❶ 生活污水中蛋白質里的N是如何成為養料的
生活污水中的氮是不能直接被植物所利用的,因為植物的根部細胞不能吸收大分子物質。但是我們可以通過環境中的微生物幫助植物進行生活污水中的氮元素的吸收。
環境中的許多的微生物都是好氧異養型微生物,就是吸收環境中的有機物養分,之後依靠氧氣的幫助將他們氧化成為無機小分子並從中獲得生命活動所需要的能量。
所以你現在知道生活污水中蛋白質里的氮是如何成為植物養料的了吧:環境中的微生物將生活污水中的蛋白質分解消化後氮元素的存在由氨基酸的形式變成為了NH4+或者NH3的無機小分子的形式。而這種NH4+或者NH3的無機小分子的形式植物可以進行吸收利用。
❷ 污,廢水脫氮原理是什麼如何應用到廢水的處理中
氮、磷是營養元素,工業廢水和生活污水中的氮、磷大量進入水體後,水生生物
特別回是藻類將大量繁殖,大量死答亡的水生生物被微生物分解,分解過程中消耗大
量的溶解氧,水中的溶解氧濃度急劇下降,從而影響了魚類等水生生物的生存.
城市污水廠的活性污泥法脫氮除磷的原理是:利用微生物分解有機氮,再轉化為
硝酸鹽,之後反硝化成氮氣得以去除;除磷則是利用聚磷菌放磷後,更大量的吸
收磷,使磷富集在污泥中,通過排放剩餘污泥去除磷.
❸ 廢水中總氮該怎麼去除
污水中的有機氮,,如果採用生物脫氮,則包括氨化、硝化和反硝化三個階段。在氨化過程中,水中有機氮在微生物作用下轉化為氨氮。硝化過程中,首先在亞硝化桿菌的作用下,氨氮轉化為亞硝酸鹽氮,然後在硝化桿菌作用下,亞硝酸鹽氮進一步被氧化成硝酸鹽氮。反硝化過程中,硝酸鹽氮轉化為氮氣,釋放到空氣中,也正是在這個過程中,水中的氮被徹底去除了。氨氮超標一般原因是因為進水負荷大,或者曝氣量和污泥活性及污泥濃度有關,首先,查看近期進水有沒有大的波動,包括進水量及各個和指標,可以使用氨氮去除劑,JS-203氨氮去除劑主要用於去除廢水中的氨氮,投加後使廢水中的氨氮部分生成不溶於水的氮氣、二氧化氮、一氧化氮及水,該產品中的催化成分將廢水中離子狀態的氨氮轉化成游離狀態,並有輔助去除COD及脫色效果。
❹ 廢水中的總氮該怎麼去除
首先,要先了解總氮的構成,總氮包括有機氮、氨氮、硝態氮,組成成分不同版,處理方式也不同,總體分為物化法權和生化法。
對於不同種類的廢水,通常會應用不同的物化法,例如氨氮廢水,通常會採用氨氮去除劑,折點加氯,將氨氮以氮氣的形式脫離出廢水;有機氮廢水,則需通過高級氧化法。但是,大多數物化方法是不能完全將總氮處理到較低的標准。
生化法多以活性污泥為主,適用性也較強,可以處理低濃度廢水。生物脫氮主要包括氨化、硝化和反硝化三個主要的生化過程。這種方法水力停留時間短,運行成本低。但是由於大部分使用此工藝的系統反硝化環節受限,導致出水氨氮雖然下降,硝氮卻提高了,最終總氮依舊超標。
如上所述,活性污泥法不能將廢水中的總氮完全去除,主要是因為廢水中硝態氮的超標,由於迴流比數值偏離、缺氧段溶解氧含量較高等因素導致。那麼在反硝化過程即可採用強化HDN高效脫氮設備,通過對填料、結構、布水的優化,提高了負荷,一步消耗硝態氮,同時還能降低COD,是出水水質達標,實現廢水中總氮的去除。
❺ 如何解決廢水中的總氮
解決廢水中的總氮
1、可通過生化去除,缺氧好氧聯用,控制好迴流比,若總氮較高專,需屬補加鹼度,若碳氮比較低,需補加碳源;
2、若總氮有約500ppm以上,且主要為氨氮,可吹脫氨氮或折點加氯脫氨後再進生化;若主要為硝酸根,則只能通過生化去除;
3、若硝酸鹽極高約1000ppm以上,考慮加硝酸回收設備,去除硝酸根後再做末端處理;
❻ 污水中總氮中的有機氮如何去除
污水中總氮中的有機氮用AO法及AOO法去除。
AO法及AOO法是近年來開發出的生物脫氮除磷新工藝,與傳統的化學和生物脫氮除磷相比,它還有效提高了BOD、COD、SS的出水指標。
AO法是缺氧、好氧的簡稱,AOO法是厭氧、缺氧和好氧的簡稱,脫氮是在缺氧段完成的,除磷則要求有厭氧段。AO法主要是脫氮,AOO法可以同時去除氮、磷。這兩種工藝都要求污水充分曝氣,使含氮有機物充分硝化,所以必須降低污泥負荷,延長曝氣時間和增大鼓風量。
根據天津東郊污水處理廠和沈陽市北部污水處理廠的實踐,採用AO工藝比傳統活生污泥流程的曝氣池容積、二沉池容積、迴流污泥量、鼓風量和曝氣裝置數量都增大一倍左右,而且由於該工藝要求比較低的污泥負荷。
否則不足以達到污泥好氧穩定,所以AO法將帶來基建投資和電耗的大幅度增加。AOO法在缺氧段前面還加有一個厭氧池,以達到對磷的有效去除效果,基建費用與電耗比AO工藝更高點。
(6)城鎮污水中的氮如何資源化利用擴展閱讀:
氮污染的來源:
其人為來源主要是燃燒化石燃料,產生硝酸、氮肥、火葯等排放的廢氣。氮氧化物是光化學煙霧反應的起始反應物,它和氧化亞氮在平流層對臭氧的分解起催化作用,因此它們都是破壞臭氧層的物質。水體中的氮主要來自生物體的代謝和腐敗,氮肥的流失,以及工業廢水和生活污水的排放。
水體中氮過量時會造成富營養化,使水質惡化,影響水生生物的生長及繁殖。土壤中的固氮菌和植物的根瘤菌等可將空氣中的單質氮轉化為氨、硝酸鹽等化合態氮,供植物作養分,但氨或銨鹽存在過量時,反而會使土壤的土質變壞,影響植物生長。
此外,土壤中的硝酸鹽可經反硝化作用生成N2O,N2O進入平流層大氣時會與臭氧發生化學反應而消耗臭氧層中的臭氧。所以,土壤也是產生臭氧層破壞的痕量氣體發生源之一。
參考資料來源:網路-氮污染
參考資料來源:網路-城市污水
❼ 污水中總氮怎麼去除
1、 總氮元素主要氨氮、有機氮、硝態氮、亞硝態氮以及氮氧化合物組成,其中氨氮內主要來自容於氨水以及諸如氯化銨等無機物。如果濃度低情況,降解氨氮,總氮也會隨之降低。廢水中含有有機氮,有機氮大多通過微生物去除。在轉化中,主要包括氨化、硝化和反硝化三個階段。
2、 微生物法,例如活性污泥法、(甘度)反硝化菌等等。
3、厭氧池池或者缺氧池去除總氮:反硝化反應中迅速產生硝酸還原酶和亞硝酸還原酶將硝酸鹽和亞硝酸鹽還原成氮氣(N2)或一氧化二氮(N2O),達到凈化污水的目的。
總氮去除找甘度……
❽ 污水中總氮中的有機氮如何去除
污水中總氮中的有機氮去除方法如下:
污水先經過序批式生物膜法處理,在厭氧、缺氧、好氧條件共存的環境下,將大分子有機氮分解成小分子有機氮,再利用微生物的降解作用去除小分子有機氮,同時通過微生物的短程硝化反硝化和厭氧氨氧化作用去除氨氮和硝氮。然後再經過混凝-微濾法處理,通過加入混凝劑,將細菌、SS等含氮物質沉澱去除,再經中空纖維微濾膜的過濾作用去除腐殖酸、富里酸等難降解的大分子有機氮,降低污水中有機氮總量。
❾ 廢水中氨氮應該如何去除
高氨氮廢水處理方法:
一、物化法
1. 吹脫法
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與溫度、PH、氣液比有關。
2. 沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。
3.膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮。氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持"假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。"遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。
4.MAP沉澱法
主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。
5.化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。
二、生物脫氮法
傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。
1.A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
2.兩段活性污泥法能有效的去除有機物和氨氮,其中第二級處於延時曝氣階段,停留時間在36小時左右,污水濃度在2g/l以下,可以不排泥或少排泥從而降低污泥處理費用。
3.強氧化好氧生物處理其典型代表有粉末活性炭法(PACT工藝)
粉末活性碳法的主要特點是向曝氣池中投加粉末活性炭(PAC)利用粉末活性炭極為發達的微孔結構和更大的吸附能力,使溶解氧和營養物質在其表面富集,為吸附在PAC 上的微生物提供良好的生活環境從而提高有機物的降解速率。
近年來國內外出現了一些全新的脫氮工藝,為高濃度氨氮廢水的脫氮處理提供了新的途徑。主要有短程硝化反硝化、好氧反硝化和厭氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式,是去除水中氨氮的一種較為經濟的方法,其原理就是模擬自然生態環境中氮的循環,利用硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。由於氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化是將氨氮氧化控制在亞硝化階段,然後進行反硝化,省去了傳統生物脫氮中由亞硝酸鹽氧化成硝酸鹽,再還原成亞硝酸鹽兩個環節(即將氨氮氧化至亞硝酸鹽氮即進行反硝化)。該技術具有很大的優勢:①節省25%氧供應量,降低能耗;②減少40%的碳源,在C/N較低的情況下實現反硝化脫氮;③縮短反應歷程,節省50%的反硝化池容積;④降低污泥產量,硝化過程可少產污泥33%~35%左右,反硝化階段少產污泥55%左右。實現短程硝化反硝化生物脫氮技術的關鍵就是將硝化控制在亞硝酸階段,阻止亞硝酸鹽的進一步氧化。
5. 厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。
厭氧氨氧化(Anaerobicammoniaoxidation,簡稱ANAMMOX)是指在厭氧條件下,以Planctomycetalessp為代表的微生物直接以NH4+為電子供體,以NO2-或NO3-為電子受體,將NH4+、NO2-或NO3-轉變成N2的生物氧化過程。該過程利用獨特的生物機體以硝酸鹽作為電子供體把氨氮轉化為N2,最大限度的實現了N的循環厭氧硝化,這種耦合的過程對於從厭氧硝化的廢水中脫氮具有很好的前景,對於高氨氮低COD的污水由於硝酸鹽的部分氧化,大大節省了能源。目前推測厭氧氨氧化有多種途徑。其中一種是羥氨和亞硝酸鹽生成N2O的反應,而N2O可以進一步轉化為氮氣,氨被氧化為羥氨。另一種是氨和羥氨反應生成聯氨,聯氨被轉化成氮氣並生成4個還原性[H],還原性[H]被傳遞到亞硝酸還原系統形成羥氨。第三種是:一方面亞硝酸被還原為NO,NO被還原為N2O,N2O再被還原成N2;另一方面,NH4+被氧化為NH2OH,NH2OH經N2H4,N2H2被轉化為N2。厭氧氨氧化工藝的優點:可以大幅度地降低硝化反應的充氧能耗;免去反硝化反應的外源電子供體;可節省傳統硝化反硝化反應過程中所需的中和試劑;產生的污泥量極少。厭氧氨氧化的不足之處是:到目前為止,厭氧氨氧化的反應機理、參與菌種和各項操作參數不明確。
全程自養脫氮的全過程實在一個反應器中完成,其機理尚不清楚。Hippen等人發現在限制溶解氧(DO濃度為0.8·1.0mg/l)和不加有機碳源的情況下,有超過60%的氨氮轉化成N2而得以去除。同時Helmer等通過實驗證明在低DO濃度下,細菌以亞硝酸根離子為電子受體,以銨根離子為電子供體,最終產物為氮氣。有實驗用熒光原位雜交技術監測全程自養脫氮反應器中的微生物,發現在反應器處於穩定階段時即使在限制曝氣的情況下,反應器中任然存在有活性的厭氧氨氧化菌,不存在硝化菌。有85%的氨氮轉化為氮氣。鑒於以上理論,全程自養脫氮可能包括兩步第一是將部分氨氮氧化為煙硝酸鹽,第二是厭氧氨氧化。
6. 好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
7.超聲吹脫處理氨氮
超聲吹脫法去除氨氮是一種新型、高效的高濃度氨氮廢水處理技術,它是在傳統的吹脫方法的基礎上,引入超聲波輻射廢水處理技術,將超聲波和吹脫技術聯用而衍生出來的一種處理氨氮的方法。將這兩種方法聯用不僅改進了超聲波處理廢水成本較高的問題,也彌補了傳統吹脫技術去除氨氮不佳的缺陷,超生吹脫法在保證處理氨氮的效果的同時還能對廢水中有機物的降解起到一定的提高作用。技術特點(1)高濃度氨氮廢水採用90年代高新技術--超聲波脫氮技術,其總脫氮效率在70~90%,不需要投加化學葯劑,不需要加溫,處理費用低,處理效果穩定。(2)生化處理採用周期性活性污泥法(CASS)工藝,建設費用低,具有獨特的生物脫氮功能,處理費用低,處理效果穩定,耐負荷沖擊能力強,不產生污泥膨脹現象,脫氮效率大於90%,確保氨氮達標。
❿ 活性污泥法怎麼處理城市生活污水中氨氮
傳統生化處理的脫氮工藝,氨氮經硝化和反硝化兩步將其轉化為氮氣專,具體是:
①氨氮在亞硝化細菌屬的作用下經亞硝化作用轉化為亞硝酸鹽氮,此步好氧(有氧氣);
②亞硝酸鹽氮在硝化細菌作用下經硝化作用轉化為硝酸鹽氮,此步好氧;
③硝酸鹽氮在反硝化細菌作用下經反硝化轉化為氮氣回到空氣中,此步缺氧(沒有分子氧)。
總過程是NH3-N→NO2-→NO3-→N2,應用最廣泛的工藝是A2O和倒置A2O,可以同時實現脫氮除磷,不過除磷效果稍差,高成本方法也有SBR和膜生物反應器,但原理基本一樣。