導航:首頁 > 凈水純水 > 日本超級純水多少噸

日本超級純水多少噸

發布時間:2022-10-05 01:26:53

『壹』 日本在地下存了五萬噸水,究竟是為何

日本確實在地下建造了能儲存50000頓純水的大水箱,這個水箱相當於十幾層高的建築。這5萬噸純水的儲備並不是為了備戰備荒,而是為了探測中微子。

這個大水箱和周圍配置的探測器,被稱為超級神岡探測器,是日本東大建造在岐阜縣深達千米的廢棄礦井裡的大型中微子探測系統。

中微子是基本粒子之一,不帶電,由於它質量很輕,是電子的百萬分之一,所以中微子速度很快,可以自由的穿透物體,從物理學家預言中微子的存在,到實際發現中微子,花了幾十年的時間。

中微子穿透力及其強大,通過真個地球也不會減速,我們人體也時刻被來自宇宙的中微子所貫穿。

由於中微子只參與弱相互作用,很難觀察,只能通過它與其他粒子之間的相互作用產生的切倫科夫輻射來探測。

日本東京大學設計了這個5萬噸水的大水槽,基本設計理念是:探測器首先要足夠大,裡面的介質要足夠的透明,重要的是要屏蔽掉其他宇宙射線的煩擾。

所以日本花費巨資在地下1000米深的礦井裡,建造了這個能存50000噸水的大水箱,在周圍配置了上萬個光電探測器,觀察切倫科夫輻射,對中微子來進行探測。

通過神岡探測器,日本多次斬獲諾貝爾物理學獎,由此嘗到了甜頭,日本計劃啟動最新的頂級神岡探測器,其規模預計是現有超級神岡探測器的5倍以上,將花費近千億日元進行建設,來 探索 物質和宇宙的起源。

這個問題先說答案,日本這五萬噸水是為了做物理實驗,探測並捕獲中微子的,項目名稱「超級神岡」,下面有說一下為何需要這五萬噸純凈水。

太陽、地球、核反應堆、超新星爆發、宇宙誕生的大爆炸等都產生大量的中微子。它們以接近光速飛行。據物理理論,每一秒鍾,穿過一個人身體,有1000萬億個宇宙中微子。因為中微子幾乎不與物質發生反應,發生反應的概率很小,因此需要建造龐大的探測器來「捕捉」它,」超級神岡「就是在這樣的背景誕生的。

超級神崗源於神岡實驗,神岡實驗採用了3千噸純凈水和1千個極其靈敏、能夠探測到單個光子的光電倍增管。實驗初衷是為了尋找質子衰變,但卻有意外收獲,發現 大氣中微子反常 ,物理理論用 中微子振盪 解釋大氣中微子反常。科學理論需要實證,因此日本政府批准了「超級神岡」項目,採用了5萬噸純凈水,13000個光電倍增管,這就是5萬噸水的由來。當然超級神岡也不負眾望,測到了足夠的大氣中微子,最終證實了中微子振盪理論。

5萬噸純凈水要求超級純,非常難得,但加拿大在一個地下2100米的鎳礦中建造了薩德伯里實驗用昂貴的重水來替代,從核電公司借了1千噸、價值約100億人民幣的重水,這也是很豪的。

各個有實力的國家也紛紛加入中微子探測器行列,,美國採用1-4萬噸液氬探測器的加速器實驗,印度採用5萬噸鐵的INO實驗,韓國1.8萬噸液閃實驗,美國在南極的PINGU實驗,法國在地中海的ORCA實驗等。

中國有採用2萬噸液閃探測器的江門中微子實驗,建於廣東江門開平市金雞鎮、赤水鎮一帶的打石山,打石山正好位於距陽江和台山反應堆等距的53公里處,符合位於距反應堆約60公里的要求,因為這個位置來自反應堆的中微子在此處振盪效應最明顯。

當然作為中微子探測器的旗艦,「超級神岡」也是要升級的,採用了100萬噸純凈水,變身為「超超級神岡實驗」,是不是發現5萬噸水也是小巫見大巫了!

針對題目本身語境,我多說一點題外話,日本在科學技術的許多方面是有領先獨到之處,作為鄰居的我們要客觀看待,不要過分的吹噓和自卑,隨著國家經濟實力提升,我們要相信在科學技術領域,中國也會有越來多旗艦項目誕生的。

科學視野,不同解讀,感謝大家閱讀!

中微子是一種極難被捕捉到的粒子,不帶電的它可以輕松穿過宇宙中的物質,並且幾乎不留下痕跡,每秒種都有數千億上萬億中微子穿過人體,但人是絕對感覺不到的,而尋找到中微子最好的手段就是藉助類似「超級神岡」這樣的探測器。

中微子雖然速度快而且質量小,但它在穿越純水時會留下微弱的痕跡,這種被稱為契忍可夫輻射的現象就是尋找中微子的訣竅,純水越多這種輻射就會越明顯,這就是為什麼日本在近千米的礦井深處藏水的真相。

事實上這五萬噸純水也比較爭氣,1987年2月的神岡探測器和美國的中微子探測器一起接收到了新星1987A爆發時產生的中微子,這也是首次探測到的太陽系外中微子,90年代時又投資1億美元把神岡升級為「超級神岡」,五萬噸純水就是這時候加進去的,1998年領導超級神岡探測器的日本科學家小柴昌俊首次確認了中微子震盪現象,於2002年獲得了諾貝爾物理學獎。

不只是日本,我國在大亞灣也同樣擁有中微子探測裝置,主要目標是探測臨近的大亞灣核電站進行核反應時產生的中微子,其主體部分也被包裹在純水中。

其實這個裝置叫超級神崗探測器,重要是用於探測中微子的,和我國的大亞灣探測一樣。

探測中微子一定要用100%的純水,任何雜質都不能有。

中微子被稱之為宇宙的隱身者,因為它不帶電,所以不會與物質發生電磁相互作用。這也導致中微子可以輕易穿透地球。

當然,中微子也可以輕易穿透水,那為什麼探測中微子還需要純水呢?

這是由於中微子在穿透純水的時候會留下痕跡,也就是契忍可夫輻射。並會留下藍色的輝光。

如果純水的體積越大,那麼留下的契忍可夫輻射就越明顯。就更易研究中微子的規律。

日本的神崗探測器在一個神達1000米的礦井中。

其設備的高度有41米,長度39米。理論上可以裝滿5萬噸的純水。只要研究太陽發出中微子,以及質子衰變效應。

日本後續計劃用該實驗裝置研究超新星爆發,依舊更多宇宙中微子。

這就要求該裝置升級,後續日本政府打算在兩年後在此基礎上建立更加巨型的探測器。

當然神崗探測器已經為日本人囊收了一次諾獎。也就是證實了中微子在反應堆中的震盪。該項目領軍科學家小蔡昌俊也因此獲得2002年諾貝爾物理學獎。

日本之所以會在地下存五萬噸水,是為了測量中微子的運動而存在的,在日本的一個廢棄砷礦中,日本東京大學在那裡建造了「超級神綱」探測器。

超級神綱探測器是專門用來探測中微子的一個探測器,在這個實驗礦洞里裝有多達五萬噸的純水,工作人員光需要裝填就裝填了兩周時間。

那麼很多小夥伴可能就會有疑問,一萬噸純水怎麼就會測量到中微子呢?用其他簡答一點的方法難道不行嗎?

這是因為中微子是不帶電的粒子,所以也使得觀測它較為困難,大多數情況下,它可以無視物質的存在直接傳過去。

它可以輕而易舉的傳過地球,每秒中會有幾十億的中微子穿過我們每個人的身體。中微子的最小的質量僅有電子的百萬分之一。

但是我們可以利用光的折射率來觀測中微子,我們都知道光在水中會折射,因此光在水中的速度會降低到75%光在真空中傳播的速度。而中微子的速度是無限接近於光速的,中微子在純水中行進時會對純水中的光產生影響。

日本科學家尾田利用這一點觀測到了中微子的震動性,並證實了中微子是擁有質量。

事實上在我們這個宇宙當中,有許許多多看不見的粒子,而在這些看不見的粒子當中,有一種粒子就叫中微子,中微子是輕子的一種,也是最基本的粒子之一。

就一些科學數據來看,每秒大概有上千萬億數量的中微子穿過人體,但人類卻一無所知,所以尋找中微子就成了人類研究的方向之一。

但中微子的質量很小,且與其他物質的相互作用很弱,如果要捕捉到中微子的蹤跡,就需要要有一個非常強大的儀器,而且這個儀器必須要在地下。

因為只有這樣才能有效的隔絕外界環境的干擾,於是在種種前提之下,日本的超級神岡探測器就孕育而生。

超級神岡探測器內儲存了數萬噸的水,這些水為什麼能捕捉到中微子呢?答案實際上很好解釋,我剛才上面已經說了,中微子與物質的相互作用很弱。

但很弱就代表有非常少的一些中微子,在穿過物質的時候會留下一些痕跡,所以這數萬噸的水,就是尋找那一絲絲的痕跡。

比如說中微子在和原子核接觸的時候會產生輕粒子,而輕粒子最終就會產生一些可見和不可見的光。

那麼為了順利的捕捉到中微子的蹤跡,超級神岡探測器有一萬多個光電倍增管,光電倍增管的作用就是放大光的信號,讓人們更有效的發現中微子的痕跡....

日本在地下存了五萬噸水,究竟是為何?

咋一看還以為是日本又要搞啥陰謀了,當然作為有原罪的日本讓各位有這樣先入為主的感覺也並無不當,但這從這地下五萬噸水的角度聯想,很明顯這是日本一個探測中微子的科研項目「超級神岡探測器」的主體探測部分!那麼吃瓜群眾有話要說了,你騙鬼呢!中微子都能穿透地球,那「一桶水」有個毛用啊!你還別說,真有用!

熟悉核反應堆藍色輝光的朋友馬上就知道這是切倫科夫輻射,這是在介質中運動的物質超過光在這種介質中的運動速度時發出的一種電磁輻射,特徵就不用說了,上圖那藍幽幽的恐怖光芒就是,但可以放心會發出輻射並不是這種光!它是1934年前蘇聯物理學家切倫科夫發現,因此以他的名字命名了這種輻射!

超級神岡探測器結構示意圖,非常明顯,為隔離其他穿透力極強的宇宙射線影響,這些設施都位於極深的地下!

而鑲嵌在內壁的一個個半透明玻璃球則是11200個極為敏感的光電探測器,而這個巨大的容器內部可以存放超過5萬噸的純水!探測原理就是「切倫科夫輻射」,因為中微子不會有任何物質阻擋它的前進,因此無論在什麼物質中它的速度基本不會改變(中微子極其接近光速)!而光在水中的速度則只有真空中約75%,因此從表面上來看中微子在水中是超過光的速度前進的,因此所經之處會發出切倫科夫輻射!

通過光電探測器探測到的倫科夫輻射環,這就是隱藏在深深的地下卻能窺探到宇宙奧秘的中微子天文學!超新星1987A爆發時產生的中微子就被神岡探測器和美國的中微子探測器一起接收到!在上世紀九十年代神岡探測器又經過升級成了上文中的超級神岡探測器!另中微子探測也讓日本在諾貝爾獎上有所斬獲,1998年領導中微子探測的日本科學家小柴昌俊首次確認了中微子震盪現象,並在2002年時獲得了諾貝爾物理學獎。

基礎科學研究的突破越來越離不開超級設備與工程的支持,我國在中微子探測方面也在追趕腳步,大亞灣核電站深處的岩層下就有超級陣列的中微子探測設備,當然原理一樣!但研究的目標主要是核電站本身所產生的中微子!

大亞灣項目的建造目標也是為了進一步研究中微子振盪!

因為中微子是輕子的一種,它幾乎不與任何物質發生反應,地球上每天都有大量的中微子「穿過」,它們主要來自太陽、超新星爆發等。

日本東京大學在一個廢棄的礦山深處儲存了五萬噸的純水,建造了這個深達1000米的超級神岡中微子探測器,最初的目的是探測質子衰變同時也用來尋找中微子。

前邊已經說了中微子幾乎不與任何物質發生反應,幾乎只參與弱相互作用。我們的身體每天都有大量的中微子穿過,人類探測它們很困難,但也並不是沒有辦法。中微子入射到探測器後會產生電子和μ子,而中微子探測器中的光電管便可偵測出它們的切連科夫輻射,而超純水就是接受中微子的介質。

這個輻射最早由蘇聯的物理學家切連科夫在1934年發現,當高速帶電粒子在介質中穿行時,如果速度大於該介質中的光速,那麼就會產生一種方向性很強的光輻射,很容易被辨別出來。

好多國家都有類似的中微子探測器,日本的這個中微子探測器的發現已經讓多位科學家獲得了諾貝爾物理學獎。

與此前有關報道的日本大量儲備石油、天然氣、稀土以及煤炭等戰略資源不同,目前日本在地底下儲存的50000噸純水不是作為戰略儲備,而是日本東京大學的小柴、戶冢、梶田三師徒共同創建的超級神岡探測器。

超級神岡探測器之所以要儲存這五萬噸100%的超純水,主要是探測質子衰變以及被設計用來來尋找太陽、地球大氣的中微子,並觀測銀河系內超新星爆發。

為了達到這一探測目的,日本於1983年在位於日本本州島中部,距名古屋北30公里、大阪東150公里、東京西300公里,且具有「森林之國」、「山水之國」美譽的岐阜縣境內建造了超級神岡探測器。為了阻隔其他宇宙射線的影響,該探測器建在位於一個廢礦地底下約3300英尺處(1000米),設施的主體是一個高41.4米、直徑39.3米的不銹鋼圓柱形的容器,其高度幾乎與15層樓相當,而僅內部探測器盛水的「水箱」直徑為33.8米、高度為36.2米,體積約為3.14*(33.8/2)²*36.2=32464.72立方米。

不僅如此,神岡實驗室資深學術顧問小柴昌俊還領導團隊在不銹鋼圓柱形容器的內壁上安裝有11200個光電倍增管,利用超級神岡探測器龐大的體積和無任何污染的超純水,並結合用於中微子個頭小、不帶電,且以接近光速運動,並且可自由穿過地球的特性,探測高速中微子在水中通過時產生的切倫科夫輻射。

經過一系列的觀察和研究,超級神岡探測器可謂是碩果累累,它使得小柴昌俊團隊在探測宇宙中微子和發現宇宙X射線源方面取得較高成就,並因此於2002年獲得諾貝爾物理學獎。與此同時,超級神岡探測器還製造了數個諾貝爾物理學獎等級的成果。

為了是科學研究更加深入,在超級神岡探測器既有1000億日元(約為60以人民幣)投入上,日本政府還打算打造升級版超級神岡探測器,屆時將會有哪些新的成果出現呢,讓我們拭目以待吧!

題目中說的應該是日本的超級神岡探測器(內部裝有五萬噸水),這個科學裝置因探測中微子以及證實了著名的中微子振盪而出名。

可能有些朋友感到疑惑,為什麼探測中微子的裝置需要用到五萬噸超純水呢?

中微子探測,聽上去是多麼的高大上,而且中微子幾乎不與物質發生反應(僅參與弱相互作用和引力相互作用),光用水就能生效了?

還真是這樣,原理就是利用中微子與水的相互作用,產生的次級粒子(電子)運動速度超過了水中的光速,由此產生切倫科夫輻射(散發出藍色光芒被內部的光電倍增管探測)。當然了,探測中微子的辦法並不是只有這一種,這里就不多舉例了。

所以說,這五萬噸水完全是科學研究所用,並沒有什麼其它含義。

『貳』 日本在地下1000米深處,儲存了5萬噸超純水,20多年來目的何在

日本作為一個島國, 自然資源並不豐富,經常要向別國進口石油、煤炭 ,但凡事都有利有弊,日本雖然極度缺乏工業原料,但卻是個水資源大國。

在世界水資源匱乏的現在,水資源已經成為世界性的問題。但 日本作為一個水資源大國,卻在一個偏遠城市的地下藏起了5萬噸超純水 ,這是怎麼回事?難道說又是日本的陰謀嗎?

日本為什麼要儲存這么多超純水?

超純水,顧名思義就是超級純凈的水, 電阻率達到18 MΩ*cm(25 )的水就稱之為超純水 。超純水並不常見,一般只有在實驗室才會用到。

因為這種水, 除了水分子外,幾乎沒有什麼雜質, 不僅沒有細菌,也沒有人體所需的礦物質微量元素。如果意外喝下去,還會引起細滲透壓變化,導致細胞膨脹甚至破裂,對人體造成損傷。

那日本儲存這么多的超純水來做什麼?這些水又不能喝。答案是, 為了探測中微子

在上個世紀80年代,日本為了探測質子衰變,在岐阜縣的一個廢棄礦山的礦井中,修建了一個名叫 「神岡核子衰變實驗」的神秘建築, 完工後整個建築呈圓柱形,高16米,直徑15.6米,裝有3000噸水和大約1000隻光電倍增管。

起初因為靈敏度不夠,沒有達到探測目的,就在1985年開始擴建,這極大地提高了探測器的靈敏度。於是在87年2月,神岡探測器與美國的探測器共同發現了 大麥哲倫星雲中超新星1987A爆炸時產生的中微子, 這是人類首次探測到太陽系以外的天體產生的中微子。

這次探測給了日本研究人員極大地鼓舞,又對實驗室進行了擴建,耗資1億美元建造了更大的探測器,也就是今天的「 超級神岡探測器」 。其中的探測物質從3000噸超純水,增加到50000噸超純水,各方面全面升級,可謂是鳥槍換炮。

1996年,「超級神岡探測器」正式被投入使用,探測范圍從原來的探測質子的衰變,擴展到尋找太陽、地球大氣的中微子, 並觀測銀河系內的超新星爆發。

自1998年,超級神岡探測器開始發布中微子探測結果起, 就給日本科學界帶來了多個諾貝爾物理學獎桂冠 ,例如小柴昌俊(2002年)以及梶田隆章(2015年)。

什麼是中微子?

現代科學證實, 人類所在的物質世界,是由各種基本粒子構成的, 中微子也是組成自然界的基本粒子之一,是輕子的一種。

不過中微子卻有著非常奇特的性質, 雖然它的數量之多,在宇宙中無處不在,但卻基本不與其他物質進行相互作用,是個中性物質, 因此就算每秒鍾通過我們眼睛的中微子數十億計,我們也渾然不覺,被稱為宇宙「隱身人」。

最初提出中微子設想的是匈牙利物理學家泡利,當時的科學家在研究β衰變(即原子核輻射出電子轉變成另一種核)時,發現在這個過程中有一部分能量不知去向。於是開始開始質疑能量守恆定律,但年僅30歲的泡利堅信能量守恆定律,於是提出非凡的猜想:在此過程中, 必定還有一種不帶電的、質量極小的與物質相互作用極弱,以至於無法探測到的新粒子放出來,是它帶走了那一部分能量。 他把這種未知的粒子叫做「小中子」,就是現在說的「中微子」。

1942年,美國物理學家艾倫按照我國物理學家王淦昌提出的方法, 首次通過實驗間接證實了中微子的存在。

在泡利提出「中微子假說」後的26年後,也就是1956年美國加利福尼亞大學萊因斯教授帶領的團隊,通過把400升醋酸鎘水溶液作為靶液,放入新投入使用的核反應堆中(作中微子源),每小時測得2.8個中微子,這個結果與泡利的理論預測完全一致。 因為在實驗中直接觀測到了中微子,萊因斯於1995年獲得諾貝爾獎。

中微子,作為宇宙中的基本粒子之一, 它們的速度非常接近光速,而且個頭小、不帶電,只參與非常微弱的弱相互作用和引力相互作用。 而且這種力的作用距離極短(小於10^-17米),這個范圍其實就是原子核內的誇克層面。

因為中微子,不與其他物質反應的性質,導致科學界花費了接近30年才直接觀測到中微子。直到後來,科學家發現,中微子在水中穿行時,又極小的概率與水中的氫原子與氧原子發生反應。由於光在水中的速度只有真空中的75%,而接近光速的中微子,在水中的速度比光還快, 中微子在水中的「超光速」會發出一種獨特的輻射光,切倫科夫輻射光。

而日本之所以會在地深處1000米的地方裝上5萬噸超純水, 一個是為了更好地與中微子反應,另一個就是為了避免接收到出中微子外其他的宇宙射線, 保證中微子發出的切倫科夫輻射光能被准確的記錄下來。

為了記錄這些輻射光,科學家在超級神岡探測器的內壁上 設置了1.12萬個光電倍增管 ,其功能是 將輻射光信號盡可能地放大(可以高達1億倍) 。工作時,這一萬多個光電倍增管就是一萬多隻眼睛,它們在黑暗中忠實的記錄著中微子在超純水中反應發出的切倫科夫輻射光信號。

事實證明這個裝置十分有效,不僅首次 觀測到超新星爆發時散射的中微子 ,還觀測到來自太陽系的中微子。

是的,這些會「隱身」的中微子就是來自於太陽。 太陽這個巨大的恆星,相當於一個大型的熱核反應堆,無時不刻進行著聚變反應, 向宇宙散發出無數的中微子,因為地球沒有完全接受到來自太陽的中微子,所以無法估計中微子的數量有多大。

根據物理學家的研究表明, 太陽每產生3個光子就會伴隨產生兩個中微子, 但在相當長的時間里,地球上觀測到的中微子數量只有理論的三分之一,這就是美國科學家戴維斯發現太陽中微子失蹤之謎,他也因此獲得了2002年的諾獎。

我們不禁會想這剩下的三分之二的中微子跑到哪裡去了,憑空消失了嗎?直到1987年觀測到的一場超新星爆炸,那些產生的中微子並沒有像太陽中微子一樣消失了三分之二, 於是科學界猜想,中微子可能不止一種,而是有三種,並且相互之間還可以互相轉化, 這就是日本東京大學教授小柴昌俊提出的「中微子震盪」假設。在2001年加拿大SNO實驗也證實了失蹤的太陽中微子轉換成了其它中微子。證實了中微子之間可以互相轉化,並且中微子的數量不止一種。

現代科學研究告訴我們, 中微子的種類上限為3,即有3種中微子。 除了上述發現的電子型中微子之外,還有μ型中微子(1962年發現)和τ型中微子(1975年發現),每一種中微子都有相同的反中微子。

中微子的作用

一、獲得恆星內部的消息

因為中微子是質量極小的不帶電的基本粒子。它廣泛存在於宇宙的每一個角落, 平均每立方厘米就有300個左右,比其他所有的粒子多出數十億倍, 對整個宇宙有著舉足輕重的地位。

而且因為它幾乎不與一般的物質產生相互作用,在恆星內部的中微子可以不受拘束地跑出恆星表面,因此只要探測到這些來自於恆星內部的中微子可以獲得有關其內部的信息。 得到太陽、超新星乃至整個宇宙內部的演化過程和內部結構的規律。

二、地質學

此外,由於中微子與物質相互作用的截面會隨著中微子能量的提升能增大,利用高能加速器對中微子進行加速,產生的定向照射地層,與地層物質性互作用相互作用會產生內局部震動, 能夠實現對深層地質的掃描和勘探。

而且地球內部的放射性元素衰變也會產生中微子, 捕捉這些中微子就可以得到地球內部結構的精確數據和演進規律, 讓埋在地球深處的奧秘一覽無遺。

三、核反應過程的診斷

也許中微子最明顯的應用就是在核反應堆中。這一領域正在積極發展,並基於這些粒子正在創建各種感測器,從而能夠實時監測核電站反應堆的功率,並了解其燃料的復合成分。

四、軍事領域

1、 中微子雷達

因為核反應會產生大量的中微子,中微子可以輕易地穿透各種障礙物。所以通過中微子信號的探測可以發展出中微子雷達,實現對深海核潛艇和地下核設施的精準定位。

2、中微子武器

主要用於銷毀敵人的核武器庫。利用加速產生的中微子束定向照射核材料,可以將核材料點燃和銷毀。

3、中微子天文學

通過中微子可以任意穿行恆星內外之間,通過研究這些中微子,可以發現甚至非常遙遠天體的屬性。因為任何恆星,其本質上都有一個熱核反應堆,它們都會發射出大量的中微子。在研究過程中,科學家發現,隨著恆星年齡的增長,它形成的粒子的數量在逐漸減少。在「臨終時刻」,恆星會失去高達90%的中微子,這就是為什麼中微子開始冷卻的原因。

4、通訊方式

在這一領域,中微子還沒有被真正使用,因為這些技術只停留在理論上。從1970年起美國就有科學家開始研究以中微子為載體的通信技術,因為中微子可以無障礙地任意穿行在事物內部,所以這就極大地促進數據在任何地方的傳輸,到地球的任何地方,甚至到達地表深處,認為中微子可以勝任全球點對點無線直連以及地面和深海之間電磁波難以完成的通信任務。而且這種通信技術還不會對人體造成輻射傷害,可以說是一種清潔、高效的電子通信方式。

結語

人類的 科技 在不斷的進步,從預言中微子到發現,最終證實中微子的存在,科學界花了一個世紀的時間, 但目前我們對於中微子還知之甚少。

日本在2019年發布將升級超級神岡探測器,為儲水26億噸的頂級神岡探測器,將擁有數倍超級神岡探測器的實力, 我國的江門中微子實驗,將最早於2022年開始收集數據, 這個位於地下700多米深的中微子探測設施將進一步揭開中微子的神秘面紗。

『叄』 日本將在地下1750米,存放26萬噸超純水,究竟有何目的

水在地球上很常見,地表的七成覆蓋著海水,海水的總質量估計高達140億億(1.4 10^18)噸。另外,在地下深處1000公里,還隱藏著大量的水,總量估計與地表海水差不多。

但要說真正意義上純凈的水,地球上並沒有。在自然界中,水都會或多或少包含一些礦物質、微生物等雜質。不過,日本已經在地下存放了5萬噸超純水,也就是幾乎只有水分子(H2O)的水,未來還將會再儲存26萬噸的超純水,他們這么做究竟有什麼目的呢?

這其實涉及到了追蹤宇宙中神秘的「幽靈粒子」——中微子。這是粒子物理標准模型中不可再分割的基本粒子,本身不帶電荷,質量極低,以十分接近光速的速度運動。

然而,想要探測到中微子極其困難,因為它們只極為微弱地參與弱相互作用和引力作用。中微子可以非常輕易地穿過諸如地球這樣的巨大物體,而不會引起什麼反應。

據估計,每秒有100萬億個中微子會穿過人的身體,其中大部分來自於太陽。在太陽的核心區域,氫核聚變產生伽馬光子的同時,也會釋放出大量的中微子。盡管每時每刻都有大量的中微子穿透我們的身體,但我們無法直接感知到它們的存在。

為了探測到難以捉摸的中微子,需要通過特殊的手段。在地下1公里深的礦山中,日本科學家建造了超級神岡中微子探測器。因為只有遠離地表,才能排除掉其他宇宙高能粒子的干擾。而中微子穿透性很強,探測器可以在地下深處來捕捉它們。

除了遠離地表,而且還要超純水。通過特殊的凈化系統,去除水中的離子、塵埃顆粒以及微生物等雜質,從而得到基本上只有水分子的超純水,純度可達99.999999%。

通常情況下,水可以導電,因為水中包含一些雜質,存在大量自由移動的離子。而超純水中只有水分子自偶電離產生的少量氫離子和氫氧根離子,其導電性幾乎沒有,電阻率為18.2 MΩ·cm,可以認為是半絕緣體。

只有去除掉水中的雜質,才有一定概率探測到中微子。當中微子與水分子發生相互作用之後(概率極小),將會釋放出速度極快的高能粒子,它們的速度會超過光子在水中傳播的速度,從而輻射出波長很短的電磁輻射,這就是切倫科夫輻射。

在超級神岡中微子探測器中,儲存著5萬噸的超純水,該研究項目耗資7億元人民幣。未來,日本還要建成超巨型神岡中微子探測器(頂級神岡),其中將會把26萬噸超純水深埋於1750米的地下,新研究項目的耗資將會超過50億元,建成後將會是世界最大的中微子探測器。

超級神岡探測器於1983年投入使用,它給人類帶來了一系列重大科學發現。1987年,超級神岡探測器探測到了大麥哲倫星系(距離16萬光年)中的一顆超新星所釋放出的中微子,它們比伽馬射線暴提前3小時到達地球,這個重要發現給未來預測超新星爆發提供了可能性。

另外,超級神岡探測器還發現了中微子振盪,證明中微子並不像光子那樣沒有靜質量,只是非常低。憑借著這些重大發現,先後有多位物理學家因此獲得諾貝爾物理學獎。

預計在2027年,頂級神岡將會投入使用,它的靈敏度比上一代有了大幅提升。到了那時,新一代中微子探測器將有望揭開質子衰變之謎,甚至是宇宙起源之謎。而這一切都離不開看似平常的物質——水。

『肆』 日本在地下存了五萬噸超純水,為什麼他們這么做

中微子是一種非常難捕捉的粒子。它可以輕易地穿過宇宙中的物質而不帶電,幾乎不留痕跡。每秒鍾都有數千億個中微子穿過人體,但人永遠感受不到。尋找中微子最好的方法是使用「超神幫」這樣的探測器。

中微子雖然速度快,質量小,但通過純水時會留下微弱的痕跡。這種被稱為切倫科夫輻射的現象就是尋找中微子的訣竅。水越純凈,這種輻射就越明顯。這就是為什麼日本把水藏在一個近千米深的礦井裡。

太陽、地球、核反應堆、超新星爆發、宇宙誕生的大爆炸等。都產生大量的中微子。它們以接近光速的速度飛行。根據物理理論,每秒鍾有1000萬億個宇宙中微子穿過一個人的身體。由於中微子幾乎不與物質發生反應,發生反應的概率很小,所以需要建造一個巨大的探測器來「捕捉」它,「超神幫」就是在這樣的背景下誕生的。

中國有江門中微子實驗用的2萬噸液體閃爍探測器,建在廣東省江門市開平市大石山、金雞鎮、赤水鎮。大石山距離陽江和泰山反應堆只有53公里,符合距離反應堆60公里左右的要求,因為反應堆出來的中微子在這里有最明顯的振盪效應。

『伍』 30年前,日本在1000米地下儲藏了5萬噸純凈水,究竟有何目的

眾所周知,日本乃是一個資源短缺的島國,這是先天條件導致的,除了依賴進口外,幾乎沒有解決之道。不過,凡事有利就有弊,雖說日本沒有石油、煤炭等資源,但水資源卻十分豐富,堪稱「取之不盡,用之不竭」。不過奇怪的是,日本岐阜縣卻在1000米的地下儲藏了5萬噸純凈水,他們究竟意欲何為?

由此可見,人類對宇宙的探索從未停止過,大到星體,小到中微子,只要這世上還存在未解之謎,就會有人一直為之奮斗。有句話說得好:好奇才是前進的驅動力,宇宙是神秘的,同樣也是精彩的,終有一天,人類會揭開全部的謎底。

『陸』 「超純水」是怎樣的,日本為何要在地下儲存了五萬噸

「超純水」是怎樣的,日本為何要在地下儲存了五萬噸?

如果我們要問哪裡的水是最清澈的,那麼答案大概率就是東京大學在日本岐阜縣飛驒市神岡町茂住礦山地下1000米處修建的超級神岡探測器,在這里儲存在5萬噸超純水。這5噸超純水的純凈程度幾乎是人類技術所能夠做到的極限,沒有任何雜質、離子甚至是沒有任何空氣溶解在水中。那麼問題來了,為什麼在這地下1000米深度儲存5萬噸超純水,到底有什麼用意呢?

『柒』 日本在地下存放了5萬噸超純水,他們的目的是什麼

顧名思義,所謂超純水就是指非常純凈的水,電阻率達到18兆歐姆·厘米(25 )的水就可以稱為超純水。為什麼水的純凈度會與電阻率有關呢?這是因為水本身是電的不良導體,水中的雜質越少,電阻率就越大,相應的其導電性能就越小。

盡管超純水在自然界中是不存在的,但人類卻可以自己動手來制備,通常來講,超純水的制備量都很少,不過凡事都有例外,日本東京大學的科學家就在地下存放了5萬噸超純水。那麼他們的目的是什麼呢?答案就是探測宇宙中的「隱身粒子」——中微子。

中微子是宇宙中的一種基本粒子,它們的運動速度通常都非常接近光速,強相互作用力和電磁力都不會對中微子產生作用,而由於中微子的質量又極小(一般小於電子質量的100萬分之1),因此引力對它的作用也幾乎等於零,也就是說,四大基本力中有三種都對中微子無效。

弱相互作用力對中微子有效,不過這種力的作用距離極短(小於10^-17米),這個范圍其實就是原子核內的誇克層面。簡單來講就是,只有中微子直接撞上了原子核內的誇克,科學家才有可能探測得到它們,那這種概率有多大呢?我們不妨來看一下數據。

原子、誇克和中微子直徑的數量級分別為為10^-10米、10^-18米和10^-20米,也就是說,如果把中微子放大成一顆直徑1厘米的小球,那麼按照相同的比例放大,原子的直徑就有10萬公里,而位於這個原子中心的誇克的直徑則卻有1米。

由此可見,中微子擊中誇克的概率可以說低得令人發指,所以在絕大多數時候,中微子都是直接穿過原子,我們根本就察覺不到,正因為如此,中微子也被稱為「隱身粒子」。

宇宙里中微子的數量相當巨大,對我們地球人而言,平均每秒鍾就有數十萬億個中微子穿過我們的身體。由此可見,盡管中微子撞上誇克的概率極低,但在如此多的中微子里,仍然可能會有極少的一部分會與地球上的物質產生互動。

因此科學家只需要建造一個巨大的「靶子」,並對其進行嚴密的監測,就可能探測得到中微子,而日本在地下存放了5萬噸超純水的目的,就是建造這樣一個「靶子」。

這個項目全稱為「超級神岡中微子探測實驗」(Super-Kamioka Neutrino Detection Experiment),科學家將超純水裝在一個直徑39.3米、高41.4米的不銹鋼圓柱形容器之內,被深深地埋在日本岐阜縣飛驒市神岡町的一處深達1公里的廢棄礦井中。

為了保證水的純凈度,這里的空氣都是凈化處理過的,而容器里的超純水更是會被不停地進行循環凈化,去除掉其中所有能夠被去除的雜質。科學家認為,在地下1公里處,可以有效地避免地球表面的各種干擾,而超純水又幾乎是完全透明的,這樣就可以大幅度地提高發現中微子的可能性。

當中微子撞上了原子核中的誇克之後,會產生電子和μ子(μ子和電子一樣屬於輕子,其質量大約為電子的200倍,半衰期只有2.2 x 16^-6秒),這些電子和μ子的速度極快,甚至會超過光在水中的速度,在這種情況下,就會產生切連科夫輻射,從而釋放出非常微弱的光信號。

為了探測這些光信號,科學家在這個容器的內壁上設置了1.12萬個光電倍增管(上圖中的金色圓球),其功能是將光信號盡可能地放大(可以高達1億倍)。

在處於工作狀態的時候,這些光電倍增管就像是1萬多隻眼睛一樣在黑暗中「盯」著容器里的超純水,靜靜地等待著某個來自宇宙深空的中微子一頭撞在誇克上所發出的那麼一丁點微光。

如此精心的安排沒有白費,迄今為止,該項目已經多次探測到了中微子,從此拉開了中微子天文學的序幕,而日本科學家也因此獲得了兩個諾貝爾物理學獎(分別為2002年和2015年)。順便講一下,該項目其實還有另外一個目的,那就是探測質子衰變,不過這一目標始終沒有實現。

『捌』 超純水究竟有何用,日本為何要儲存5萬噸

日本儲存萬噸超純水是想觀察水中的中微子。通過放置20年達到清晰度,通過一個超級神岡探測器進行觀測。

建造這個容器的目的就是在裡面存放了超過5萬噸的超純水,現在已經過去了20多年的時間,這些超純水一滴都沒有被喝過。

3

那麼什麼是中微子呢?在自然界當中它無處不在,可以任意的在宇宙和地球中穿梭,被稱為是最高能的中微子,過了20年的時間才確定了中微子的存在,它還有可能是來自於太陽系之外的產物,而這些超純水就是為了檢測到中微子的存在,只因油水保持足夠的清潔度才可以觀察到中微子的出現,因為它的出現以及離開是轉瞬即逝的,如果水中有任何一點污染高能中微子就無法被監測到。

這一切的建立對於天文學來說擁有著舉足輕重的意義,1983年,模型建立之後在1987年就觀測到了超新星爆發的現象,證明了超新星爆炸理論是非常正確的理論。

總的來說,這一項發明和理論,如果能夠成功肯定是一項巨大的,有意義的事情。通過超級神岡探測器進行觀測一種物質,是否是太陽照射留下的中微子。

『玖』 為什麼日本要在地下1千米,存儲5萬噸超純水呢

為什麼日本要在地下1千米,存儲5萬噸超純水呢?


超級神崗探測器水箱內的水都是超純凈的,需要不斷多次凈化,並通過紫外線消毒殺死任何可能細菌,生成的超純水非常純凈,其性質與普通水差別巨大,可以溶解接觸的大部分物質。曾經有人不小心頭皮接觸裡面的超純水後導致頭皮發癢,據說比得水痘還癢。2000年把油箱里的水排干時,發現了一個1995年留下的扳手的輪廓,很明顯,扳手已經溶解了。

『拾』 日本要在地下1800米,存放26萬噸超純水,有什麼目的

1982年,在一座廢棄多年的礦山之下1000米,日本斥資1億美元,耗時多年建造了一個直徑和高度大約為40米的圓柱體不銹鋼容器,裡面裝著5萬噸的超純水,其純度高達99.999999%。

2020年,日本又斥資6億美元,在地下1800米的地方,開始建造更為龐大的圓柱體不銹鋼容器,計劃7年建成。新容器的直徑和高度大約為70米,其中能夠裝下多達26萬噸的超純水。

超級神岡探測器的發現不僅在於開啟了一門全新的天文學分支——中微子天文學,而且還能為預警超新星爆發提供了可能。雖然中微子的速度略慢於光速,但它們先被釋放出來,早於伽馬射線暴3小時抵達地球。

研究中微子,還有助於探測極為神秘的暗物質,因為中微子有可能是一種暗物質粒子。超級神岡探測器已經取得了一系列重大發現,多位物理學家因此而獲諾貝爾物理學獎。有了超級神岡的經驗,日本正在建造更為靈敏的中微子探測器,也就是頂級神岡探測器,它能為我們揭開更多的前沿物理學之謎。

閱讀全文

與日本超級純水多少噸相關的資料

熱點內容
弱酸性氫型陽離子交換樹脂 瀏覽:327
魚缸過濾系統過濾棉能當生化棉用嗎 瀏覽:754
中水回用利用率必須達到30 瀏覽:672
污水培訓簡報 瀏覽:992
含硫污水處理答辯記錄 瀏覽:511
水處理室管理制度 瀏覽:977
飲水機一桶水多少升合適 瀏覽:164
超濾凈水可以 瀏覽:582
比亞迪漢濾芯怎麼換 瀏覽:352
為什麼油煙凈化器只有高壓線 瀏覽:645
國產污水流量計價格 瀏覽:259
長城m4的空氣濾芯在哪裡 瀏覽:60
凈水機濾芯50G代表什麼 瀏覽:526
mc2濾芯漏水什麼問題 瀏覽:106
120目疊片過濾器價格 瀏覽:515
納濾凈水機和超濾凈水機的區別 瀏覽:928
呼吸機過濾器多少錢 瀏覽:307
大型酒廠蒸餾設備 瀏覽:995
海水淡化多效蒸餾原理 瀏覽:236
污水泥處理主要處理什麼污染物 瀏覽:566