導航:首頁 > 凈水問答 > 離子交換層析去多糖

離子交換層析去多糖

發布時間:2021-01-30 23:45:01

離子交換層析可用於哪些種類蛋白質的分離

離子交換層析是利用蛋白質在不同PH帶不同種電荷的方法,利用離子交換的方法分離專蛋白的。
離子交換屬內的介質一般是樹脂,陽離子交換型的,使用前樹脂先用鹼處理成鈉型,將氨基酸混合液(pH=2-3)上柱,pH=2-3時,氨基酸主要以陽離子形式存在,與樹脂上的鈉離子發生交換而被「掛」在樹脂上,再用洗脫劑洗脫。不同的氨基酸(帶的電荷不同)與樹脂的親和力不同,要將其分離洗脫下來,需要降低它們之間的親和力,方法是逐步提高洗脫劑的pH和鹽濃度,這樣各種氨基酸將以不同的速度被洗脫下來,反之亦然。

不同反荷離子與樹脂親和力是不同的,其強弱關系為陽性競爭離子:Ag+〉CS+〉K+〉NH4+〉Na+〉H+〉Li+ 陰性競爭離子:I->NO3->(PO4)3->CN-〉HSO3-〉Mg2+〉HCO3-〉HCOO-〉CH3COO-〉OH-〉F- 如果某種離子溶液洗脫效果不好,可用另一種親和力強的離子代替之,等電點>7選擇陽離子交換樹脂,等電點<7選擇陰離子交換樹脂。

❷ 提取植物蛋白時如何除去多糖

1. 過碘酸鈉氧化, 再HYDROZIDE共價層析, 氧化的糖成醛,能與疊氮胺成共價鍵. 簡單實用
2. 過BORONIC ACID親和層析回. BORONIC ACID能與多糖形成共價鍵. 適用於多答糖是5環結構(如果糖).
3. 離子交換層析. 廉價,實用.
4. 疏水層析. 回收率低
5. 試試不同的多糖親和層析. 如麥芽糖親和層析就很普遍

上面的層析材料SIGMA都有

❸ 離子交換層析中流出物質順序是什麼

若用離子交換層析分離物質,以蛋白質為例,離子交換層析中,基質是由帶有電荷的樹脂或纖維素組成。帶有正電荷的稱之陰離子交換樹脂;而帶有負電荷的稱之陽離子樹脂。離子交換層析同樣可以用於蛋白質的分離純化。

由於蛋白質也有等電點,當蛋白質處於不同的pH條件下,其帶電狀況也不同。陰離子交換基質結合帶有負電荷的蛋白質,所以這類蛋白質被留在柱子上,然後通過提高洗脫液中的鹽濃度等措施,將吸附在柱子上的蛋白質洗脫下來。結合較弱的蛋白質首先被洗脫下來。

反之陽離子交換基質結合帶有正電荷的蛋白質,結合的蛋白可以通過逐步增加洗脫液中的鹽濃度或是提高洗脫液的pH值洗脫下來。

(3)離子交換層析去多糖擴展閱讀:

對於離子交換纖維素要用流水洗去少量碎的不易沉澱的顆粒,以保證有較好的均勻度,對於已溶脹好的產品則不必經這一步驟。

溶脹的交換劑使用前要用稀酸或稀鹼處理,使之成為帶H+或OH-的交換劑型。陰離子交換劑常用「鹼-酸-鹼」處理,使最終轉為-OH-型或鹽型交換劑;對於陽離子交換劑則用「酸-鹼-酸」處理,使最終轉為-H-型交換劑。

梯度不要上升太快,要恰好使移動的區帶在快到柱末端時達到解吸狀態。目的物的過早解吸,會引起區帶擴散;而目的物的過晚解吸會使峰形過寬。

❹ 柱層析分離純化多糖

在使用部分收集器時,每個梯度應洗至苯酚-硫酸法基本無多糖檢出為止

❺ 多糖的純化方法與哪些

ctab即十六烷基三甲基溴化銨,是一種陽離子去污劑,具有從低離子強度的溶液中沉澱核酸和酸性多聚糖的特性,在這種條件下,蛋白質和中性多聚糖仍留在溶液里,在高離子強度的溶液里,ctab與蛋白質和大多數酸性多聚糖以外的多聚糖形成復合物,只是不能沉澱核酸。因此,ctab可以用於從大量產生粘多糖的有機體如植物以及某些革蘭氏陰性菌(包括e.coli的某些株)中制備純化dna
去垢劑(表面活性劑)是一類即具有親水基又具有疏水基的物質,一般具有乳化、分散、和增溶作用,可分陰離子、陽離子和中性去垢劑等多種類型,中性去垢劑在蛋白提取鍾應用的較多。
a.中性去垢劑
又稱非離子表面活性劑,對蛋白質的變性作用影響較少,宜於蛋白質或酶提取之用。一般市售中性去垢劑有聚乙二醇類,如peg200;多元醇類表面活性劑,如山梨醇、司盤類和吐溫類;聚氧乙烯脂肪醇醚,如苄澤類、平平加類;聚氧乙烯烷基苯酚醚,如igepal
co、乳化劑op、triton、pluronic(用作消泡劑、潤濕劑、增溶劑)、泡敵。中性去垢劑作用後可通過sephadex
lh-50柱除去;也可直接上deae-sephadex柱層析分離目的蛋白,不必先除去去垢劑。
b.陰離子去垢劑
常見的有十二烷基硫酸鈉和十二烷基璜酸鈉。前者可促進核蛋白的溶解,將核酸釋放出來,並對核酸酶有一定抑製作用,常用於核酸的提取。
c.陽離子去垢劑
如潔爾滅、新潔爾滅、ctab、cpc、zeph、克菌定、消毒凈(tmpb)、杜滅芬等,消毒滅菌類居多。
d.天然表面活性劑
又稱為生物表面活性劑,包括種類較為廣泛,如各種樹膠(阿拉伯膠、杏膠、桃膠、果膠)、明膠、皂甙、卵磷脂、豆磷脂、瓊脂、海藻酸鈉、酪蛋白、膽甾醇、膽酸類、多糖類(如環糊精)等。
e.兩性表面活性劑
在鹼性水溶液中呈陰離子表面活性劑的性質,起泡性好,去污力也強;在酸性溶液中則呈現陽離子表面活性劑特徵,其殺菌性很強。
蛋白質變性劑的作用是破壞蛋白質的次級鍵,如氫鍵、鹽鍵和疏水力,引起天然構象的解體;它們並不破壞共價鍵,如肽鍵和二硫鍵,故不涉及一級結構的改變。變性劑有溶解型和沉澱型兩類,sds、尿素和胍鹽是有效的溶解型變性劑,而三氯乙酸、甲醇、和氯仿/異戊醇是有效的沉澱變性劑。一般而言,變性劑應用時常大大過量,破壞氫鍵的變性劑用量至少兩倍於氨基酸的克分子數,如1克蛋白質可可結合1.4g。
sds溶於水可達25%,對溫度敏感,w/v貯存液最為方便。需要注意的是sds的鉀鹽是不溶性的,所以sds溶液中要避免混入鉀鹽。
尿素極易溶於水,可達10mol/l,在8mol/l以上要注意溫度以防止沉澱。尿素在水中緩慢分解形成氨及高度活性的氰酸離子,故要防止高溫。
三氯乙酸與過氯酸(tca,pca)都是極好的沉澱劑,能沉澱蛋白質和核酸,前者應用更為廣泛。

❻ 多糖類的提取方法

一、提取與純化動植物中存在的多糖或微生物胞內多糖,因其細胞或組織外大多有脂質包圍,要使多糖釋放出來,第一步就是去除表面脂質,常用醇或醚迴流脫脂。第二步將脫脂後的殘渣以水為主體的溶液提取取多糖 (即冷水,熱水,熱或冷的0.1-1.0mol/L NaOH,熱或冷的1%醋酸或1%苯酚等),這樣提取得到的多糖提取液含有許多雜質,主要是無機鹽,低分子量的有機物質及高分子量的蛋白質、木質素等。第三步則要除去這些雜質,對於無機鹽及低分子量的有機物質可用透析法、離子交換樹脂或凝膠過濾法除去;對於大分子雜質可用酶消化 (如蛋白酶.木質素酶) ,乙醇或丙酮等溶劑沉澱法或金屬絡合物法。多糖提取液中除去蛋白質是一個很重要的步驟,常用的方法有Sevag法、三氟三氯乙烷法、三氯乙酸法,後者較為劇烈,對於含呋喃糖殘基的多糖由於連接鍵不穩定,所以不宜使用。但該法效率較高,操作簡便,植物來源的多糖常採用該法。上述三種方法均不適合於糖肽,因為糖肽也會像蛋白質那樣沉澱出來。除去蛋白質後,應再透析一次,選用不同規格的超濾膜和透析袋進行超濾和透析,可以將不同分子大小的多糖進行分離和純化,該法在除去小分子物質十分實用,同時能滿足大生產的需要。具有廣闊的應用前景。至此,得到的提取液基本上是沒有蛋白質與小分子雜質的多糖混合物。一般來講,通過上述方法所得到的是多糖的混合物,如果要得到單一的多糖,還必須對該混合物進行純化。柱層析在多糖的純化較為常用,常分為兩類:一是只有分子篩作用的凝膠柱層析, 它根據多糖分子的大小和形狀不同而達到分離目的,常用的凝膠有葡聚糖凝膠及瓊脂糖凝膠,以及性能更佳的Sephacryl等。洗脫劑為各種濃度的鹽溶液及緩沖液,其離子強度不應低於0.02mol/L。二是離子交換層析,它不僅根據分子量的不同,同時也具有分子篩的作用,常用的交換劑有DEAE-纖維素、DEAE-葡聚糖和 DEAE-瓊脂糖等,此法適合於分離各種酸性,中性多糖和粘多糖。多糖的純化還可用其他方法,如制備性高效液相層析、制備性區帶電泳,親和層析等,這些方法有時對制備一些小量純品供分析用是很有用處的。

❼ 離子交換層析與疏水層析有何區別

離子交換層析是利用蛋白質在不同PH帶不同種電荷的方法,利用離子交換的方法分離蛋白的。離子交換內的介質一般是樹脂,陽離子交換型的,使用前樹脂先用鹼處理成鈉型,將氨基酸混合液(pH=2-3)上柱,pH=2-3時,氨基酸主要以陽離子形式存在,與樹脂上的鈉離子發生交換而被「掛」在樹脂上,再用洗脫劑洗脫。不同的氨基酸(帶的電荷不同)與樹脂的親和力不同,要將其分離洗脫下來,需要降低它們之間的親和力,方法是逐步提高洗脫劑的pH和鹽濃度,這樣各種氨基酸將以不同的速度被洗脫下來,反之亦然。不同反荷離子與樹脂親和力是不同的,其強弱關系為陽性競爭離子:Ag+〉CS+〉K+〉NH4+〉Na+〉H+〉Li+陰性競爭離子:I->NO3->(PO4)3->CN-〉HSO3-〉Mg2+〉HCO3-〉HCOO-〉CH3COO-〉OH-〉F-如果某種離子溶液洗脫效果不好,可用另一種親和力強的離子代替之,等電點>7選擇陽離子交換樹脂,等電點<7選擇陰離子交換樹脂。

❽ 求一種多糖的分離和葯物活性

2.1 概述
 在自然科學,尤其是生命科學高度發展的今天,蛋白質、酶和核酸等生物大分子的結構與功能的研究是探求生命奧秘的中心課題,而生物大分子結構與功能的研究,必須首先解決生物大分子的制備問題,有能夠達到足夠純度的生物大分子的制備工作為前題,結構與功能的研究就無從談起。然而生物大分子的分離純化與制備是一件十分細致而困難的工作。

 與化學產品的分離制備相比較,生物大分子的制備有以下主要特點:
 ⑴生物材料的組成極其復雜,常常包含有數百種乃至幾千種化合物。
 ⑵許多生物大分子在生物材料中的含量極微,分離純化的步驟繁多,流程長。
 ⑶許多生物大分子一旦離開了生物體內的環境時就極易失活,因此分離過程中如何防止其失活,就是生物大分子提取制備最困難之處。
 ⑷生物大分子的制備幾乎都是在溶液中進行的,溫度、pH值、離子強度等各種參數對溶液中各種組成的綜合影響,很難准確估計和判斷。

 生物大分子的制備通常可按以下步驟進行:
 ①確定要制備的生物大分子的目的和要求,是進行科研、開發還是要發現新的物質。
 ②建立相應的可靠的分析測定方法,這是制備生物大分子的關鍵。
 ③通過文獻調研和預備性實驗,掌握生物大分子目的產物的物理化學性質。
 ④生物材料的破碎和預處理。
 ⑤分離純化方案的選擇和探索,這是最困難的過程。
 ⑥生物大分子制備物的均一性(即純度)的鑒定,要求達到一維電泳一條帶,二維電泳一個點,或HPLC和毛細管電泳都是一個峰。
 ⑦產物的濃縮,乾燥和保存。


 分析測定的方法主要有兩類:
 即生物學和物理、化學的測定方法。
 生物學的測定法主要有:酶的各種測活方法、蛋白質含量的各種測定法、免疫化學方法、放射性同位素示蹤法等;
 物理、化學方法主要有:比色法、氣相色譜和液相色譜法、光譜法(紫外/可見、紅外和熒光等分光光度法)、電泳法、以及核磁共振等。
 實際操作中盡可能多用儀器分析方法,以使分析測定更加快速、簡便。

要了解的生物大分子的物理、化學性質主要有:
 ①在水和各種有機溶劑中的溶解性。
 ②在不同溫度、pH 值和各種緩沖液中生物大分子的穩定性。
 ③固態時對溫度、含水量和凍干時的穩定性。
 ④各種物理性質:如分子的大小、穿膜的能力、帶電的情況、在電場中的行為、離心沉降的表現、在各種凝膠、樹脂等填料中的分配系數。
 ⑤其他化學性質:如對各種蛋白酶、水解酶的穩定性和對各種化學試劑的穩定性。
 ⑥對其他生物分子的特殊親和力。

 制備生物大分子的分離純化方法多種多樣,主要是利用它們之間特異性的差異,如分子的大小、形狀、酸鹼性、溶解性、溶解度、極性、電荷和與其他分子的親和性等。
 各種方法的基本原理可以歸納為兩個方面:
 ①利用混合物中幾個組分分配系數的差異,把它們分配到兩個或幾個相中,如鹽析、有機溶劑沉澱、層析和結晶等;
 ②將混合物置於某一物相(大多數是液相)中,通過物理力場的作用,使各組分分配於不同的區域,從而達到分離的目的,如電泳、離心、超濾等。
 目前純化蛋白質等生物大分子的關鍵技術是電泳、層析和高速與超速離心。

 2.2 生物大分子制備的前處理
 2.2.1 生物材料的選擇
 制備生物大分子,首先要選擇適當的生物材料。材料的來源無非是動物、植物和微生物及其代謝產物。
 選擇的材料應含量高、來源豐富、制備工藝簡單、成本低,盡可能保持新鮮,盡快加工處理。
 動物組織要先除去結締組織、脂肪等非活性部分,絞碎後在適當的溶劑中提取,如果所要求的成分在細胞內,則要先破碎細胞。
 植物要先去殼、除脂。
 微生物材料要及時將菌體與發酵液分開。
 生物材料如暫不提取,應冰凍保存。動物材料則需深度冷凍保存。

 2.2.2 細胞的破碎
 不同的生物體或同一生物體的不同部位的組織,其細胞破碎的難易不一,使用的方法也不相同,如動物臟器的細胞膜較脆弱,容易破碎,植物和微生物由於具有較堅固的纖維素、半纖維素組成的細胞壁,要採取專門的細胞破碎方法。
 (1)機械法:
 1) 研磨:將剪碎的動物組織置於研缽或勻漿器中,加入少量石英砂研磨或勻漿。
 2) 組織搗碎器:這是一種較劇烈的破碎細胞的方法,通常可先用家用食品加工機將組織打碎,然後再用10000r/min~20000r/min的內刀式組織搗碎機(即高速分散器)將組織的細胞打碎。

 (2)物理法:
 1) 反復凍融法:將待破碎的細胞冷至-15℃到-20℃,然後放於室溫(或40℃)迅速融化,如此反復凍融多次,由於細胞內形成冰粒使剩餘胞液的鹽濃度增高而引起細胞溶脹破碎。
 2) 超聲波處理法:此法是藉助超聲波的振動力破碎細胞壁和細胞器。破碎微生物細菌和酵母菌時,時間要長一些。
 3) 壓榨法:這是一種溫和的、徹底破碎細胞的方法。在1000×105Pa~2000×105Pa 的高壓下使細胞懸液通過一個小孔突然釋放至常壓,細胞將徹底破碎。
 4) 冷熱交替法:從細菌或病毒中提取蛋白質和核酸時可用此法。在90℃左右維持數分鍾,立即放入冰浴中使之冷卻,如此反復多次,絕大部分細胞可以被破碎。

 (3)化學與生物化學方法:
 1) 自溶法:將新鮮的生物材料存放於一定的pH和適當的溫度下,細胞結構在自身所具有的各種水解酶(如蛋白酶和酯酶等)的作用下發生溶解,使細胞內含物釋放出來。
 2) 溶脹法:細胞膜為天然的半透膜,在低滲溶液和低濃度的稀鹽溶液中,由於存在滲透壓差,溶劑分子大量進入細胞,將細胞膜脹破釋放出細胞內含物。
 3) 酶解法:利用各種水解酶,如溶菌酶、纖維素酶、蝸牛酶和酯酶等,於37℃,pH8,處理15分鍾,可以專一性地將細胞壁分解。
 4) 有機溶劑處理法:利用氯仿、甲苯、丙酮等脂溶性溶劑或SDS(十二烷基硫酸鈉)等表面活性劑處理細胞,可將細胞膜溶解,從而使細胞破裂,此法也可以與研磨法聯合使用。


 2.2.3 生物大分子的提取
 「提取」是在分離純化之前將經過預處理或破碎的細胞置於溶劑中,使被分離的生物大分子充分地釋放到溶劑中,並盡可能保持原來的天然狀態不丟失生物活性的過程。
 影響提取的因素主要有:
 目的產物在提取的溶劑中溶解度的大小;
 由固相擴散到液相的難易;
 溶劑的pH值和提取時間等。
 通常:
 極性物質易溶於極性溶劑,非極性物質易溶於非極性溶劑;
 鹼性物質易溶於酸性溶劑,酸性物質易溶於鹼性溶劑;
 溫度升高,溶解度加大;
 遠離等電點的pH值,溶解度增加。
 提取時所選擇的條件應有利於目的產物溶解度的增加和保持其生物活性。

 ⑴ 水溶液提取:
 蛋白質和酶的提取一般以水溶液為主。稀鹽溶液和緩沖液對蛋白質的穩定性好,溶解度大,是提取蛋白質和酶最常用的溶劑。用水溶液提取生物大分子應注意的幾個主要影響因素是:
 1) 鹽濃度(即離子強度):
 離子強度對生物大分子的溶解度有極大的影響,有些物質,如DNA-蛋白復合物,在高離子強度下溶解度增加。
 絕大多數蛋白質和酶,在低離子強度的溶液中都有較大的溶解度,如在純水中加入少量中性鹽,蛋白質的溶解度比在純水時大大增加,稱為「鹽溶」現象。鹽溶現象的產生主要是少量離子的活動,減少了偶極分子之間極性基團的靜電吸引力,增加了溶質和溶劑分子間相互作用力的結果。
 為了提高提取效率,有時需要降低或提高溶劑的極性。向水溶液中加入蔗糖或甘油可使其極性降低,增加離子強度(如加入KCl、NaCl、NH4Cl或(NH4)2SO4)可以增加溶液的極性。


 2) pH值:蛋白質、酶與核酸的溶解度和穩定性與pH值有關。過酸、過鹼均應盡量避免,一般控制在pH=6~8范圍內,提取溶劑的pH應在蛋白質和酶的穩定范圍內,通常選擇偏離等電點的兩側。
 3) 溫度:為防止變性和降解,制備具有活性的蛋白質和酶,提取時一般在0℃~5℃的低溫操作。
 4) 防止蛋白酶或核酸酶的降解作用:加入抑制劑或調節提取液的pH、離子強度或極性等方法使相應的水解酶失去活性,防止它們對欲提純的蛋白質、酶及核酸的降解作用。

 5) 攪拌與氧化:攪拌能促使被提取物的溶解,一般採用溫和攪拌為宜,速度太快容易產生大量泡沫,增大了與空氣的接觸面,會引起酶等物質的變性失活。因為一般蛋白質都含有相當數量的巰基,有些巰基常常是活性部位的必需基團,若提取液中有氧化劑或與空氣中的氧氣接觸過多都會使巰基氧化為分子內或分子間的二硫鍵,導致酶活性的喪失。在提取液中加入少量巰基乙醇或半胱氨酸以防止巰基氧化。

 ⑵ 有機溶劑提取
 一些和脂類結合比較牢固或分子中非極性側鏈較多的蛋白質和酶難溶於水、稀鹽、稀酸、或稀鹼中,常用不同比例的有機溶劑提取。
 常用的有機溶劑有乙醇、丙酮、異丙醇、正丁酮等,這些溶劑可以與水互溶或部分互溶,同時具有親水性和親脂性。
 有些蛋白質和酶既溶於稀酸、稀鹼,又能溶於含有一定比例的有機溶劑的水溶液中,在這種情況下,採用稀的有機溶液提取常常可以防止水解酶的破壞,並兼有除去雜質提高純化效果的作用。
例如,胰島素(見講義p36)。

 2.3 生物大分子的分離純化
 由於生物體的組成成分是如此復雜,數千種乃至上萬種生物分子又處於同一體系中,因此不可能有一個適合於各類分子的固定的分離程序,但多數分離工作關鍵部分的基本手段是相同的。
 為了避免盲目性,節省實驗探索時間,要認真參考和借鑒前人的經驗,少走彎路。常用的分離純化方法和技術有:
 沉澱法(包括:鹽析、有機溶劑沉澱、選擇性沉澱等)、離心、吸附層析、凝膠過濾層析、離子交換層析、親和層析、快速制備型液相色譜以及等電聚焦制備電泳等。本章以介紹沉澱法為主。

 2.3.1 沉澱法
 沉澱是溶液中的溶質由液相變成固相析出的過程。沉澱法(即溶解度法)操作簡便,成本低廉,不僅用於實驗室中,也用於某些生產目的的制備過程,是分離純化生物大分子,特別是制備蛋白質和酶時最常用的方法。通過沉澱,將目的生物大分子轉入固相沉澱或留在液相,而與雜質得到初步的分離。
 其基本原理是根據不同物質在溶劑中的溶解度不同而達到分離的目的,不同溶解度的產生是由於溶質分子之間及溶質與溶劑分子之間親和力的差異而引起的,溶解度的大小與溶質和溶劑的化學性質及結構有關,溶劑組分的改變或加入某些沉澱劑以及改變溶液的pH值、離子強度和極性都會使溶質的溶解度產生明顯的改變。

 在生物大分子制備中最常用的幾種沉澱方法是:
 ⑴中性鹽沉澱(鹽析法):多用於各種蛋白質和酶的分離純化。
 ⑵有機溶劑沉澱:多用於蛋白質和酶、多糖、核酸以及生物小分子的分離純化。
 ⑶選擇性沉澱(熱變性沉澱和酸鹼變性沉澱):多用於除去某些不耐熱的和在一定pH值下易變性的雜蛋白。
 ⑷等電點沉澱:用於氨基酸、蛋白質及其他兩性物質的沉澱,但此法單獨應用較少,多與其他方法結合使用。
 ⑸有機聚合物沉澱: 是發展較快的一種新方法, 主要使用PEG聚乙二醇(Polyethyene glycol)作為沉澱劑。

 2.3.1.1 中性鹽沉澱(鹽析法)
 在溶液中加入中性鹽使生物大分子沉澱析出的過程稱為「鹽析」。除了蛋白質和酶以外,多肽、多糖和核酸等都可以用鹽析法進行沉澱分離。
 鹽析法應用最廣的還是在蛋白質領域,已有八十多年的歷史,其突出的優點是:
 ①成本低,不需要特別昂貴的設備。
 ②操作簡單、安全。
 ③對許多生物活性物質具有穩定作用。

 ⑴ 中性鹽沉澱蛋白質的基本原理
 蛋白質和酶均易溶於水,因為該分子的-COOH、-NH2和-OH都是親水基團,這些基團與極性水分子相互作用形成水化層,包圍於蛋白質分子周圍形成1nm~100nm顆粒的親水膠體,削弱了蛋白質分子之間的作用力,蛋白質分子表面極性基團越多,水化層越厚,蛋白質分子與溶劑分子之間的親和力越大,因而溶解度也越大。親水膠體在水中的穩定因素有兩個:即電荷和水膜。因為中性鹽的親水性大於蛋白質和酶分子的親水性,所以加入大量中性鹽後,奪走了水分子,破壞了水膜,暴露出疏水區域,同時又中和了電荷,破壞了親水膠體,蛋白質分子即形成沉澱。鹽析示意圖如下頁「圖 4」所示。

 ⑵ 中性鹽的選擇
 常用的中性鹽中最重要的是(NH4)2SO4,因為它與其他常用鹽類相比有十分突出的優點:
 1) 溶解度大:尤其是在低溫時仍有相當高的溶解度,這是其他鹽類所不具備的。由於酶和各種蛋白質通常是在低溫下穩定,因而鹽析操作也要求在低溫下(0~4℃)進行。由下表可以看到, 硫銨在0℃時的溶解度,遠遠高於其它鹽類:
 表2-1 幾種鹽在不同溫度下的溶解度(克/100毫升水)
 0℃ 20℃ 80℃ 100 ℃
(NH4)2SO4 70.6 75.4 95.3 103
 Na2SO4 4.9 18.9 43.3 42.2
 NaH2PO4 1.6 7.8 93.8 101






 2) 分離效果好:有的提取液加入適量硫酸銨
鹽析,一步就可以除去75%的雜蛋白,純
度提高了四倍。
 3) 不易引起變性,有穩定酶與蛋白質結構的
作用。有的酶或蛋白質用2~3mol/L濃度的
(NH4)2SO4保存可達數年之久。
 4) 價格便宜,廢液不污染環境。

 ⑶ 鹽析的操作方法
 最常用的是固體硫酸銨加入法。將其研成細粉,在攪拌下緩慢均勻少量多次地加入,接近計劃飽和度時,加鹽的速度更要慢一些,盡量避免局部硫酸銨濃度過大而造成不應有的蛋白質沉澱。鹽析後要在冰浴中放置一段時間,待沉澱完全後再離心與過濾。
 在低濃度硫酸銨中鹽析可採用離心分離,高濃度硫酸銨常用過濾方法。
 各種飽和度下需加固體硫酸銨的量可由附錄中查出。

 ⑷ 鹽析曲線的製作
 如果要分離一種新的蛋白質和酶,沒有文獻數據可以借鑒,則應先確定沉澱該物質的硫酸銨飽和度。具體操作方法如下(講義p39):

蛋白質量(mg)或酶活力

10 20 30 40 50 60 70 80 90 100 硫銨飽
和度%

 ⑸鹽析的影響因素
 1) 蛋白質的濃度:高濃度的蛋白質用稍低的硫酸銨飽和度沉澱,若蛋白質濃度過高,易產生各種蛋白質的共沉澱作用。低濃度的蛋白質,共沉澱作用小,但回收率降低。較適中的蛋白質濃度是2.5%~3.0%,相當於25 mg/mL~30mg/mL。
 2) pH值對鹽析的影響:在等電點處溶解度小,pH值常選在該蛋白質的等電點附近。
 3) 溫度的影響:對於蛋白質、酶和多肽等生物大分子,在高離子強度溶液中,溫度升高,它們的溶解度反而減小。在低離子強度溶液或純水中蛋白質的溶解度大多數還是隨濃度升高而增加的。一般情況下,可在室溫下進行。但對於某些對溫度敏感的酶,要求在0℃~4℃下操作,以避免活力喪失。


 2.3.1.2 有機溶劑沉澱法
 ⑴基本原理
 有機溶劑對於許多蛋白質(酶)、核酸、多糖和小分子生化物質都能發生沉澱作用,是較早使用的沉澱方法之一。其原理主要是:
 ①降低水溶液的介電常數,向溶液中加入有機溶劑能降低溶液的介電常數,減小溶劑的極性,從而削弱了溶劑分子與蛋白質分子間的相互作用力,導致蛋白質溶解度降低而沉澱。
 ②由於使用的有機溶劑與水互溶,它們在溶解於水的同時從蛋白質分子周圍的水化層中奪走了水分子,破壞了蛋白質分子的水膜,因而發生沉澱作用。


 有機溶劑沉澱法的優點是:
 ①分辨能力比鹽析法高,即一種蛋白質或其他溶質只在一個比較窄的有機溶劑濃度范圍內沉澱。
 ②沉澱不用脫鹽,過濾比較容易(如有必要,可用透析袋脫有機溶劑)。因而在生化制備中有廣泛的應用。
 其缺點是對某些具有生物活性的大分子容易引起變性失活,操作需在低溫下進行。
 ⑵有機溶劑的選擇和濃度的計算
 用於生化制備的有機溶劑的選擇首先是要能與水互溶。沉澱蛋白質和酶常用的是乙醇、甲醇和丙酮。
 為了獲得沉澱而不著重於進行分離,可用溶液體積的倍數:如加入一倍、二倍、三倍原溶液體積的有機溶劑,來進行有機溶劑沉澱。

 ⑶有機溶劑沉澱的影響因素
 1) 溫度:多數生物大分子如蛋白質、酶和核酸在有機溶劑中對溫度特別敏感,溫度稍高就會引起變性,且有機溶劑與水混合時產生放熱反應,因此必須預冷,操作要在冰鹽浴中進行,加入有機溶劑時必須緩慢且不斷攪拌以免局部過濃。
 一般規律是溫度越低,得到的蛋白質活性越高。
 2) 樣品濃度:低濃度樣品回收率低,要使用比例更大的有機溶劑進行沉澱。高濃度樣品,可以節省有機溶劑,減少變性的危險,但雜蛋白的共沉澱作用大。
 通常使用5mg/mL~20mg/mL的蛋白質初濃度為宜。


 3) pH值:選擇在樣品穩定的pH值范圍內,通常是選在等電點附近,從而提高此沉澱法的分辨能力。
 4) 離子強度:鹽濃度太大或太小都有不利影響,通常鹽濃度以不超過5%為宜,使用乙醇的量也以不超過原蛋白質水溶液的2倍體積為宜,少量的中性鹽對蛋白質變性有良好的保護作用,但鹽濃度過高會增加蛋白質在水中的溶解度,降低了沉澱效果,通常是在低濃度緩沖液中沉澱蛋白質。
 沉澱所得的固體樣品,如果不是立即溶解進行下一步的分離,則應盡可能抽干沉澱,減少其中有機溶劑的含量,如若必要可以裝透析袋透析脫有機溶劑,以免影響樣品的生物活性。

 2.3.1.3 選擇性變性沉澱法
 這一方法是利用生物大分子與非目的生物大分子在物理化學性質等方面的差異,選擇一定的條件使雜蛋白等非目的物變性沉澱而得到分離提純。
 ⑴ 熱變性
 利用生物大分子對熱的穩定性不同,加熱升高溫度使非目的生物大分子變性沉澱而保留目的物在溶液中。
 ⑵ 表面活性劑和有機溶劑變性
 使那些對表面活性劑和有機溶劑敏感性強的雜蛋白變性沉澱。通常在冰浴或冷室中進行。
 ⑶ 選擇性酸鹼變性
 利用對pH值的穩定性不同而使雜蛋白變性沉澱。通常是在分離純化流程中附帶進行的分離純化步驟。

 2.3.1.4 等電點沉澱法
 利用具有不同等電點的兩性電解質,在達到電中性時溶解度最低,易發生沉澱,從而實現分離的方法。氨基酸、蛋白質、酶和核酸都是兩性電解質,可以利用此法進行初步的沉澱分離。
 由於許多蛋白質的等電點十分接近,而且帶有水膜的蛋白質等生物大分子仍有一定的溶解度,不能完全沉澱析出,因此,單獨使用此法解析度較低,因而此法常與鹽析法、有機溶劑沉澱法或其他沉澱劑一起配合使用,以提高沉澱能力和分離效果。
 此法主要用於在分離純化流程中去除雜蛋白,而不用於沉澱目的物。

 2.3.1.5 有機聚合物沉澱法
 有機聚合物是六十年代發展起來的一類重要的沉澱劑,最早應用於提純免疫球蛋白和沉澱一些細菌和病毒。近年來廣泛用於核酸和酶的純化。其中應用最多的是
「聚乙二醇」【HOCH2(CH2OCH2)nCH2OH (n >4)】( Polyethylene Glycol 簡寫為 PEG ),它的親水性強,溶干水和許多有機溶劑,對熱穩定,有廣泛圍的分子量,在生物大分子制備中,用的較多的是分子量為6000~20000的 PEG。
 本方法的優點是:
 ①操作條件溫和,不易引起生物大分子變性。
 ②沉澱效能高,使用很少量的P「EG即可以沉澱相當多
的生物大分子。
 ③沉澱後有機聚合物容易去除。

 2.3.2 透析
 自Thomas Graham 1861年發明透析方法至今已有一百多年。透析已成為生物化學實驗室最簡便最常用的分離純化技術之一。在生物大分子的制備過程中,除鹽、除少量有機溶劑、除去生物小分子雜質和濃縮樣品等都要用到透析的技術。
 透析只需要使用專用的半透膜即可完成。保留在透析袋內未透析出的樣品溶液稱為「保留液」,袋(膜)外的溶液稱為「滲出液」或「透析液」。截留分子量MwCO通常為1萬左右。
 用1% BaCl2檢查(NH4)2SO4,用1% AgNO3 檢查NaCl、KCl等。

 2.3.3 超濾
 超過濾即超濾,自20年代問世後,直至60年代以來發展迅速,很快由實驗室規模的分離手段發展成重要的工業單元操作技術。超濾現已成為一種重要的生化實驗技術,廣泛用於含有各種小分子溶質的各種生物大分子(如蛋白質、酶、核酸等)的濃縮、分離和純化。
 超濾是一種加壓膜分離技術,即在一定的壓力下,使小分子溶質和溶劑穿過一定孔徑的特製的薄膜,而使大分子溶質不能透過,留在膜的一邊,從而使大分子物質得到了部分的純化。

 超濾根據所加的操作壓力和所用膜的平均孔徑的不同,可分為微孔過濾、超濾和反滲透三種。
 微孔過濾所用的操作壓通常小於4×104Pa,膜的平均孔徑為500埃~14微米(1微米=104埃),用於分離較大的微粒、細菌和污染物等。
 超濾所用操作壓為4×104Pa~7×105Pa,膜的平均孔徑為10—100埃,用於分離大分子溶質。
 反滲透所用的操作壓比超濾更大,常達到35×105Pa~140×105Pa,膜的平均孔徑最小,一般為10埃以下,用於分離小分子溶質,如海水脫鹽,制高純水等。

 超濾技術的優點是操作簡便,成本低廉,不需增加任何化學試劑,尤其是超濾技術的實驗條件溫和,與蒸發、冰凍乾燥相比沒有相的變化,而且不引起溫度、pH的變化,因而可以防止生物大分子的變性、失活和自溶。
 在生物大分子的制備技術中,超濾主要用於生物大分子的脫鹽、脫水和濃縮等。
 超濾法也有一定的局限性,它不能直接得到乾粉制劑。對於蛋白質溶液,一般只能得到10~50%的濃度。

 超濾技術的關鍵是膜。
 常用的膜是由乙酸纖維或硝酸纖維或此二者的混合物製成。近年來發展了非纖維型的各向異性膜,例如聚碸膜、聚碸醯胺膜和聚丙烯腈膜等。這種膜在pH 1~14都是穩定的,且能在90℃下正常工作。超濾膜通常是比較穩定的,能連續用1~2年。
 超濾膜的基本性能指標:水通量(cm3/(cm2•h));截留率(以百分率%表示);化學物理穩定性(包括機械強度)等。
 超濾裝置由若干超濾組件構成。分為板框式、管式、螺旋卷式和中空纖維式四種主要類型。
 由於超濾法處理的液體多數是含有水溶性生物大分子、有機膠體、多糖及微生物等。這些物質極易粘附和沉積於膜表面上,造成嚴重的濃差極化和堵塞,這是超濾法最關鍵的問題,要克服濃差極化,通常可加大液體流量,加強湍流和加強攪拌。

 2.3.4 冰凍乾燥
 冰凍乾燥機是生化與分子生物學實驗室必備的儀器之一,因為大多數生物大分子分離純化後的最終產品多數是水溶液,要從水溶液中得到固體產品,最好的辦法就是冰凍乾燥

❾ 請教離子交換層析與親和層析方面的問題

親和層析是通過層析介質表面鍵合的配基與目標物質特異性吸附,然後非目標物流穿,再改變流動相是目標物質的特異性吸附消失,從而達到純化目的。凝膠層析是通過層析介質孔徑的設定,使分子量大小相差比較大的物質通過的路徑不一樣,從而達到分離效果。離子交換是通過層析介質表面的帶電荷的基團與目標之間產生吸附,通過改變鹽濃度使吸附力的大小改變,從而使不同的物質解吸的速度不一樣,達到分離的效果。離子交換又分陰離子交換和陽離子交換。一般來說以上三種,離子交換應用面最廣,親和特異性最好,體積排阻的話只能對分子量差距很明顯的物質進行分離。

❿ 多糖的純化方法與哪些

多糖純化:
a、分部沉澱法:根據各種多糖在不同濃度的低級醇或丙酮中具有不同溶解度的性質,逐次按比例由小到大加入甲醇或乙醇或丙酮,收集不同濃度下析出的沉澱,經反復溶解與沉澱後,直到測得的物理常數恆定(最常用的是比旋光度測定或電泳檢查)。這種方法適合於分離各種溶解度相差較大的多糖。為了多糖的穩定,常在pH7進行,唯酸性多糖在pH7時-COOH是以-COO` 離子形式存在的,需在pH2-4進行分離,為了防止苷鍵水解,操作宜迅速。此外也可將多糖製成各種衍生物如甲醚化物、乙醯化物等,然後將多糖衍生物溶於醇中,最後加入乙醚等極性更小的溶劑進行分級沉澱分離。
b、鹽析法:在天然產物的水提液中,加入無機鹽,使其達到一定濃度或飽和,促使有效成分在水中溶解度降低沉澱析出,與其它水溶性較大的雜質分離。常做鹽析的無機鹽的有氯化鈉、硫酸鈉、硫酸鎂、硫酸銨等。
c、季銨鹽沉澱法:季銨鹽及其氫氧化物是一類乳化劑,可與酸性糖形成不溶性沉澱,常用於酸性多糖的分離。通常季胺鹽及其氫氧化物並不與中性多糖產生沉澱,但當溶液的PH增高或加入硼砂緩沖液使糖的酸度增高時,也會與中性多糖形成沉澱。常用的季銨鹽有十六烷基三甲胺的溴化物(CTAB)及其氫氧化物(cetyl trimethyl ammonium hydroxide,CTA-OH)和十六烷基吡啶(cetylpyridinm hydroride,CP-OH)。CTAB或CP-OH的濃度一般為1%-10%(W/V)的多糖溶液中,酸性多糖可從中性多糖中沉澱出來,所以控制季銨鹽的濃度也能分離各種不同的酸性多糖。值得注意的是酸性多糖混合物溶液的PH要小於9,而且不能有硼砂存在,否則中性多糖將會被沉澱出來
d、柱層析:
纖維素柱層析:纖維素柱層析對多糖的分離既有吸附色譜的性質,又具有分配色譜的性質,所用的洗脫劑是水和不同濃度乙醇的水溶液,流出柱的先後順序通常是水溶性大的先出柱,水溶性差的最後出柱,與分級沉澱法正好相反。
纖維素陰離子交換柱層析:最常見的交換劑為DEAE-纖維素(硼酸型或鹼型),洗脫劑可用不同濃度的鹼溶液、硼砂溶液、鹽溶液等。此方法目前最為常用。它一方面可純化多糖,另一方面還適於分離各種酸性多糖、中性多糖和粘多糖。
凝膠柱層析:凝膠柱層析可將多糖按分子大小和形狀不同分離開來,常用的凝膠有葡聚糖凝膠(sephadex G)、瓊脂糖凝膠(sepharose bio-gel A)、聚丙烯醯胺凝膠(bio-gel P)等,常用的洗脫劑是各種濃度的鹽溶液及緩沖液,但它們的離子強度最好不低於0.02。出柱的順序是大分子的先出柱,小分子的後出柱。由於糖分子與凝膠間的相互作用,洗脫液的體積與蛋白質的分離有很大的差別。在多糖分離時,通常是用孔隙小的凝膠如sephadex G-25、G-50等先脫去多糖中的無機鹽及小分子化合物,然後再用孔隙大的凝膠sephadex G-200等進行分離。凝膠柱層析法不適合於粘多糖的分離。

閱讀全文

與離子交換層析去多糖相關的資料

熱點內容
多效蒸餾脫鹽 瀏覽:718
市政污水管道閉水實驗資料 瀏覽:595
海爾飲水機怎麼復位過濾棉 瀏覽:289
沼氣調控凈化器怎麼調節火的大小 瀏覽:203
污水做tp進水取多少錢 瀏覽:719
所有的數據輸入做過濾 瀏覽:434
廢水生物種類 瀏覽:728
湖北凈水器哪裡有賣 瀏覽:632
18年日產騏達的空氣濾芯怎麼拆 瀏覽:260
山西家用污水提升裝置 瀏覽:736
中央電視台文昌污水 瀏覽:432
廢水常規污染物 瀏覽:143
青海學校凈化器多少錢一台 瀏覽:128
電泳超濾膜瞬間高壓 瀏覽:778
活性污泥污水處理工藝的原理 瀏覽:927
水凈化器進化什麼 瀏覽:630
碘單質與四氯化碳蒸餾 瀏覽:562
edial00是華為 瀏覽:438
反滲透膜承受最大壓力 瀏覽:82
美的的飲水機最貴的是什麼 瀏覽:332