導航:首頁 > 設備說明 > 過濾除塵設備論文

過濾除塵設備論文

發布時間:2022-03-27 09:12:36

① 除塵器論文怎麼寫啊~~

網上搜啊 很多的

② 除塵設備的除塵機理是什麼,可以分為幾種類型

除塵器的唯一功能是將粉塵從含塵氣流中分離出來。根 據粉塵特性及塵粒在氣體中的運動規律設計並製造各種除塵器, 其除塵機理是利用重力、離心運動、慣性碰擦、靜電力、篩分、 擴散、鑲嵌等作用。
(1) 重力。地球上所有物體均處於地心引力之下。含塵氣體 中的塵粒在重力作用下自然沉降,粉塵即從含塵氣體中分離出來。 (2) 離心運動。做旋轉運動的含塵氣體,在合外力突然消失 或者不足以提供圓周運動所需向心力的情況下,做逐漸遠離圓心 的運動,即離心運動。
如果做旋轉運動的含塵氣流其各個部分間 的作用力不足以提供使塵粒做圓周運動所需的向心力,則含塵氣 流中的粉塵將做離心運動,於是粉塵從旋轉中的氣流中被甩出來, 即塵氣分離。 (3) 慣性碰撞。
任何物體均有保持固有慣性的特點。塵粒也 是物體,當其運動中受大阻力時,含塵氣流將改變方向,微小塵 粒因質量小,可隨氣流一起運動。而質量大者,由於慣性大,所 以保持原來運動方向。這樣,塵粒較大者即從含塵氣流中分離 出來。
(4) 篩分。當含塵氣流通過過濾時,粉塵粒徑大於濾料孔隙 尺寸,則塵粒被濾料阻留下來,而小於濾料孔隙尺寸的塵粒通過 濾料,這就是篩分。 (5) 鑲嵌與架橋。由於粉塵形狀各異,尺寸大小不一,所以 濾料孔隙尺寸也各不相同。
當粉塵某個方向的尺寸正好與濾料孔隙某一部分尺寸相當時,則因塵粒與濾料孔隙的摩擦阻力而被卡 在孔隙尺寸相當的部位上,這就是鑲嵌;也可能有限細長針狀塵 粒橫搭在孔隙的狹窄部位中,這就是架橋,從而使濾料孔隙變得 越來越小。
(6) 擴散。在含塵氣流中,有些很微細的塵粒,像氣體分子 一樣做布朗運動,這就增加了與集塵物體表面接觸或碰撞的機會, 使塵粒被捕獲。(7) 靜電力。
懸浮於空氣中的微細固體顆粒由於某些原因總 有可能帶上電荷,當帶有電荷的粉塵通過電場時,會因為異性電 相吸引而被捕獲。

③ 跪求布袋除塵系統的設計!文章也好,連接也可以!謝!

先,我們要知道布袋除塵器的過濾原理,因為下面所講得就是過濾的問題!過濾原理:含塵氣體由進風口進入,經過灰斗時,氣體中部分大顆粒粉塵受慣性力和重力作用被分離出來,直接落入灰斗底部。

布袋除塵器作為一種高效除塵設備,目前已廣泛應於各工業部門。近年來,隨著國民經濟的發展以及愈來愈嚴格的環境保護要求,布袋除塵器在產量上有了相當大的增長,品種也日漸增多。因此,在設計工作中合理地選定布袋除塵器的基本參數,正確地進行除塵系統設計,不僅對於控制污染、保護環境有重要作用,而且對於提高設備處理含塵氣體的能力,降低設備投資從而減少工程造價,也具有極重要的經濟意義。

選擇布袋除塵器時,我們要過濾風速問題,這是一項較復雜的工作,它與粉塵性質、含塵氣體的初始濃度、濾料種類、清灰方式有密切的關系。

從設計角度講,應該也可以抓住主要問題進行分析。這是因為,目前國內產品中可供選擇的濾料種類及其清灰方式相對講不是很多,濾料及其清灰方式相應地易於確定;至於初始塵濃,除了工藝提供資料外,或經實測取得一手數據,或按設計者的經驗確定。這就是說,影響過濾風速的塵濃、濾料及清灰方式三個因素相對的說較易合理地確定。正確選擇過濾風速的關鍵,首先在於弄清粉塵及含塵氣體的性質,其次要正確理解和認識過濾風速與除塵效率、過濾阻力、清灰性能三者之間的關系。經過分析,現在知道怎麼設計布袋除塵器了吧!

④ 需求一篇關於高爐煤氣除塵的文章或論文

鍋爐控制系統設計 鍋爐控制系統設計

40頁 1.8萬字

為了減少大氣污染和節約能源,燃氣鍋爐正在逐步取代燃煤鍋爐供電、供熱,如熱電廠既供熱又發電等等,特別在大型冶金企業生產過程中產生的各種煤氣,如高爐煤氣、焦爐煤氣、轉爐煤氣等現在基本上都已回收利用。由於各個企業經濟、技術等條件的不同,能源的利用程度等也是有差別的。由於控制不當,有的甚至產生嚴重的大氣污染。
本設計是對一家石化廠燃煤蒸汽鍋爐控制系統的改造。將變頻調速技術與智能控制技術相結合,設計成以燒瓦斯為主、燒煤為輔的控制系統。針對燃燒過程的特性,藉助變頻器能無級調速和節能,並且有很好的動態跟蹤的特性,可以實現輸入的空氣量自動跟蹤燃氣量和燃質的變化。再加上智能控制策略可以解決瓦斯氣燃燒過程中的數學建模問題,就很好地實現了燃燒過程的優化。本設計還可以實現遠程式控制制,保證了工作過程中的高效、及時和安全性。

1 緒 論 1
1.1 鍋爐控制研究的背景和意義 1
1.2 國內外蒸汽鍋爐控制的研究狀況及其發展 1
1.2.1 蒸汽鍋爐控制系統的發展 2
2 總體方案 5
2.1 原蒸汽鍋爐的狀況 5
2.2 主控制對象和設備 5
2.2.1 鍋爐系統 5
2.2.2 控制方案 5
2.3 下位機 6
2.3.1 功能 6
2.3.2 控制流程圖 7
2.4 工藝流程 7
3 模糊控制的產生和應用 9
3.1 模糊控制的產生和發展 9
3.2 基本模糊控制器的設計 10
4 硬體配置 14
4.1 觸摸屏 14
4.1.1 觸摸屏的工作原理 14
4.1.2 Pro-face觸摸屏 14
4.2 S7-200 PLC 15
4.2.1 機械結構特性 15
4.2.2 CPU226 15
4.2.3 EM235模塊的特點 17
4.3 變頻器 18
4.3.1 變頻器的基本結構 18
4.3.2 EV 1000 18
4.3.3 EV 2000 18
4.4 其它相關硬體 19
4.4.1 接觸器 19
4.4.2 中間繼電器 19
4.4.3 火焰檢測器 19
4.4.4 按鈕 19
4.4.5 開關電源 20
5 硬體控制設計 21
5.1 出渣電機控制 22
5.2 引風風機控制 22
5.3 鼓風風機控制 23
5.4 送煤電機控制 23
5.5 其它相關硬體的控制 23
5.5.1 瓦斯閥 23
5.5.2 爐排控制 24
5.6 硬體間的通信 24
6 軟體設計 26
6.1 觸摸屏界面 26
6.2 PLC資源配置 26
6.2.1 PLC的輸入/輸出示意圖 26
6.2.2 開關量輸入/輸出地址 27
6.3 PLC程序控制 28
6.3.1 程序控制流程略圖 28
6.3.2 PLC程序 29
結 論 35
致 謝 36
參考文獻 37

部分參考文獻:

張萬忠 可編程式控制制器應用技術 北京 化學工業出版社
於慶廣 可編程式控制制器原理及系統設計 北京 清華大學出版社
林小峰 可編程式控制制器原理及應用 北京 高等教育出版社
鍾肇新 可編程式控制制器原理及應用 廣州 華南理工大學出版社

全文下載可以看我的微博 http://t.qq.com/baobee 也可以QQ問我~

⑤ 急求有關除塵器的英語論文

Experimental study of electrostatic precipitator
performance and comparison with existing
theoretical prediction models
S.H. Kim, K.W. Lee*
Kwangju Institute of Science and Technology, Department of Environmental Science and Engineering,
1 Oryong-dong, Puk-gu, Kwangju 500-712, South Korea
Received 1 February 1999; received in revised form 21 May 1999; accepted 2 June 1999
Abstract
A laboratory-scale single-stage electrostatic precipitator (ESP) was designed, built and
operated in a wind tunnel. As a "rst step, a series of experiments were concted to seek the
operating conditions for increasing the particle collection e$ciency by varying basic operating
parameters including the wire-to-plate spacing, the wire radius, the air velocity, the turbulence
intensity and the applied voltage. As the diameter of the discharging wires and the wire-toplate
spacing are set smaller, the higher collection e$ciency has been obtained. In the
single-stage multiwire ESP, there exists an optimum wire-to-wire spacing which provides
maximum particle collection e$ciency. As the air velocity increases, the particle collection
e$ciency decreases. The turbulent #ow is found to play an important role in the relatively low
electric "eld region. In the high electric "eld region, however, particles can be deposited on the
collection plates readily regardless of the turbulence intensity. The experimental results were
compared with existing theories and Zhibin and Guoquan (Aerosol Sci. Technol. 20 (1994)
169}176) was identi"ed to be the best model for predicting the ESP performance. As the second
step, the in#uence of particle contamination at the discharging electrode and at the collection
plates were experimentally measured. The methods were sought for keeping the high collection
e$ciency of ESP over elapsed time by varying the magnitude of rapping acceleration, the time
interval between raps, the types of rapping system (hammer/vibrator) and the particle reentrainment.
The rapping e$ciency and the particle re-entrainment were increased with
increasing magnitude of rapping acceleration and time interval between raps. However, when
the thickness of deposited #y ash layer is su$ciently high, the concentration of re-entrained
particles starts decreasing abruptly e to the agglomeration force which can interact among
0304-3886/99/$ - see front matter ( 1999 Elsevier Science B.V. All rights reserved.
PII: S 0 3 0 4 - 3 8 8 6 ( 9 9 ) 0 0 0 4 4 - 3
deposited particles. The combined rapping system is found more e!ective for removing
deposited particles than the hammer rapping system only. ( 1999 Elsevier Science B.V. All
rights reserved.
Keywords: Electrostatic precipitation; Turbulent #ow; Rapping; Particle re-entrainment; Collection e$-
ciency; Negative corona
1. Introction
Electrostatic precipitators (ESPs) are one of the most commonly employed
particulate control devices for collecting #y ash emissions from boilers, incinerators
and from many other instrial processes. They can operate in a wide range of
gas temperatures achieving high particle collection e$ciency compared with mechanical
devices such as cyclones and bag "lters. The electrostatic precipitation process
involves several complicated and interrelated physical mechanisms: creation
of a non-uniform electric "eld and ionic current in a corona discharge, ionic
and electronic charging of particles moving in combined electro- and hydrodynamic
"elds, and turbulent transport of charged particles to a collection
surface.
Generally, the collection e$ciency of ESP decreases as the discharging electrode
and collection plates are contaminated with particulates. Thus, a rapping system is
needed for removing the collected particulates periodically. While there have been
numerous theoretical and experimental studies on particle collection characteristics of
electrostatic precipitators, a relatively small number of the studies addressed the
e!ects of particle accumulation both at the discharging electrodes and at the collection
plates. Both phenomena are known to in#uence adversely the performance of
electrostatic precipitators. Many researchers, such as Deutsch [1], Cooperman [2],
Leonard et al. [3], Khim et al. [4], Zhibin and Guoquan [5], and Kallio and Stock
[6], concted particle collection measurements of ESP. However, they concentrated
mostly on the e!ects of both turbulent mixing and secondary wind in multiwire
single-stage electrostatic precipitators. Speci"cally, Cooperman [2] considered reentrainment
and longitudinal turbulent mixing e!ects, Leonard et al. [3] the "nite
di!usivity, and Zhibin and Guoquan [7] the non-uniform air velocity pro"le. Among
them, only Zhibin and Guoquan [7] measured the collection e$ciency of a singlestage
ESP covering a wide particle size range. Even though their experimental data
are considered to be practical and useful, their experimental conditions were not
identi"ed clearly.
In the present study, well-de"ned collection e$ciency data for an ESP are presented
covering the particle size range of 0.1}100 lm. The particles used in the present study
came from the Bo-Ryung power plant in Korea. In addition, the ESP performance
was evaluated in terms of optimum operating conditions. Finally, the optimum
rapping conditions were sought under which the rapping e$ciency increases and the
particle re-entrainment decreases.
4 S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25
Fig. 1. Schematic diagram of the wind tunnel for the eight wired single-stage ESP performance test.
2. Review of theoretical models
2.1. Particle charging
Fig. 1 shows the laboratory-scale electrostatic precipitator. The particle charging
system consists of discharge wires with diameter (D8) and two grounded parallel
plates of length (¸). A high negative voltage (<8) is applied to the corona discharge
wires, and suspended particles of diameter (d1) #ow with air between the plates at
a velocity (;) in the y-direction. In the whole range of particle sizes, both "eld
charging and di!usion charging mechanisms contribute to signi"cant charges [8,9].
In these theoretical analyses, it is nearly correct to sum the rates of charging from the
two mechanisms and then solve for the particle charging as follows:
dq1
dt
"q4
q A1!q
q4B2#d21
eN
0
4 S8k¹p
m
expA! 2qe
d1k¹B (1)
where q1 is the particle charge, q4 is the saturation charge,N
0 is the average number of
molecules per unit volume, e is the electronic charge ("1.6]10~19 C), b is the ion
mobility ("1.4]10~4 m2/V s), e0 is the permittivity of free space ("8.85]
10~12 F/m), d1 is the diameter of particle, k is the Boltzmann constant ("1.38]
10~23 J/K), ¹ is the absolute temperature ("293 K), m is the mass of a particle
("(p/6)d31
o1), and o1 is the particle density ("2.25]103 kg/m3).
2.2. Theoretical models of particle collection ezciency
Theoretical models of ESPs were provided by Deutsch [1], Cooperman [2],
Leonard et al. [3], Zhibin and Guoquan [7] and others. The Deutsch model for
S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25 5
calculating the particle collection in an ESP assumes complete mixing by turbulent
#ow and thereby uniform concentration pro"les. In order to improve the drastic
assumption of in"nite di!usivity in the Deutsch model, many researchers tried to
develop "nite di!usivity models by dealing with the convective-di!usion equation
with various boundary conditions.
Cooperman [2] developed a theory which modi"es the Deutsch model to account
for the e!ects of turbulence and particle turbulent di!usion. The major limitations of
the Cooperman model lie absence of a general method to estimate the re-entrainment
factor and the particle di!usivity. Leonard et al. [3] developed a more complicated
two-dimensional model using the method of the separation of variables from the
convective-di!usion equation. He assumed uniformity of velocity components of
charged particles and particle di!usivity. This assumption fails to adequately describe
the particle di!usivity near the collection plates, where it is governed mainly by the
molecular transport and, therefore, the di!usivity near the wall is signi"cantly lower
than the di!usivity in the turbulent core. Zhibin and Guoquan [7] suggested a new
model for the single-stage ESP which takes into account the e!ect of turbulence
mixing by electric wind. Predicted collection e$ciencies of the above theoretical
models are summarized as follows:
gDe"1!exp(!De), (2)
gCoo"1!expC;¸
2D
!SG A;¸
2DB2#(1!R)PeA¸
=B2HD, (3)
gLeo"1!P1
0
PA m!De
J2De/PeBdm, (4)
gZhi"1!S Pe
4pDeP1
0
expC!Pe
4De
(m!De)2Ddm, (5)
where <t is the migration velocity ("q1EC#/3pkd1), C# is the slip correction factor
("1#(2/Pd1)[6.32#2.01 exp(!0.1095Pd1)]), P is the absolute pressure
("76 cm Hg), E is the electric "eld intensity ("<8/=),= is the width of wire-toplate,
De is the Deutsch number ("<t¸/;=), Pe is the electric Peclet number
("<t=/D1), D1 is the particle di!usivity, and P(z) in Eq. (4) is the Gaussian probability
distribution function given by
P(z)" 1
J2pPz
~=
expA!B2
2 BdB. (6)
In order to evaluate the particle di!usivity for the calculation of De and Pe, the #ow
is assumed to be a fully developed turbulent channel #ow. The related physical
quantities are speci"ed like below [10]
1
f 1@2
"!1.8 log10A6.9
ReB, ;q
"Sf;2
8
,
D5"0.12;q=, DB"k¹C#
3pkd1
, D1"D5#DB (7)
6 S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25
Fig. 2. Comparison of measured fractional number of particles with existing theoretical predictions.
Experimental conditions: D8"1 mm, <8"50 kV, Sx"150 mm, Sy"37.5 mm, ;"1 m/s, ¹6"12%.
where f is the friction factor, Re is the Reynolds number ("2;=/v), ;q is the friction
velocity, D5 is the turbulent di!usivity, and D
B is the Brownian di!usivity.
With the measured data of fractional number of particles at the inlet of the
single-stage ESP, measured fractional number of particles at the outlet of the singlestage
ESP was compared with calculated results of each theoretical prediction model
as shown in Fig. 2. The grade e$ciency is computed over the particle size range
0.1}100 lm, and then integrated the grade e$ciency to obtain the overall mass
e$ciency, where the particle size distribution function is assumed to be lognormal.
The size distribution of most polydisperse aerosols is found very close to the lognormal
distribution. Thus, this assumption is quite reasonable. The lognormal particle
size distribution function is given by Herdan [11]:
f (d)" 1
d ln p'(2p)0.5
expC!(ln d!ln d')2
2 ln2 p' D (8)
where :=
0
f (d)dd"1, the geometric mean diameter d'"5.03 lm and the geometric
standard deviation p'"1.73 from the measured data. The fraction number of each
particle size at the outlet of ESP can be described by this particle size distribution
function. Finally, the theoretical overall collection e$ciency is calculated for comparison
with the experimental results.
S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25 7
Table 1
The dimensions and operating conditions for the present eight wire single-stage ESP
Dimensions and operating conditions Values
Diameter of discharge wire, D8 (mm) 1, 2, 3, 4
Wire-to-plate spacing, Sx (mm) 50}200
Wire-to-wire spacing, Sy (mm) 12.5}50
Length of collection plate, ¸ (m) 0.75
Height of collection plate, H (m) 0.3
Air #ow velocity, ; (m/s) 0.8}2.5
Applied voltage on wires, <8 (kV) 10}70
Turbulence intensity, ¹6 (%) 12, 15, 18
Air temperature, ¹ (K) 293
Air pressure, P (atm) 1
3. Experimental procere
The experimental apparatus used in this study consisted of six components: an
aerosol generation system, a wind tunnel, a laboratory-scale ESP, a rapping system,
an aerosol sampling system, and a particle concentration measurement system. The
ESP was 30 mm (=)]500 mm (H)]750 mm (¸) in size and was equipped with eight
discharge wires. The schematic diagram of the ESP is shown in Fig. 1. The basic
operating conditions of the ESP and the parameters used are shown in Table 1. The
single-lane wind tunnel was made of plexiglas and operated at the ambient temperature.
It can provide air velocities ranging from 0.1 to 6 m/s. A thermo-anemometer
(Model 8525, Alnor Instrument Company) was used to measure the air velocity. The
air "ltered with a high e$ciency particulate "lter (HEPA) was supplied with a turbulence
intensity of about 12% and at a "xed mean velocity of 1 m/s. The #y ash
particles which came from the Bo-Ryung electric power plant in Korea were dispersed
using a microst feeder (Model MF-2, Sibata Scienti"c Technology Ltd.). The #y ash
was analyzed using chemical, physical and electrical methods and the analysis results
are shown in Table 2. The microst feeder utilizes a variable-speed turntable to
transport #y ash at a constant rate to the test section in the wind tunnel. The
laboratory-scale single-stage ESP described previously was installed in the test section
as shown in Fig. 1. For aerosol sampling, an isokinetic sampling tube was used to
measure the concentration and the size distribution of the #y ash particles. The
measuring points were positioned at the center of the cross-sectional area of the wind
tunnel. Measurements of the particle concentrations upstream and downstream were
made by Aerosizer (Model Mach II and LD, API) which is capable of measuring
indivially the size of particles in the range of 0.2}200 lm regardless of the particle
shapes. Finally, the overall collection e$ciency, g%91, was evaluated with the mass
loading of the particles measured at inlet and outlet of the ESP:
g%91"[(m)*/-%5!(m)065-%5]
(m)*/-%5
, (9)
8 S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25
Table 2
Results of chemical, physical, and electrical analysis of #y ash
Classi"cation Values
Chemcial components of #y ash SiO2 (46.47 wt%)
Al
2
O
3
(24.48 wt%)
Fe2O3 (15.28 wt%)
CaO (4.06 wt%)
MgO (1.56 wt%)
Na2O (0.35 wt%)
K2O (1.17 wt%)
SO
3
(4.20 wt%)
TiO2 (1.18 wt%)
Measurement of particle size distribution GMD 5.03 m
GSD 1.73
d1)4.23 lm
d1'4.23 lm
Electrical resistivity 4.3]109 () m)
where (m)*/-%5 is the mass loading of particles at the ESP inlet. (m)065-%5 is the mass
loading of particles at the ESP outlet.
Presently, two philosophies are prevalent with regard to removal and transfer of the
particulate from the collection plates.

⑥ 水過濾除塵器原理除塵的效率

含塵氣體從設備頂部進風口進入設備後,以高速經過旋風分離器,使含塵氣體沿軸線調整螺旋向下旋轉,利用離心力,除掉較粗顆粒的粉塵,有效地控制了進入電場的初始含塵濃度。然後,氣體經下灰斗進入電場工作,由於下灰斗截面積大於內管截積數倍,根據旋轉矩不變原理,徑向風速和軸向風速急劇降低產生零速界面而使內管中的重顆粒粉塵沉降於下灰斗內,降低了進入電場的粉塵濃度,低濃度含塵氣體經電收塵而凝聚在陰陽極板上,經清灰振打而將收集的粉塵由鎖風排灰裝置輸送走。為了防止內管旋風和電場極板振打後在下灰斗內形成的二次揚塵,特在下灰斗中設置了隔離錐。

⑦ 過濾式除塵器有什麼特點

過濾式除塵器,是一種乾式高效除塵器,它是利用纖維編制物製作的袋式過濾元件來捕集含塵氣體中固體顆粒物的除塵裝置。其作用原理是塵粒在繞過濾布纖維時因慣性力作用與纖維碰撞而被攔截。細微的塵粒(粒徑為1微米或更小)則受氣體分子沖擊(布朗運動)不斷改變著運動方向,由於纖維間的空隙小於氣體分子布朗運動的自由路徑,塵粒便與纖維碰撞接觸而被分離出來。其工作過程與濾料的編織方法、纖維的密度及粉塵的擴散、慣性、遮擋、重力和靜電作用等因素及其清灰方法有關。濾布材料是布袋除塵器的關鍵,性能良好的濾布,除特定的緻密度和透氣性外,還應有良好的耐腐蝕性、耐熱性及較高的機械強度。耐熱性能良好的纖維,其耐熱度目前已可達到連續溫度190℃,瞬間溫度200℃。

⑧ 求一份完整的袋式除塵系統設計的論文

先去知網下載,研究下別人怎麼寫的,從中提煉出來自己的東西就可以了,不會找的話,可以去我qq空間里看下論文的查找步驟

⑨ 除塵設備有哪些分類及原理

除塵設備按照工作原理分為5類
一、機械式除塵設備
機械式除塵設備包括重力除塵設備、離心除塵設備和慣性除塵設備,下面以重力除塵設備為例簡介
重力除塵設備又分為碰撞式和回轉式,前者沿是氣流方向設一道或多道擋板,含塵氣體碰撞到擋板上使塵粒從氣體中分離出來。顯然,氣體在撞到擋板之前速度越高,碰撞後越低,則攜帶的粉塵越少,除塵效率越高。後者是使含塵氣體多次改變方向,在轉向過程中把粉塵分離出來。氣體轉向的曲率半徑越小。轉向速度越高,則除塵效率越高。
在實際應用中,慣性除塵設備一般放在多級除塵系統的第一級,用來分離顆粒較粗的粉塵。它特別適用於捕集粒徑大於10μm的乾燥粉塵.而不適宜於清除粘結性粉塵和纖維性粉塵。
二、洗滌式除塵設備
洗滌式除塵設備包括水浴式除塵設備、泡沫式除塵設備,文丘里管除塵設備、水
膜式除塵設備等,下面以水浴式為例簡介:
水浴式除塵設備工作原理是在除塵設備內水通過噴嘴噴成霧狀,當含塵煙氣通過霧狀空間時,因塵粒與液滴之間的碰撞、攔截和凝聚作用,塵粒隨液滴降落下來。
水浴式除塵設備優點:內設很小的縫隙和孔口,可以處理含塵濃度較高的煙氣而不會導致堵塞,而且過濾水可以循環使用,直至洗滌液中物質濃度達到相當高的濃度為止,簡化了水處理設施;缺點:設備體積較大,處理細粉塵的能力較低。所以該類型除塵器常用於處理粉塵徑大含煙濃度較高的煙氣
三、過濾式除塵設備
過濾式除塵設備除塵機理類似於口罩,是通過過濾材料對空氣中的飛灰顆粒進行機械攔
截來實現的,另先收到的飛灰顆粒在濾料表面形成了一層粘稠的穩定的灰層,稱為濾餅或慮床,它又起了很好的過濾作用。過濾元件可以由棉毛纖維、玻璃纖維或各種化學纖維經過紡織(或針刺)成濾料,再縫製成垂直懸掛的濾袋,不同場合要選用不同的濾料。在濾袋上收集到的粉塵通過周期性的機械抖動、過濾後的煙氣反吹或壓縮空氣的脈沖反吹等途徑使布袋變形而將灰清除。
四、靜電除塵設備
靜電除塵設備的工作原理是煙氣通過電除塵設備主體結構前的煙道時,使其煙塵帶正電荷,然後煙氣進入設置多層陰極板的電除塵設備通道。由於帶正電荷煙塵與陰極電板的相互吸附作用,使煙氣中的顆粒煙塵吸附在陰極上,定時打擊陰極板,使具有一定厚度的煙塵在自重和振動的雙重作用下跌落在電除塵設備結構下方的灰斗中,從而達到清除煙氣中的煙塵的目的。
電除塵設備主要應用於火力發電廠,作用是將燃灶或燃氣鍋爐排放煙氣中的顆粒煙塵目的。
五、磁力除塵設備
磁力除塵設備原理是利用導電線圈產生磁場,吸附磁性顆粒,主要用於鋼鐵等工業廢氣,這些廢氣中的塵粒約有70%以上具有強磁性,因此可以使用磁力過濾器,將帶磁性顆粒從氣體中吸出,凈化空氣。

⑩ 布袋除塵器的過濾作用由哪些效應產生

布袋除塵器是利用多孔纖維材料的過濾作用將含塵氣體中的粉塵過濾出來的。這種過濾作用通常由下列效應而產生。
1、篩濾效應:當粉塵的粒徑大於濾袋纖維間隙或濾袋上已粘附的粉塵層的孔隙時,塵粒無法通過濾袋,就被截留下來。這種效應稱為篩濾效應。通常的濾料,這種篩濾效應是很小的,因為濾袋纖維間的空隙往往要比塵粒大得多。只有當濾袋上積沉一定數量的粉塵並形成粉塵層後,篩濾效應才顯示出來。
2、碰撞效應:當含塵氣體靠近濾袋纖維時,空氣繞纖維而過,但較大的塵粒由於其慣性價用而偏離氣流方向,撞擊到纖維上而被截留的效應稱為碰撞效應。
3、鉤住效應;當含塵氣體接近濾袋纖維時,如果靠近纖維的塵粒部分突入纖維邊緣時,塵粒就有可能被纖維邊緣鉤住,這種效應叫做鉤住效應。
4、擴散效應;當塵粒的直徑為0.2微米以下時,由於氣流的氣體分子的相互碰撞而偏離氣流流線作不規則的布朗運動,這就增加了塵粒與纖維的碰撞機會,使塵粒彼捕獲。由於布朗運動引起的擴散,使粉塵微粒與濾料接觸吸附的作用,叫做擴散效應。塵粒越小,這種不規則的運動越劇烈,則塵粒與纖維的碰撞接觸的機會也越多。
5、靜電效應:當塵粒與濾料纖維的電荷相反時,塵粒就會吸附於濾袋上,如果塵粒與濾料的荷電相同,濾袋就排斥塵粒,降低收塵效率。

閱讀全文

與過濾除塵設備論文相關的資料

熱點內容
補的樹脂牙黃 瀏覽:568
沒有裝凈水器怎麼補救 瀏覽:20
不銹鋼精工樹脂字 瀏覽:765
江門醇酸樹脂 瀏覽:723
混凝劑污堵反滲透 瀏覽:436
過濾驅動摘除tdi 瀏覽:746
太原純凈水有什麼菌 瀏覽:932
葯店裡的飲水機怎麼用 瀏覽:251
簡陽市的鄉鎮污水廠有哪些 瀏覽:890
如何去除污水中的bod 瀏覽:582
細胞過濾器規格用途 瀏覽:611
過濾設備白酒 瀏覽:554
凈水提肥用什麼葯 瀏覽:825
污水處理廠怎麼變清波 瀏覽:801
重力式泳池水處理設備原理 瀏覽:154
污水井浮漂壞了怎麼辦 瀏覽:258
家庭水凈化器價格多少 瀏覽:805
南京全自動軟水處理設備 瀏覽:357
污水處理用哪些填料 瀏覽:773
銅陵高新區污水招標公告 瀏覽:902