈣(軟化)。
用離子交換樹脂中的鈉離子,置換稀清糖汁中的鈣離子,其置換反應為:Ca+++2NaR→2Na+++CaR2 (NaR代表陽離子交換樹脂)
再生反應為:2Na+++CaR2→Ca+++2NaR
再生時,先將不再與鈣離子起作用的樹脂,用清水反沖洗,除去機械污物和沉澱,並使大小粒子重新分層,然後用飽和食鹽溶液(Nacl)再生。再生反應為:2Na+Cl-+CaR2→2NaR+Ca++Cl-2 。
根據法國54家糖廠的統計,稀清糖汁脫鈣前後,鈣鹽含量平均由85毫克CaO/升,降低到25毫克CaO/升,有效地減少了蒸發罐加熱管積垢。
2、二號糖蜜脫鉀、鈉。
稀清糖汁脫鈣後,增加了清糖汁中的鈉離子量,如不除去,將增加廢蜜中的糖分損失;一些糖廠採用鎂離子交換樹脂進行二號糖蜜脫鉀、鈉處理。其置換反應如下:
MgR+2Na+(或K+)→Na2R(或K2R)+Mg++
由於鎂鹽成蜜系數低,因而減少了廢蜜中糖分損失。
據法國八家採用此法的糖廠統計,廢蜜平均純度由60降低到54,由此可多收回糖分0.5%對甜菜重量。
離子交換樹脂的再生,也是先用清水反沖洗,然後用氯化鎂(MgCl2)溶液再生。反應式如下:
Na2R+Mg++Cl-2→MgR+2Na+Cl-
法國糖廠所使用的鈉離子交換樹脂為荷蘭產IMACTI牌號;所使用的鎂離子交換樹脂為德國產Reichling牌號。據介紹,每個製糖期樹脂損耗不超過6%。(星 火)
參考資料:(星 火)
⑧ 純化水的制備方法有哪些
1.蒸餾法,按蒸餾器皿可分為玻璃、石英蒸餾器,金屬材質的有銅、不銹鋼和白金蒸餾器等.按蒸餾次數可分為一次、二次和多次蒸餾法.此外,為了去掉一些特出的雜質,還需採取一些特殊的措施.例如預先加入一些高錳酸鉀可除去易氧化物;加入少許磷酸可除去三價鐵;加入少許不揮發酸可製取無氨水等.蒸餾水可以滿足普通分析實驗室的用水要求.由於很難排除二氧化碳的溶入.所以水的電阻率是很低的,達不到MΩ級.不能滿足許多新技術的需要.
2.離子交換法,主要有兩種制備方式:
A.復床式,即按陽床—陰床—陽床—陰床—混合床的方式連接並生產去離子水;早期多採用這種方式,便於樹脂再生.
B.混床式(2-5級串聯不等),混床去離子的效果好.但再生不方便.
離子交換法可以獲得十幾MΩ的去離子水.但有機物無法去掉,TOC和COD值往往比原水還高.這是因為樹脂不好,或是樹脂的預處理不徹底,樹脂中所含的低聚物、單體、添加劑等沒有除盡,或樹脂不穩定,不斷地釋放出分解產物.這一切都將以TOC或COD指標的形式表現出來.例如,當自來水的COD值為2mg/L時,經過去離子處理得到的去離子水的COD值常在5-10mg/L之間.當然,在使用好樹脂時會得到好結果,否則就無法制備超純水了.
3.電滲析法,產生於1950年[4],由於其能耗低,常作為離子交換法的前處理步驟.它在外加直流電場作用下,利用陰陽離子交換膜分別選擇性的允許陰陽離子透過,使一部分離子透過離子交換膜遷移到另一部分水中去,從而使一部分水純化,另一部分水濃縮.這就是電滲析的原理.電滲析是常用的脫鹽技術之一.產出水的純度能滿足一寫工業用水的需要.例如,用電阻率為1.6KΩ·cm(25°C)的原水可以獲得1.03MΩ·cm(25°C)的產出水.換言之,原水的總硬度為77mg/L時產出水的總硬度則為∽10mg/L.
4.反滲透法,目前它是一種應用最廣的脫鹽技術.反滲透膜雖在1977年 就有了,但其規模化生產和廣泛用於脫鹽卻是近幾年的事情.反滲透膜能去除無機鹽、有機物(分子量>500)、細菌、熱源、病毒、懸濁物(粒徑>0.1μm)等.產出水的電阻率能較原水的電阻率升高近10倍.
⑨ 水處理混床怎麼再生(具體步驟及參數)
1 反洗分層:開混床再生泵進口門,啟動再生泵,再開混床再生泵出口門,混床反洗排水門和排空氣門,反洗進水門。待排空門有水流出後,關閉排空氣門。開始反洗流速宜小,待樹脂松動後,逐漸加大流速,直至全部床層都能松動,此時流速大致達到10m/h。陰樹脂膨脹率為70%以上,陽樹脂的膨脹率約為30%以上,這樣經10-15分鍾就可使陰、陽樹脂分層。(可以使用混床出水母管中的水經出水門來加大反洗分層流量。)
2 關閉混床反洗進水門,停止以後,若樹脂分層不完全,應按1的操作重新進行反洗分層。
3 放水;待陰陽樹脂完全分層後,開正洗排水門,將混床內的水放出,水放至離樹脂表面層表面約10cm處。
4 進再生液:開混床再生泵進口門,啟動混床再生泵運行,開再生泵出口門,酸鹼噴射器進水門,中間排水門,維持交換器內水位在樹脂表面10cm處,穩定2分鍾,再開酸鹼計量箱出口門。調整酸濃度在4-5%,鹼濃度在3-4%內。
5 置換;當酸鹼進完後,關酸鹼計量箱出口門,繼續用酸鹼噴射器保持原來水量進行置換,直至中間排水呈中性為止。關混床進酸鹼門,中間排水門、噴射器出口門,再生泵出口門。停運再生泵,關再生泵進口門。
6 陰陽樹脂的混合:混合前開中間排水門,將混床內的水放到樹脂層表面上100-150mm處,關閉中間排水門。開混床底部進氣門,母管出口門。從底部通入壓縮空氣,使樹脂攪勻。所用壓縮空氣壓力0.1-0.15MPa,時間約為5分鍾。通完壓縮空氣要快速排水以迫使樹脂迅速降落,避免樹脂在降落時重新分層。排水時開混床正洗排水門。
7 正洗:開中間水泵進口門,啟動中間水泵運行,開中間水泵出口門,陰床進水門及出水門,再開混床進水門及正洗排水門以10-20m/h的流速正洗。洗至出水合格方可作備用或投入運行。
再生時一定要陰、陽樹脂完全分開才能再生,其餘與陰陽床注意事項相同。
⑩ 制備純水的方法
方法很多的。
1.蒸餾法,按蒸餾器皿可分為玻璃、石英蒸餾器,金屬材質的有銅、不銹鋼和白金蒸餾器等.按蒸餾次數可分為一次、二次和多次蒸餾法.此外,為了去掉一些特出的雜質,還需採取一些特殊的措施.例如預先加入一些高錳酸鉀可除去易氧化物;加入少許磷酸可除去三價鐵;加入少許不揮發酸可製取無氨水等.蒸餾水可以滿足普通分析實驗室的用水要求.由於很難排除二氧化碳的溶入.所以水的電阻率是很低的,達不到MΩ級.不能滿足許多新技術的需要.
2.離子交換法,主要有兩種制備方式:
A.復床式,即按陽床—陰床—陽床—陰床—混合床的方式連接並生產去離子水;早期多採用這種方式,便於樹脂再生.
B.混床式(2-5級串聯不等),混床去離子的效果好.但再生不方便.
離子交換法可以獲得十幾MΩ的去離子水.但有機物無法去掉,TOC和COD值往往比原水還高.這是因為樹脂不好,或是樹脂的預處理不徹底,樹脂中所含的低聚物、單體、添加劑等沒有除盡,或樹脂不穩定,不斷地釋放出分解產物.這一切都將以TOC或COD指標的形式表現出來.例如,當自來水的COD值為2mg/L時,經過去離子處理得到的去離子水的COD值常在5-10mg/L之間.當然,在使用好樹脂時會得到好結果,否則就無法制備超純水了.
3.電滲析法,產生於1950年,由於其能耗低,常作為離子交換法的前處理步驟.它在外加直流電場作用下,利用陰陽離子交換膜分別選擇性的允許陰陽離子透過,使一部分離子透過離子交換膜遷移到另一部分水中去,從而使一部分水純化,另一部分水濃縮.這就是電滲析的原理.電滲析是常用的脫鹽技術之一.產出水的純度能滿足一寫工業用水的需要.例如,用電阻率為1.6KΩ·cm(25°C)的原水可以獲得1.03MΩ·cm(25°C)的產出水.換言之,原水的總硬度為77mg/L時產出水的總硬度則為∽10mg/L.
4.反滲透法,目前它是一種應用最廣的脫鹽技術.反滲透膜雖在1977年 就有了,但其規模化生產和廣泛用於脫鹽卻是近幾年的事情.反滲透膜能去除無機鹽、有機物(分子量>500)、細菌、熱源、病毒、懸濁物(粒徑>0.1μm)等.產出水的電阻率能較原水的電阻率升高近10倍.