㈠ 化工原理 填料吸收塔設計任務書
這不是課程設計和機械設計么,去年做的,基本上就是按模板抄寫的,建議你找上一屆的要一份模板,自己寫累還不說,寫出來不規范.另外根據學校不同,設計要求(任務書)可能也不同,我是大連理工的,不知道你是哪個學校的,我做的是乙烯塔的設計
㈡ 【題目】某金剛砂生產間凈化系統中的吸收塔設計
❤爺~
建議請看《大氣污染控制工程》吸收部分
如果不懂
請看《環境工程原理》、《化工原理》
還不懂的話~~~
請看《物理化學》、《無機化學》、《有機化學》
有關繪圖 請參考《工程制圖》
㈢ 求化工原理課程設計-SO2填料吸收塔任務書
一、設計題抄目:水吸收氨襲過程填料吸收塔設計
二、設計條件:
1、氣體混合物成分:空氣和氨;
2、氨的含量:5.65%、4.5%(體積);
3、混合氣體流量:3000m3/h、4000m3/h;
4、操作溫度:293K;
5、混合氣體壓力:101.3KPa;
6、回收率:99.5%。
三、設計內容:
1、確定吸收流程;
2、物料衡算,確定塔頂、塔底的氣液流量和組成;
3、選擇填料、計算塔徑、填料層高度、填料的分層、塔高的確定。
4、流體力學特性的校核:液氣速度的求取,噴淋密度的校核,填料層壓降△P的計算。
5、附屬裝置的選擇與確定:液體噴淋裝置、液體再分布器、氣體進出口及液體進出口裝置、柵板。
四、設計要求:
1、設計說明書內容包括:
⑴、目錄和設計任務書;
⑵、流程圖及流程說明;
⑶、計算(根據計算需要,作出必要的草圖,計算中所採用的數據和經驗公式應註明其來源);
⑷、設計計算結果表;
⑸、對設計成果的評價及討論;⑹、參考文獻。
2、設計圖紙:繪制一張填料塔裝置圖
㈣ 用純水吸收混合氣體的氨氣,氨氣含量為2mol%,吸收塔理論板數為5,若吸收因數A為1,求氨氣的回收率;
第一次1.570 0.340
第二次3.140 0.680
可知:第一次NaOH過量,NH4+完全生成了NH3,NH3為0.34/17=0.02mol,所以銨鹽中的NH4+共為0.02mol。開始計算:設(NH4)2SO3為xmol,則NH4HSO3為0.02-2x mol,由1.57g
可列 116×x﹢99×﹙0.02-2x﹚=1.57 解得x=0.005mol
即(NH4)2SO3為0.005mol,NH4HSO3為0.01mol,物質的量之比為1 :2
第二次3.140 0.680
第三次4.710 0.510
可知:第三次時NaOH一定完全反應了,這時4.71g中(NH4)2SO3為0.015mol,NH4HSO3為0.03mol,HSO3- + OH-==H2O + SO32-
1 1
0.03mol 0.03mol
又生成0.51gNH3為0.03mol,NH4+ + OH-==NH3 + H2O
1 1
0.03mol 0.03mol
則NaOH共0.03+0.03=0.06mol,x=0.06/0.05=1.2mol/L
㈤ 用aspen plus 如何模擬吸收塔塔高
用RADFRAC模塊,先在setup里把冷凝器和再沸器都選擇為none。再在convergence里找到advanced選項,里邊有一個absorber選項選擇為YES(默認為no)。設置完其他後在pack sizing里新建一個pack項,在出來的specification里有packed height可以規定填料高度,選擇section packed height就可以模擬實際塔高了。之前需要樓主對全塔分好段
㈥ SO2氣體填料吸收塔的設計
這是我以前設計的一個,由於在上班沒時間重新設計,所以你先看看這個,看能不能得到些許啟發。(希望採納)
一、設計題目:水吸收氨過程填料吸收塔設計
二、設計條件:
1、氣體混合物成分:空氣和氨;
2、氨的含量:5.65%、4.5%(體積);
3、混合氣體流量:3000m3/h、4000m3/h;
4、操作溫度:293K;
5、混合氣體壓力:101.3KPa;
6、回收率:99.5%。
三、設計內容:
1、確定吸收流程;
2、物料衡算,確定塔頂、塔底的氣液流量和組成;
3、選擇填料、計算塔徑、填料層高度、填料的分層、塔高的確定。
4、流體力學特性的校核:液氣速度的求取,噴淋密度的校核,填料層壓降△P的計算。
5、附屬裝置的選擇與確定:液體噴淋裝置、液體再分布器、氣體進出口及液體進出口裝置、柵板。
四、設計要求:
1、設計說明書內容包括:
⑴、目錄和設計任務書;
⑵、流程圖及流程說明;
⑶、計算(根據計算需要,作出必要的草圖,計算中所採用的數據和經驗公式應註明其來源);
⑷、設計計算結果表;
⑸、對設計成果的評價及討論;⑹、參考文獻。
2、設計圖紙:繪制一張填料塔裝置圖
㈦ 設計填料吸收塔吸收尾氣中的氨氣
一設計方案的確定
用水吸收S02屬中等溶解度的吸收過程,為提高傳質效率,選用逆流吸收流程。因用水作為吸收劑,且S02不作為產品,故採用純溶劑。
二填料的選擇
對於水吸收S02的過程、操作、溫度及操作壓力較低,工業上通常選用所了散裝填料。在所了散裝填料中,塑料階梯環填料的綜合性能較好,故此選用DN38聚丙稀階梯環填料。
三基礎物性數據
⒈液相物性數據
對於水吸收S02的過程,溶液的物性數據可近似取純水的物性數據。
由手冊查得20℃時水的有關物性數據如下:
密度ρ水=998.2kg/m3
粘度μ水=3.6kg/(m•h)
S02在水中的擴散系數為D=1.47×10-5cm2/s=5.29×1016m2/h
⒉氣相物性數據
混合氣體的平均摩爾質量為
M=∑yimi=0.08×64.06+0.9229=31.8048
混合氣體的平均密度為
ρ氣=PM/RT=101.3×31.80/(8.314×293.15)=1.322kg/ m2
混合氣體的粘度可近似取為空氣的粘度,查手冊得20℃空氣的粘度為
μ=1.81×10-5Pa•s=0.065 kg/(m•h)
查得S02在空氣中的擴散系數為
D=0.108cm/s=0.039m2/h
⒊氣液相平衡數據
由手冊查得,常壓下20℃時S02在水中的亨利系數為
E=3.55×103kpa
相平衡常數為
m=E/P=3.55×103/101.3=35.04
溶解度系數為
1/H=ρ水/EM水=998.2/3.55×103×18.02=0.0156kmol/(kpa•m3)
四物料衡算
進塔氣相摩爾比為
Y1=y1/(1?y1)=0.08/(1?0.08)=0.0870
Y2= Y1/(1?φA)=0.0870×(1?0.95)=0.0435
進塔惰性氣相流量
V=600/22.4×273/293(1?0.05)=23.71 kmol/h
該吸收過程屬低濃度吸收,平衡關系為直線,最小液氣比可按下式計算
(L/V)min= (Y1?Y2)/( Y1/m?x2)
對於純溶劑吸收過程,進塔液相組成為x2=0
(L/V)min=(0.087?0.00435)/(0.087/35.04?0)=33.29
取操作液氣比為
L/V=1.5(L/V)min=1.5×33.29=49.94
L=49.94×23.71=1183.89kmol/h
V (Y1?Y2)=L (x1?x2)
x1=23.71×(0.087?0.00435)/1183.89=0.0017
㈧ 氨氮吸收塔 氨氮脫氮塔 是什麼原理 我們廠是制葯廠 就是車間的廢液要進行脫氮處理後再去廢水站處理
廢水中的氮常以合氮有機物、氨、硝酸鹽及亞硝酸鹽等形式存在。生物處理把大多數有機氮轉化為氨,然後可進一步轉化為硝酸鹽。目前採用的除氮工藝有生物硝化與反硝化、沸石選擇性交換吸附、空氣吹脫及折點氯化等四種。
廢水中的氮常以合氮有機物、氨、硝酸鹽及亞硝酸鹽等形式存在。生物處理把大多數有機氮轉化為氨,然後可進一步轉化為硝酸鹽。目前採用的除氮工藝有生物硝化與反硝化、沸石選擇性交換吸附、空氣吹脫及折點氯化等四種。
一、生物硝化與反硝化(生物陳氮法)
(一) 生物硝化
在好氧條件下,通過亞硝酸鹽菌和硝酸鹽菌的作用,將氨氮氧化成亞硝酸鹽氮和硝酸鹽氮的過程,稱為生物硝化作用。生物硝化的反應過程為:
由上式可知:(1)在硝化過程中,1g氨氮轉化為硝酸鹽氮時需氧4.57g;(2)硝化過程中釋放出H+,將消耗廢水中的鹼度,每氧化lg氨氮,將消耗鹼度(以CaCO3計) 7.lg。
影響硝化過程的主要因素有:(1)pH值 當pH值為8.0~8.4時(20℃),硝化作用速度最快。由於硝化過程中pH將下降,當廢水鹼度不足時,即需投加石灰,維持pH值在7.5以上;(2)溫度 溫度高時,硝化速度快。亞硝酸鹽菌的最適宜水溫為35℃,在15℃以下其活性急劇降低,故水溫以不低於15℃為宜;(3)污泥停留時間 硝化菌的增殖速度很小,其最大比生長速率為 =0.3~0.5d-1(溫度20℃,pH8.0~8.4)。為了維持池內一定量的硝化菌群,污泥停留時間 必須大於硝化菌的最小世代時間 。在實際運行中,一般應取 >2 ,或 >2 ;(4)溶解氧 氧是生物硝化作用中的電子受體,其濃度太低將不利於硝化反應的進行。一般,在活性污泥法曝氣池中進行硝化,溶解氧應保持在2~3mg/L以上;(5)BOD負荷 硝化菌是一類自養型菌,而BOD氧化菌是異養型菌。若BOD5負荷過高,會使生長速率較高的異養型菌迅速繁殖,從而佼白養型的硝化菌得不到優勢,結果降低了硝化速率。所以為要充分進行硝化,BOD5負荷應維持在0.3kg(BOD5)/kg(SS).d以下。
(二) 生物反硝化
在缺氧條件下,由於兼性脫氮菌(反硝化菌)的作用,將NO2--N和NO3--N還原成N2的過程,稱為反硝化。反硝化過程中的電子供體(氫供體)是各種各樣的有機底物(碳源)。以甲醇作碳源為例,其反應式為:
6NO3-十2CH3OH→6NO2-十2CO2十4H2O
6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-
由上可見,在生物反硝化過程中,不僅可使NO3--N、NO2--N被還原,而且還可位有機物氧化分解。
影響反硝化的主要因素:(1)溫度 溫度對反硝化的影響比對其它廢水生物處理過程要大些。一般,以維持20~40℃為宜。苦在氣溫過低的冬季,可採取增加污泥停留時間、降低負荷等措施,以保持良好的反硝化效果;(2)pH值 反硝化過程的pH值控制在7.0~8.0;(3)溶解氧 氧對反硝化脫氮有抑製作用。一般在反硝化反應器內溶解氧應控制在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);(4)有機碳源 當廢水中含足夠的有機碳源,BOD5/TN>(3~5)時,可無需外加碳源。當廢水所含的碳、氮比低於這個比值時,就需另外投加有機碳。外加有機碳多採用甲醇。考慮到甲醇對溶解氧的額外消耗,甲醇投量一般為NO3--N的3倍。此外,還可利用微生物死亡;自溶後釋放出來的那部分有機碳,即"內碳源",但這要求污泥停留時間長或負荷率低,使微生物處於生長曲線的靜止期或衰亡期,因此池容相應增大。
二、沸石選擇性交換吸附
沸石是一種硅鋁酸鹽,其化學組成可表示為(M2+,2M+)O.Al2O3.mSiO2·nH2O (m=2~10,n=0~9),式中M2+代表Ca2+、Sr2+等二價陽離子,M+代表Na+、K+等一價陽離子,為一種弱酸型陽離子交換劑。在沸石的三維空間結構中,具有規則的孔道結構和空穴,使其具有篩分效應,交換吸附選擇性、熱穩定性及形穩定性等優良性能。天然沸石的種類很多,用於去除氨氮的主要為斜發沸石。
斜發沸石對某些陽離子的交換選擇性次序為:K+,NH4+>Na+>Ba2+>Ca2+>Mg2+。利用斜發沸石對NH4+的強選擇性,可採用交換吸附工藝去除水中氨氮。交換吸附飽和的拂石經再生可重復利用。
溶液pH值對沸石除氨影響很大。當pH過高,NH4+向NH3轉化,交換吸附作用減弱;當pH過低,H+的競爭吸附作用增強,不利於NH4+的去除。通常,進水pH值以6~8為災。當處理合氨氮10~20mg/L的城市嚴水時,出水濃度可達lmg/L以下。穿透時通水容積約100~150床容。沸石的工作交換容量約0.4×10-3n-1mol/g左右。
吸附銨達到飽和的沸石可用5g/L的石灰乳或飽和石灰水再生。再生液用量約為處理水量的3~5%。研究表明,石灰再生液中加入0.1mol的NaCl,可提高再生效率。針對石灰再生的結垢問題,亦有採用2%的氯化鈉溶液作再生液的,此時再生液用量較大。再生時排出的高濃度合氨廢液必須進行處理,其處理方法有:(1)空氣吹脫 吹脫的NH3或者排空,或者由量H2S04吸收作肥料;(2)蒸氣吹脫 冷凝液為1%的氨溶液,可用作肥料;(3)電解氧化(電氯化) 將氨氧化分解為N2。
三、空氣吹脫
在鹼性條件下(pH>10.5),廢水中的氨氮主要以NH3的形式存在(圖20-2)。讓廢水與空氣充分接觸,則水中揮發性的NH3將由液相向氣相轉移,從而脫除水中的氨氮。吹脫塔內裝填木質或塑料板條填料,空氣流由塔的下部進入,而廢水則由塔頂落至塔底集水池。
影響氨吹脫效果的主要因素有:
(1)pH值 一般將pH值提高至10.8~11.5;
(2)溫度 水溫降低時氨的溶解度增加,吹脫效率降低。例如,20℃時氨去除率為90~95%,而10℃時降至約75%,這為吹脫塔在冬季運行帶來困難;
(3)水力負荷 水力負荷(m3/m2.h)過大,將破壞高效吹脫所需的水流狀態,而形成水幕;水力負荷過小,填料可能沒有適當濕潤,致使運行不良,形成干塔。一般水力負荷為2.5~5m3/m2.h;
(4)氣水比 對於一定塔高,增加空氣流量,可提高氨去除率;但隨著空氣流量增加,壓降也增加,所以空氣流量有一限值。一般,氣/水比可取2500~5000(m3/m2);
(5)填料構型與高度 由於反復濺水和形成水滴是氨吹脫的關鍵,因此填料的形狀、尺寸、間距、排列方式夠都對吹脫效果有影響。一般,填料間距40~50mm,填料高度為6~7.5m。若增加填料間距,則需更大的填料高度;
(6)結垢控制 填料結垢(CaCO3)特降低吹脫塔的處理效率。控制結垢的措施有:用高壓水沖洗垢層;在進水中投加阻垢劑:採用不合或少含CO2的空氣吹脫(如尾氣吸收除氨循環使用);採用不易結垢的塑料填料代替木材等。
空氣吹脫法除氨,去除率可達60~95%,流程簡單,處理效果穩定,基建費和運行費較低,可處理高濃度合氨廢水。但氣溫低時吹脫效率低,填科結垢往往嚴重干擾運行,且吹脫出的氨對環境產生二次污染。
四、折點氯化
投加過量氯或次氯酸鈉(超過"折點",參見第十四章),使廢水中氨完全氧化為N2的方法,稱為折點氯化法,其反應可表示為:
NH4+十1.5HOCl→0.5N2十1.5H2O十2.5H+十1.5Cl-
由反應式可知,到達折點的理論需氯(C12)量為7.6kg/kg(NH3-N),而實際需氯量在8~10kg/kg(NH3-N)。在pH=6~7進行反應,則投葯量可最小。接觸時間一般為0.5~2h。嚴格控制pH值和投氯量,可減少反應中生成有害的氯胺(如NCl3)和氯代有機物。
折點氯化法對氨氮的去除率達90~100%,處理效果穩定,不受水溫影響,基建費用也不高。但其運行費用高;殘余氯及氯代有機物須進行後處理。
在目前採用的四種脫氮工藝中,物理化學法由於存在運行成本高、對環境造成二次污染等問題,實際應用受到-定限制。而生物脫氮法能餃為有效和徹底地除氮,且比較經濟,因而得到較多應用。