導航:首頁 > 設備說明 > 過濾設備發展歷程

過濾設備發展歷程

發布時間:2021-11-09 16:14:29

A. 超聲波清洗設備的發展歷程

超聲波清洗機是首選的光威超聲
超聲波清洗的說法是,泡沫起到清潔的作用。蔡野生良好的英國通過試驗發現,事實上,泡沫僅僅是通過超聲強大的粗密波通過一個簡單的氣體爆發引起的,相反,它會抑制甚至消除超聲波清洗的清潔力真正發揮清潔真空瓦斯點作用。這一發現實現了革命性的突破,在該領域的超聲波清洗。 1987年,柴野佳英發表超聲波清洗的基本理論,以區分它從傳統的理論,稱自己的研究「柴野理論」的技術定義,超聲波清洗超聲波清洗技術。根據這一理論開發的超聲波清洗設備,清洗效果要遠遠優於同類產品,並能成功地控制了發生氣穴位置,密度,效率和影響。其他銀行同業拆息製造商花費25分鍾,仍然沒有得到很好的清洗,以除去焊接毛刺,清洗設備可以被刪除,在不到6秒的昴宿星團,其他銀行同業廠商的設備仍然可以不花兩個小時,以除去密集的光通量,昴宿星團群集可以在2分鍾之內除去,並確保沒有損壞的對象進行處理。
「昴宿星」的誕生過程中,超聲波清洗機,柴野良好的英國似乎特別興奮的談論。 1970年,柴野好英國從日本國立福島工業,專業,電氣工程學院畢業後,曾在蛇的頭縫紉機工業技術研究院。 1975年,他進入了工業清洗公司,剛開始的超聲波清洗機,但三氯乙烯,氟利昂和其他有毒化學溶劑作為清洗介質的廣泛使用,對環境的污染是相當嚴重的。日本的產業是一個快速發展的時期,大量的工業廢水排入河中,很多人生病,因為飲用受污染的水,特別是一些迫於生計的有毒,有害工作和過早死亡與殘疾的人。柴野英國最好的見證了這一切,強烈的社會責任感,使他決心採用環保技術,造福人類,他說:「世界上養育了我,我有責任促進世界! 「從那時起,他開始了他的環保超聲波清洗機道路上的一項研究。
因素造成了事故,他發現了超聲波清洗機的奇跡。由於缺乏資金,一切只能因陋就簡,測試設備出了問題。超聲波清洗機槽大多採用不銹鋼,不能從側面觀察的情況所產生的超聲波在介質中,柴野英國最好的,因為缺乏資金,買一個透明的塑料魚缸相反,它很容易在清洗罐,以觀察其變化。他發現,許多氣泡上升,大泡成兩個氣泡,終於按捺不住,放置在水箱底部的超聲波發生器。傳統的超聲波清洗的原理傳播通過超聲波產生氣泡的液體介質中播放的清潔表面的效果,然後通過電源的氣泡爆炸。然而,由於氣泡,爆炸的力量,清洗效果是不理想的。柴野徐佳瑩以前使用超聲波清洗水代替氟利昂和其他有毒,他還試圖試驗和錯誤,不斷改進,終於研製成一種新型的超聲波清洗設備,真空空化氣泡,這早已得到糾正誤解的超聲波清洗技術。有害介質本發明在1993年,美國環境保護局(EPA),以保護臭氧層環境保護獎環保的目標邁進了一步。他發明了一種數字化測量的清潔力,可以很容易地測量聲壓超聲波沖擊力的空化,使清潔裝置調整到最佳狀態。
超聲波清洗機技術有這么長的歷史,來證明,該技術是可靠的,在超聲波清洗機技術將是一個良好的發展

B. 分離與過濾機械發展趨勢是什麼

當今世界,高新技術迅猛發展,這種強大的發展趨勢也給分離與過濾機械產品的創新和發展注入了新力量和源泉,超音速鈾分離、超導分離、激光分離、超聲波過濾、納米超濾、模擬自濾等高科技項目不斷推新,其整個行業發展勢頭與相關產業的進步起頭並進,主要表現可總結為以下幾個方面:
1)高參數趨勢
第一是大規格趨勢:因為資源以及能源開發、三廢治理、環保等工業逐漸朝著大型化的方向發展,就需要有大型號大規模的分離與過濾設備提供支持,比如Φ3000離心分離機以及2000m2壓濾機等。第二是高速率趨勢:當前各企業的管理者都比較重生產效率問題,為了滿足企業對特殊材料的分離任務並保障設備的工作質量和效率,就必須有高速運轉且高速過濾的設備作為後盾,比如音速鈾濃縮離心分離機以及高速率旋葉壓濾機等,並且它們都採用了針狀軸承整機以及磁力全速動平衡技術。第三是高精度趨勢:目前全球精細化工、醫葯生物等行業的發展速度越來越快,為了提高此類產品的純度質量,就要有更加精細的設備,比如高精度精密膜分離器、千級鈾擴散膜濾機組、十字流動態過濾機等。第四是高壓力趨勢:節能是當前世界關注的重點課題,為了盡可能大的減少產品的含液量,以達到降低乾燥產品過程中的能耗,設備的壓力就應該逐漸增大,比如加壓葉濾機等。
2)節能多功能趨勢
隨著醫葯生物工程技術水平的不斷發展,貴重製品的污染以及節約現在已經得到了相關人士的持續關注,為了實現這一目標,就要設計出節能減排共更能、乾燥功能、過濾功能和集反應功能共有的一體化設備,像具備壓榨功能的多功能加壓過濾機以及水平帶式過濾機等。
3)智能化趨勢
為了適應特殊場合的需求並且提高機械的生產效率和質量,我們必須採用全自動化高水平且能夠連續作業的專業設備,逐漸朝著機器人操作以及電腦控制的方向發展,像控無人操作碟型分離機或者水平帶型過濾機等。
4)材料新型化趨勢
未來設備的機械性能一定會逐漸提高,這就需要抗腐蝕性能、耐磨性、剛度、強度優異等新材料的支持,例如新型合成樹脂、橡膠、硬質合金SiO2、陶瓷、工程塑料復合而成的新型材料,除此之外還需要零件表面鍍鎳磷技術以及噴塗、襯包、鑲嵌、粘結新工藝的支持。在分離效率及精度方面也將得到很好的發展,這就對過濾分離機械的過濾介質,其心臟材料有了嚴格的要求。比如燒結網、濾布等。

C. 濾波器發展史

濾波器的發展歷程
---凡是有能力進行信號處理的裝置都可以稱為濾波器。在近代電信設備和各類控制系統中,濾波器應用極為廣泛;在所有的電子部件中,使用最多,技術最為復雜的要算濾波器了。濾波器的優劣直接決定產品的優劣,所以,對濾波器的研究和生產歷來為各國所重視。
---1917年美國和德國科學家分別發明了LC濾波器,次年導致了美國第一個多路復用系統的出現。20世紀50年代無源濾波器日趨成熟。自60年代起由於計算機技術、集成工藝和材料工業的發展,濾波器發展上了一個新台階,並且朝著低功耗、高精度、小體積、多功能、穩定可靠和價廉方向努力,其中小體積、多功能、高精度、穩定可靠成為70年代以後的主攻方向。導致RC有源濾波器、數字濾波器、開關電容濾波器和電荷轉移器等各種濾波器的飛速發展,到70年代後期,上述幾種濾波器的單片集成已被研製出來並得到應用。80年代,致力於各類新型濾波器的研究,努力提高性能並逐漸擴大應用范圍。90年代至現在主要致力於把各類濾波器應用於各類產品的開發和研製。當然,對濾波器本身的研究仍在不斷進行。
---我國廣泛使用濾波器是50年代後期的事,當時主要用於話路濾波和報路濾波。經過半個世紀的發展,我國濾波器在研製、生產和應用等方面已納入國際發展步伐,但由於缺少專門研製機構,集成工藝和材料工業跟不上來,使得我國許多新型濾波器的研製應用與國際發展有一段距離。
濾波器的分類
---濾波器有各種不同的分類,一般有如下幾種。(1)按處理信號類型分類---按處理信號類型分類,可分為模擬濾波器和離散濾波器兩大類。其中模擬濾波器又可分為有源、無源、異類三個分類;離散濾波器又可分為數字、取樣模擬、混合三個分類。當然,每個分類又可繼續分下去,總之,它們的分類可以形成一個樹形結構,如圖所示。
---實際上有些濾波器很難歸於哪一類,例如開關電容濾波器既可屬於取樣模擬濾波器,又可屬於混合濾波器,還可屬於有源濾波器。因此,我們不必苛求這種「精確」分類,只是讓人們了解濾波器的大體類型,有個總體概念就行了。(2)按選擇物理量分類
---按選擇物理量分類,濾波器可分為頻率選擇、幅度選擇、時間選擇(例如PCM制中的話路信號)和信息選擇(例如匹配濾波器)等四類濾波器。(3)按頻率通帶范圍分類
---按頻率通帶范圍分類,濾波器可分為低通、高通、帶通、帶阻、全通五個類別,而梳形濾波器屬於帶通和帶阻濾波器,因為它有周期性的通帶和阻帶。
---濾波器種類繁多,有些是眾所周知的,有些可能不為大家所熟悉,下面著重介紹近年來發展很快的幾種濾波器。
有源濾波器
---有源濾波器由下列一些有源元件組成:運算放大器、負電阻、負電容、負電感、頻率變阻器(FDNR)、廣義阻抗變換器(GIC)、負阻抗變換器(NIC)、正阻抗變換器(PIC)、負阻抗倒置器(NII)、正阻抗倒置器(PII)、四種受控源,另外,還有病態元件極子和零子。
---1965年單片集成運算放大器問世後,為有源濾波器開辟了廣闊的前景。70年代初期,有源濾波器發展引人注目,1978年單片RC有源濾波器問世,為濾波器集成邁進了可喜的一步。由於運放的增益和相移均為頻率的函數,這就限制了RC有源濾波器的頻率范圍,一般工作頻率為20kHz左右,經過補償後,工作頻率也限制在100kHz以內。1974年產生了更高頻的RC有源濾波器,使工作頻率可達GB/4(GB為運放增益與帶寬之積)。由於R的存在,給集成工藝造成困難,於是又出現了有源C濾波器:就是濾波器由C和運放組成。這樣容易集成,更重要的是提高了濾波器的精度,因為有源C濾波器的性能只取決於電容之比,與電容絕對值無關。但它有一個主要問題:由於各支路元件均為電容,所以運放沒有直流反饋通道,使穩定性成為難題。1982年由Geiger、Allen和Ngo提出用連續的開關電阻(SR)去替代有源RC濾波器中的電阻R,就構成了SRC濾波器,它仍屬於模擬濾波器。但由於採用預置電路和復雜的相位時鍾,使這種濾波器發展前途不大。
---總之,由RC有源濾波器為原型的各類變種有源濾波器去掉了電感器,體積小,Q值可達1000,克服了RLC無源濾波器體積大,Q值小的缺點。但它仍有許多課題有待進一步研究:理想運放與實際特性的偏差的研究;由於有源濾波器混合集成工藝的不斷改進,單片集成有待進一步研究;應用線性變換方法探索最少有源元件的濾波器需要繼續探索;元件的絕對值容差的存在,影響濾波器精度和性能等問題仍未解決;由於R存在,集成占晶元面積大,電阻誤差大(20%~30%),線性度差等缺點,使大規模集成仍然有困難。盡管有這么多問題,RC有源濾波器的理論和應用仍在持續發展中。
開關電容濾波器(SCF)
---20世紀80年代技術改造一個重大課題是實現各種電子系統全面大規模集成(LSI)。使用最多的濾波器成為「攔路虎」,RC有源濾波器不能實現LSI,無源濾波器和機械濾波器更不用說了,於是,人們只能另闢新徑。50年代曾有人提出SCF的概念,由於當時集成工藝不過關,並沒有引起人們的重視。1972年,美國一個叫Fried的科學家發表了用開關和電容模擬電阻R,說SCF的性能只取決於電容之比,與電容絕對值無關,這樣才引起人們的重視。1979年一些發達國家單片SCF已成為商品(屬於高度保密技術)。現在SC技術已趨成熟。SCF採用MOS工藝加以實現,被公認為80年代網路理論與集成工藝的一個重大突破。當前MOS電容值一般為幾皮法至100pF之內,它具有(10~100)×10-6/V的電壓系數與(10~100)×10-6/℃的溫度系數,這兩個系數幾乎接近理想的境界。SCF具有下列一些優點:SCF可以大規模集成;SCF精度高,因為其性能取決於電容之比,而MOS電容之比的誤差小於千分之一;功能多,幾乎所有電子部件和功能均可以由SC技術來實現;比數字濾波器簡單,因為不需要A/D、D/A轉換;功能小,可以做到小於10mW。
---SCF的應用以聲頻范圍應用為主體,工作頻率在100kHz之內。在信號處理方面的應用有:程式控制SCF、模擬信號處理、振動分析、自適應性濾波器、音樂綜合、共振譜、語言綜合器、音調選擇、語聲編碼、聲頻分析、均衡器、解調器、鎖相電路、離散傅氏變換…… 總之,SCF在儀表測量、醫療儀器、數據或信息處理等許多領域都有廣泛的應用前景。
---在我國,1978年有的導師和在校研究生開始進行這項研究工作,真正引起人們重視是1980年以後。1983年清華大學已製成單片SCF,成都工程學院與工廠聯合,也研製成單片SCF。現在關鍵是用MOS工藝實現SCF及推廣應用問題,由於用戶還不了解它,在我國SCF的應用還沒有普及。
---SCF還有許多課題有待研究:
①由於運放和控制MOS開關的采樣頻率所限制,使得SCF只能在音頻范圍內應用。近年雖然出現無運放的SC電路,但由於采樣頻率的限制,工作頻率最高只有在1MHz之內。②非的MOS開關的溝道電阻以及非理想的運放特性,均可使SCF造成誤差。
③開關電容本身的寄生電容使SCF的頻響發生畸變。
④MOS開關與MOS運放的熱雜訊使SCF的動態范圍受到限制。
⑤最終要以MOS工藝來實現的SCF,由於它是時變網路,要想用分立元件精確模擬是不可能的,這樣,設計完善的CAD技術是解決這一問題的唯一手段。此外,在靈敏度分析、雜訊分析等方面均有許多課題有待研究。

D. 過濾器發展歷史

二戰中,為滿足空中堡壘B-17轟炸機液壓油過濾的需要,英國人為波音公司發明了疊片過濾器,並取得了專利。最初的疊片是由不銹鋼和銅製成,疊片的兩面機械加工出細小的溝槽,一組疊片疊加起來後形成中空的圓柱體便組成 濾芯

上個世紀60年代,一個以色列公司得到了這項專利,並且開始生產疊片過濾器用以保護灌溉系統。為了降低造價並便於現場維護,他們開始使用塑料疊片。這樣一來,一個戰時航空用過濾器便被轉變為灌溉用過濾器應用於世界各地。

疊片過濾器在灌溉領域一直應用近30年後的今天,隨著科技的進步,各種新材料與控制技術的研製與生產,它已被應用領域以由單一的灌溉行業廣泛地拓展到了市政與民用廢水處理、工業廢水處理、紡織廠、鋼鐵廠、食品加工、工業用水冷卻、工業水處理、海水淡化、及其它製造與加工業 。

疊片過濾器的過濾精度有20微米、55微米、100微米、130微米、200微米、400微米等多種規格可選,單個過濾系統的每小時流量可達數千方;控制系統可完全實現自動化,單個單元的反沖洗時間只有十幾秒,幾乎不影響系統的出水量。另外它的反沖洗用水很少,過濾精確可靠,及模塊化組合可輕易擴展性更使疊片過濾器呈現出越來越不可限量的發展。

E. 潔凈技術的發展歷程

一切技術的產生與發展,都是出於生產的需要,潔凈室技術也不例外。在第二次世界大戰期間,美國生產的飛機導航用氣浮陀羅儀,由於質量不穩定,每10個陀羅儀平均要返工120次。50年代初朝鮮半島戰爭期間,美國的16萬台電子通訊設備,更換了百萬個以上的電子部件,雷達出故障的時間佔84%,潛水艇聲納出故障的時間佔48%。原因都是電子器件、零部件的可靠性差,質量不穩定。軍方與廠商究其原因,最終從多方面判定與生產環境不清潔有關。盡管當時曾不惜工本,採取了種種嚴密措施來封閉生產車間,但收效甚微。直到50年代初,將美國原子能委員會為解決對人體有害的放射性塵埃的捕集問題,於1951年研製成功的高效空氣過濾器(HEPA—High Efficiency Particulate AirFilter)應用於生產車間的送風過濾,才真正誕生了具有現代意義的潔凈室。
1961年美國桑第阿國家實驗室(Sandia National Laboratories)的高級研究人員懷特菲爾特(Willis Whitfield)提出了當時稱之為層流(laminar flow),現正名為單向流(unidirectional flow)的潔凈空氣流組織方案,並應用於實際工程。從此潔凈室達到了前所未有的更高潔凈級別。
同年美國空軍制定頒發了世界上第一個潔凈室標准TO—00—25——203空軍指令「潔凈室與潔凈工作台的設計與運轉特性標准」。在此基礎上,1963年12月公布了將潔凈室劃分為三個級別
的美國聯邦標准FED—STD—209。至此形成了完善的潔凈室技術的雛形。以上的這三個關鍵的進步,常被譽為現代潔凈室發展歷史上的三個里程碑。
上世紀六二年代中期,潔凈室在美國如雨後春筍涌現在各種工業部門。它不僅用於軍事工業,也在電子、光學、微型軸承、微型電機、感光膠片、超純化學試劑等工業部門得到推廣,對當時科學
技術和工業發展起了很大的促進作用。
七十年代初潔凈室的建設重點開始轉向醫療、制葯、食品及生化等行業。除美國而外,其它工業先進國家,日本、德國、英國、法國、瑞士、前蘇聯、荷蘭等也都十分重視並先後大力發展了潔凈技術。
六十年代初是中國潔凈技術發展的起步階段,大致比國外晚了十年。在中國,那是一個非常特殊的困難年代,一方面剛度過三年自然災害,經濟基礎薄弱,另一方面與世界科技先進國家沒有直接交往,得不到必要的科技數據、信息和樣品。在這種艱難條件下,圍繞精密機械、航空儀表和電子工業的需要,中國的潔凈技術工作者開始了自己的創業歷程。
潔凈技術在中國發展的歷程劃分為如下幾個階段:
起步和奠基階段
六十年代初至七十年代末,這十多年是中國潔凈技術的起步和奠基階段。
1965年,由中國建築科學研究院空氣調節研究所和蚌埠絕緣材料廠等單位研製完成帶波紋隔板的高效空氣過濾器通過鑒定,標志了我國潔凈技術開始正式起步。當時所用濾紙有兩種材質,一種是藍石
棉纖維濾紙的GS系列高效空氣過濾器,但因生產過程對人體健康不利很快被淘汰;另一種是超細玻璃纖維濾紙的GB系列高效空氣過濾器,一直沿用至今。經國內多次與國外同類產品對比測試,以及美國明尼
蘇達大學氣溶膠研究所對中國高效過濾器濾紙所作測試的結果,都證明國產高效空氣過濾器的主要技術指標,達到同期國際標准。
值得提及的是,盡管日本自50年代末已著手與美國合作在日本製造高效空氣過濾器,潔凈技術起步較早,但技術與濾紙來自美國,直到1969年日本的HEPA過濾器才完全國化。
與此同時,先後於1963年研製成功濾料鈉焰試驗台,1964年建成了高效過濾器的鈉焰試驗台,這時高效空氣過濾器的正常生產和質量提高了保證作用。中國醫學科學院衛生研究所、清華大學核能所等單位,為此付出了艱辛的工作。
如果把高效空氣過濾器比喻為潔凈技術的「心臟」,那麼檢測技術及儀器則是潔凈技術的眼睛,靠它來鑒別與把關。六十年代中期,中國醫學科學院衛生研究所、哈爾濱建工學院、
丹東儀表研究所、中科院安徽光機所、建研院空調所等單位先後投入力量研製光散射粒子計數器。1973年,建研院歷時三年研製成功了中國第一台型號為J—73型的塵埃粒子計數器,以及標定粒子計數器用的標准粒子——單分散聚苯乙烯膠乳標准粒子(PSL),其平均粒徑從0.177~1.460μm,共九種,標准差很小,均方根差變系數σ/χ<5%。J—73型共設有15個粒徑檔,測量范圍是0.3~10μm,采樣流量為300ml/min。這兩項成果於1974年通過國家鑒定並認為已達到或接近當時的世界水平。塵埃粒子計數器的推廣應用,推動了中國潔凈技術的科研、設計和凈化設備生產,沿著自立、自強的道路向前進步。
同時,一些電子技術、精密機械和國防工業相關的設計院,也在探索、研究潔凈室的工程設計。1965年建成的沈陽119廠和石家莊13所就是由三機部四院(現航空工業部第四設計院)和四機部第二設計院(現中國電子工程設計院)分別參照原蘇聯的妝化等級設計建設的。
中國科學院設計院1966年選用國產GB系列高效空氣過濾器設計了中國科學院面積為760平方米的精密機械裝配車間,1970年投入生產。後經測定,在靜態條件下,室內換氣次數為20AC/h時,室內潔凈度達到當時美國聯邦標准209A的10000級。
1973年初,四機部第十設計院和第十一設計院,分別著手進行了878廠和4433廠的潔凈車間設計,兩個工廠的潔凈室級別包括從FED—STD—209A的100,000級至100級,採用的氣流流
型有垂直單向流、水平單向流和亂流等。
在這個階段內,與潔凈室配套的凈化設備陸續試製成功,一些原來生產無線電、半導體專用設備的、生產醫療器械的工廠轉向凈化設備的生產,在國內形成了初步的潔凈室設備生產規模與布局。這些工廠當時主要分布在北京、天津、蘇州、上海和重慶。從設計製造多種型式的潔凈工作台(clean bench)開始,隨後陸續設計製造了吹淋室、氣閘室、物料傳遞窗、余壓閥等相關設備。
為了適應六十年代末、七十年代初,一些研究機構對小型潔凈工作環境的需求,以及一些舊廠房進行小規模潔凈室改造的需要,建研院空調所、六機部九院(現船舶工業總公司第九設計院)、
三機部四院、天津醫療器械廠天津醫葯凈化設備廠前身)等單位,研製成功了裝配式垂直單向流、水平單向流潔凈室。這種由凈化設備廠生產的裝配式潔凈室,特別在利用原有建築物進行技術改造,
所需凈化面積又比較小的場合,發揮了設計、施工快捷,技術性能穩定的特點,1974年在天津通過了國家鑒定。
1974年以來,建研院空調所、四機部十院等單位分別建立了潔凈技術試驗室,開展了一些基礎研究。如建研院空調所在該所試驗室中進行了亂流潔凈室均勻分布與不均勻分布計算
的研究,全頂棚送風兩側下回風潔凈室氣流特性的研究等;四機部第十設計研究院在該院的潔凈試驗室中進行了亂流潔凈室的試驗研究,高效過濾器送風口的氣流分布研究,人體發塵
量研究等多項課題。
與此同時,一些研究單位及設計院,如七機部七院(航天工業部七院)、建研院空調所、四機部十院、十一院、二機部二院(核工業部二院)、六機部九院等,和一些大專院校如天津大學、同濟大學、河北工學院組成了配合國家大規模集成電路攻關的潔凈室技術研究協作組,為規范與提高中國的潔凈技術水平,進行了一系列的測試與調研工作。如在北京、西安、上海等地進行了不同環境室外大氣含塵濃度的長期臨測與統計分析,在全國各地對已建潔凈室進行了測試,並著手對潔凈室設計、施工、運行及設備生產方面的經驗進行總結。
國外同期潔凈技術發展概況大致如下:
六十年代中,美國的電子、精密機械等工廠的潔凈室如雨後春筍,對當時科學技術和工業發展起了很大的促進作用,同時開始了將工業潔凈室技術(ICR—Instrial Cleanroom)移植
到生物潔凈室(BCR—Biological Cleanroom)的歷程。七十年代初潔凈室的建設熱潮轉向醫療、制葯、食品及生化等行業。
1966年在美國新墨西哥州建成了世界上第一個垂直單向流的生物潔凈技術室(BCOR—Biological Clean Operating Room)。同年,當時的美國污染控制協會AACC(American Association ofContamination Control,後並入IEST—Institute of Environmental Science and Technology),發表了「層流手術室的設計與建造」、「層流潔凈空氣在外科領域的應用」等指導性文件。
同年還在美國明尼蘇達大學建成了世界上第一個水平層流的無菌室。1967年在美國德州的M.D.安德遜病院建成了世界上最早的生物潔凈白血病室。
在英國,著名的整形外科專家恰利(D.J.Charnley),也於1966年建起了稱之為潔凈房(clean house)型式的生物潔凈手術室。1969年在奧地利的里茨建成了歐洲第一個層流病房,
隨後在瑞士、德國先後建成用於醫療的生物潔凈室。
在日本發展得更快,1965年日本國立公眾衛生院建成了採用高效過濾器的生物潔凈室(BCR)用於無菌動物(SPF)的飼育室。1970年在愛知縣職工病院建成了裝配式垂直層流白血病房。
1972年建成了國立大阪醫院垂直層流流型無菌手術室。至1977年底,病院的生物潔凈室已達131個。
為確保葯品的安全性、有效性,1964年美國食品葯品管理局(FDA)開始在美國實施「醫葯品的製造和質量管理規范」,簡稱GMP(Good Manufacturing Practice)。1969年世界衛生組織(WH0)頒布了GMP,規定了為保證葯品無菌生產,對生產環境和用水質量的要求。生物潔凈室技術在美、日、西歐等工業國家的制葯工業得到了廣泛應用。
美國FDA於1969年頒布了「食品製造標准」,即食品的GMP,要求在製造和包裝過程中嚴格控制微生物和溫濕度,以防止食品變質。食品無菌裝罐的潔凈室,當時在歐美迅速得到推廣。
以美國為例,1971年無菌裝罐食品總量為25.4億噸,1980年增長為132.7億噸,其中肉製品增長幅度近19倍。在食品釀造、發酵工業對純種的培養、接種、擴種等工藝也都採用了潔凈室技術。
以佔有七成左右潔凈室市場的電子與半導體工業而言,七十年代被稱為大規模集成電路(LSI)時代,而八十年代則被稱為超大規模集成電路(VLSI)時代。集成電路的集成度從1970年以來,差不多以每隔2~3年增長4倍速率飛速發展。
七十年代末,64K位RAM作為進入超大規模集成電路階段的標志性產品研製過程中,注意到其典型線寬為3μm,需控制的最小粒徑為0.3~0.8μm。也就是說,以0.3μm效率為標準的HEPA過濾器不能適應電子技術的進一步發展。美國、日本相繼研製與製造了對0.1μm塵粒計數過濾效率達99.99~99.995%的超高效空氣過濾器——ULPA(Ultra low penetration air)過濾器(亦可譯為「極低穿透率空氣過濾器」)。
成熟與發展階段
七十年代末至八十年代末,這十年間,中國的潔凈技術經歷了一段陽光燦爛的發展階段。在中國潔凈技術發展歷程中,許多標志性的重要成果,幾乎都誕生在這個階段。
1、標准、規范制定與國際交往方面:
1979年1月出版了以建研院空調所為首的設計、研究和大專院校等單位對建成的工業潔凈室的測試和總結經驗的基礎上編制的「空氣潔凈技術措施」,起到了規范與推動當時中國潔凈室技術的重要作用,為日後國家標準的制定奠定了基礎。
1984年12月頒發了以電子部第十設計院會同有關單位共同編制的GBJ73-84國家標准「潔凈廠房設計規范」,其中,關於潔凈度分級標准等同採用了當時國際上大多數國家認同的美國聯邦標准209B,摒棄了此前在中國國內曾在不同范圍內使用過的多個借鑒國際標准而自定的潔凈室分級標准,為中國潔凈室技術與國際接軌向前邁進了一步。
隨後,結合中國國情,參考國際標准先後制定了GB6166-85高效濾料性能實驗方法、穿透率和阻力,GB6167-85塵埃粒子計數器性能試驗方法,GB6168-85層流潔凈工作台檢驗標准等多個標准,對統一與規范試驗、測定方法,增強科學性起了很大作用。
值得一提的是1988年11月定稿的國家標准GB12218-89「一般通風用空氣過濾器性能試驗方法」中規定採用大氣塵的限徑計數效率法來測定粗、中、高中效空氣過濾器的效率,這是以天津大學為代表的國內各研究單位多年實踐的經驗總結,在世界上率先採用此方法。1993年歐洲通風協會(ASHRAE)先後放棄了原有的大氣塵比色效率法(NBS、AFI、ASHRAE)的計重效率法,同時頒布採用大氣塵或標准塵的計徑計數法。
特別是1982年6月成立了中國電子學會潔凈技術分會(對外的名稱是「中國污染控制協會」CCCS—Chinese Contamination Control Society),並創辦了「潔凈技術」雜志(現名為「潔凈與空調技術」—Contamination Control & Air-conditioning Technology),於1983年正式發刊,在整合國內潔凈室技術的各方面力量,推動潔凈室技術進步以及在國際交流方面起了很大促進作用。1986年中國潔凈技術學會成國國際污染控制學會聯盟ICCCS(International Confederation of Contamination Control Society)的成員。當時的成員國僅有美(IEST)、英(SEE)、法(ASPES)、德(DIN/VDI)、日(JACA)、意(ASCCA)、瑞士(SRRT)及北歐四國(R3-Nodic)等。(現增加至18個成員國,有澳—ACCS、俄—ASEMCO、比—BCW、韓—KACA、羅馬尼亞—RACC、巴西—SBCC、荷—VCCN、蘇格蘭—SZCZ)。
1998年第九屆ICCCS洛杉磯會議、1990年第十屆ICCCS蘇黎世會議,筆者代表中國應約出任了大會執行主席。
2、生物潔凈室技術方面:
生物潔凈室技術在中國的起步,較國外晚了十多年。七十年代末,一些制葯廠對原有空調系統進行了改造,開始採用高效空氣過濾器作為空調送風系統的末端,以代替原有的過濾器或甘油紗布罩等。上海醫葯工業設計院、哈爾濱建工學院及有關制葯廠等單位在此時期先後在上海第四、第七制葯廠、鎮江制葯廠採用了生物潔凈室技術。
1982年中國制葯工業公司依據國情與國外經驗制定了「葯品生產管理規范」(試行稿),其中空氣潔凈度級別參考美國聯邦標准209A,將生產環境分為大於100,000級及100,000級的控制區和10,000級及局部100級的潔凈區。至1985年底又匯編了「葯品生產管理規范實施指南」,連同經過部分修改後的「規范」一並正式頒布,為推動制葯工業的現代化奠定了基礎。1988年衛生部頒發了「葯品生產質量管理規范」,其精神與前述規范一致,為在制葯行業推行GMP認證准備了條件。
在此階段生物潔凈室在醫療方面陸續得到推廣應用。1980年由哈爾濱建工學院與雞西無專共同研製的簡易型水平層流空調凈化機組用於黑龍江醫院;由六機部九院與上海金山電子設備廠合作完成的裝配式無菌病室用於上海新華醫院細胞研究室、蘇州醫學院。
八十年代中,總後營房部設計院、天津大學等設計建成了有各種氣流型式、相當於美國宇航局標准NASA-5340Ⅱ的百級至萬級的十多間土建式無菌手術室的301醫院康復中心手術樓。天津大學、天津凈化設備廠設計建成了中國醫學科學研究院血研所多間百級組裝式無菌病室。
八十年代初、軍事醫學科學院、建研院空調所、蚌埠凈化設備廠等單位研製完成了Ⅱ-A級(相當於P3級)生物安全櫃(Biohazard work station)的研製;哈爾濱建工學院等單位
完成了松江罐頭廠的甜炬乳、西紅柿醬和培根的無菌裝罐室,開創了生物安全和食品加工生物技術在中國的應用。
在1985年前後,軍事醫學研究院研製的JWL針孔式浮游細菌采樣器和上海整新電子設備廠、同濟大學合作研製的SS縫隙式空氣浮游細菌采樣器通過鑒定,為生物潔凈室技術的某些
研究工作提供了手段。
3、基礎與技術研究方面:
在七十年代末至八十年代末這10年中,在潔凈室的基礎和技術研究方面也取得了眾多成績,如:
提出了中國大氣塵的統計規律、濕度對大氣塵濃度的作用、「W」型大氣塵濃度日分布模型,為確定室外設計濃度提供了依據;
提出了帶空氣幕層流罩的隔離效果、設計原理與計算方法;
提出了亂流潔凈室的均勻分布理論計算公式、經驗計算公式,以及自凈時間、污染時間的計算式;
提出了單向流潔凈室下側回風方式的最大室寬、計算模型以及下限風速的概念及數據;
提出了高效空氣過濾器封導結合的雙環密封原理和方案,倒置式液槽密封方案;
進行了人體發菌量的測試與分析;
建立了濾材、濾器的細菌過濾效率測試台,得到了對大氣塵菌源的濾菌效率與計數、計重效率的相關關系。
中國建築科學研究院、四機部十院、十一院等科研院所、設計院、天津大學、清華大學、同濟大學、哈爾濱建築工程學院、河北工學院等院校對此做了較多的工作。
4、在產品研製與開發方面:
1979年至1981年,天津大學、天津美綸纖維廠等單位通過對多種材質(滌綸、丙綸、維綸、棉、毛、超細玻纖……)、多種工藝針刺、噴膠、熱熔、熔噴、熱壓、羅拉)的幾百個品種、規格濾料系列研究,篩選並設計定型了TL—Z、TL—C系列具有線徑梯度、密度梯度和材質、工藝復合型的無織布濾材,部分替代了當時美、法、日等國引進的從粗效至亞高效過濾材料,為國家節約了大批外匯。
1981年,由四機部十一院、河北工學院、天津第二無線電專用設備廠研製成功WGP—01型無隔板高效空氣過濾器(mini pleat HEPA filter),填補了國內產品空白。
1985年,四機部十一院、四川造紙工業研究所、重慶無線電專用設備廠共同完成了CGB型高效空氣過濾器的研製,該過濾器對0.1μm塵粒的計數效率為99.99~99.995%,阻力為245~270Pa,經鑒定認為其主要技術指標達到當時日本生產的ULPA高效空氣過濾器同類產品的技術水平。1987年1月,天津醫葯凈化設備廠和建研院空調所研製的、採用國外ULPA過濾器(日本忍足株式會社產品)的0.1μm10級潔凈室通過鑒定。1988年5月機電部第十一設計院和重慶無線電專用設備廠採用國產0.1μm高效空氣過濾器的0.1μm10級潔凈室通過鑒定,其主要
指標達到八十年代國外的技術水平。
同期,國外潔凈室技術持續、穩定發展與進步。
1982年每晶元上約有5~6萬個器件的16K位隨機存儲器(RAM)已成暢銷品。1984年256K位RAM已進入實用階段。同年初日本宣布每晶元設置有約200萬個器件的一兆位DRAM(Dynamic Random Access Memory—動態隨機存取存儲器)試製成功。1985年美國研製完成4兆位的集成電路。至八十年代末4M位的DRAM已商品化。
各種降低能耗,配合工藝過程自動化與高潔凈度要求的潔凈室氣流組織方案及技術在此階段也陸續誕生,如隧道式潔凈室(tunnel type cleanroom)、潔凈管道(ct type cleanroom)以及SMIF(standard mechanical interface—標准機械介面)技術等。
從八十年代中期以來,以於微電子行業來說,1976年4月24日所頒發的美國聯邦標准209B所規定的最高潔凈級別—100級(≥0.5μm,≯100pc./cu.ft)已不能滿足需要,1M位的DRAM的線寬僅為1μm,要求環境級別為10級(0.5μm)。事實上,從七十年代末,配合微電子技術的發展,更高級別的潔凈室. 已在美、日陸續建成,相應的檢測儀器—激光粒子計數器、凝聚核粒子計數器(CNC)—也應運而生。總結這個時期的經驗和適應技術進步的需要,於是1987年10月27日頒發美國聯邦標准209C,將潔凈等級從原有的100至100,000四個等級擴展為1至100,000六個級別,並將鑒別級別界限的粒徑從0.5μm~5μm擴展至0.1μm~5μm.
與國際接軌走向規范化
九十年代初至今,在電子技術持續飛速發展的推動下,潔凈技術不斷前進,下表給出了國際上大規模集成電路的工藝及國內的代表產品的發展進程。
1992年9月11日頒布的美國聯邦標准FED—STD—209E更進一步取代1988年6月15日頒布的FED—STD—209D,將潔凈等級從英制改為米制,潔凈度等級分為M1至M7七個級別。與209D相比,最高級別又向上延伸了半個級別(209D的1級空氣中≥0.5μm塵粒≯35.3pc./m3,而209E的M1級≥0.5μm塵粒≯10pc./m3)。
三十多年來,美國聯邦標准209,一直是世界各國潔凈技術行業公認的標准。美國總服務局(GSA—U.S.General Services Administration),也就是批准美國聯邦標准供聯邦政府各機構使用的權威單位,於2001年11月29日發布公告,廢止FED—STD—209E,等同採用ISO—14644相關標准。這個決定標志著潔凈技術
隨同世界經濟一體化進一步走向國際大同。
九十年代初至今,中國經濟始終保持穩定的高速增長,國際投資持續注入,一批跨國集團在中國陸續興建了眾多的微電子工廠。因此國內技術與研究人員有更多機會直接接觸國外高級別潔凈室的設計理今,了解世界的先進設備和裝置、管理與維護等等。從這方面來看,的確從各個角度與國際日益接軌。
中國也投入了大批財力發展微電子技術。在這階段中先後建成了首鋼日電公司、華晶電子集團公司、上海華虹NEC電子公司、紹興華越微電子公司、以及天津MOTOROLA公司、上海貝嶺微電子公司等,但總起來說微電子技術與世界先進生產水平特別是研發水平上仍有相當大的差距。
九十年代初以來,潔凈技術在制葯工廠貫徹實施GMP法過程中得到了普及,全國幾千家制葯廠以及生產葯用原材料、包裝材料等非葯企業,陸續進行了技術改造。其規模之大、范圍之寬都是空前的。1992年中國制葯工業公司、中國化學制葯工業協會對1985年頒發的「葯品生產管理規范(GMP)實施指南」進行了修訂,頒發了新的實施指南。隨後在1998年頒發了理一步與國際接軌的、由國家葯品監督局組織修訂的「葯品生產質量管理規范」,即中國1998GMP(1999年8月1日起實施),為加大GMP的推行力度、在制葯全行業實施認證體制進一步奠定了基礎。九十年代初以來,醫院無菌手術室的建設受到各方面的關注,陸續在各大城市建起了上千間十萬級至百級不同級別的生物潔凈手術室、生物潔凈病室及實驗動物房。
概括這十年來國內潔凈技術行業的歷程,依筆者個人的看法是喜憂參半。值得欣慰的是,潔凈室技術行業在許多方面日益與國際接軌,反映在相關規范的內容、潔凈室設計思路與方案、施工技術與管理、檢測手段與技術等等方面。如反映在中國的國家標准修定中,2001年11月13日發布的GB50073-2001國家標准「潔凈廠房設計規范」(Code for Design of Clean Room),在空氣潔凈度等級劃分上,明確等效採用國際標准ISO14611-1,就是一個很好的例證。依靠制葯工業與普通電子裝配業,以及醫療衛生、食品、化妝品業的帶動,潔凈室技術得到極大的普及。但這些行業基本上都是ISO5或中國標准N5(相當於原聯邦標准FED—STD—209E的100級)及以下級別的潔凈室,所採用的主要設備器材如高效及各級過濾器、吹淋室、凈化工作台,空調製冷機組以及金屬壁板、地面復合材料等,基本上都是國內生產製造的。因此從七十年代屈指可數的、主要集中在京津地區、上海地區的十幾家;八十年代末的百餘家潔凈室設備生產廠、施工安裝單位,發展到現在幾乎遍布全國各省市的上千家潔凈室相關設備、器材生產製造廠、施工安裝單位,和一批積累了相當豐富經驗的設計單位、調試檢測單位。
全國處於運行狀態的各種級別的潔凈室面積,據不完全統計和測算,從八十年代初10多萬平方米猛增到200多萬平方米。某些微電子廠生產車間的潔凈級別達到了0.1微米1級的高水平。在潔凈空氣流流型理論計算與試驗研究方面,哈爾濱建工學院、天津大學、建研院空調所等單位,採用數值模擬方法,利用CFD(computational fluid dynamics)與試驗驗證相結合的方法,開展了矢流流型、普通潔凈室高效過濾器風口布置方案與潔凈效果等方面的研究,並參加了歷屆ICCCS國際學術交流會,在國際上發表了一批研究論文。
天津大學等單位參加了MOTOROLA、SAE、KODA、CTS不同潔凈級別的、由國外設計、採用國外設備器材、施工管理技術建造的潔凈室的系統調試與檢測、驗收。較深入地理解、掌握了國外微電子高級別潔凈室、制葯工業潔凈室的設計要點、技術關鍵,以及調試驗收技術及相應規范,與美國FDA、NEBB、IEST,日本的JACA等建立了廣泛的聯系。
特別值得提出的是,在新一屆中國電子學會潔凈技術分會領導的積極努力下,中國申辦第18屆國際污染控制學術會議(2006年)獲得成功,這是自1972年ICCCS創建以來首次在華舉辦這樣的盛會,將對中國的潔凈技術進步起到重要推動作用。

F. 美寶過濾機的發展歷史是什麼

剛開始進入到環保行業,對於過濾機和泵浦都是一知半解,對於美寶過濾機以及耐酸鹼泵浦版都產生了極大權的興趣。由此就去了解了一下電鍍過濾機的發展歷史,現在就來分享給大家。在我國古代時,過濾技藝就已經被人們使用。我國古代就已運用過濾技藝,於公元前200年已有植物纖維製造的紙。公元105年蔡倫改進了造紙法。他在造紙歷程中將植物纖維紙漿盪於緻密的細竹簾上。水經竹簾裂痕濾過,一薄層濕紙漿留於竹簾面上,干後即成紙張。
剛開始的過濾大多為重力過濾,而後來採用了加壓過濾提高了過濾的速度,進而又出現了真空過濾。20世紀初創造的轉鼓真空過濾機使其完成了過濾操作的連續化。此後,各類類型的連續過濾機接踵出現。間歇操作的過濾機(例如板框壓濾機等)因能完成自動化操作而取得展開,過濾面積越來越大。為取得含濕量低的濾渣,機械壓榨過濾機研發工作取得了展開。
到了現代,電鍍過濾機的原理主要用於化學葯液內雜質及顆粒的過濾。過濾機工作時,通過過濾機下面的泵浦電機動力將葯液輸送進過濾桶,再經過過濾機中的濾材吸附葯液中的顆粒及雜質,將過濾後的葯液經濾芯中的濾管流入槽中循環使用。

G. 無源濾波器的發展歷程

3.1、1917年美國和德國科學家分別發明了LC濾波器,次年導致了美國第一個多路復用系統的出現。
3.2、20世紀50年代無源濾波器日趨成熟。
3.3、自60年代起由於計算機技術、集成工藝和材料工業的發展,濾波器發展上了一個新台階,並且朝著低功耗、高精度、小體積、多功能、穩定可靠和價廉方向努力,其中小體積、多功能、高精度、穩定可靠成為70年代以後的主攻方向。導致RC有源濾波器、數字濾波器、開關電容濾波器和電荷轉移器等各種濾波器的飛速發展;
3.4、到70年代後期,上述幾種濾波器的單片集成已被研製出來並得到應用。
3.5、80年代,致力於各類新型濾波器的研究,努力提高性能並逐漸擴大應用范圍。
3.6、90年代至現在主要致力於把各類濾波器應用於各類產品的開發和研製。
當然,對濾波器本身的研究仍在不斷進行。

H. 純水設備的發展歷程

純水又名高純水,是指化學純度極高的水,其主要應用在生物、化學化工、冶金、宇航、電力等領域,但其對水質純度要求相當高,所以一般應用最普遍的還是電子、醫葯行業。
製作純水的方法有納濾、超濾、反滲透離子交換法,國內、外多數制葯企業採用離子交換及反滲透、離子交換聯合等方法製得純水。《中國葯典》(2000年版)規定:「純水為採用蒸餾法、離子交換法、反滲透法或其他適宜的方法製得供葯用的水。」而不再僅局限於「蒸餾」這一種工藝。葯典這一改變是我國制葯用水生產發展史上的一大進步,與世界先進國家的葯典實現了接軌。但目前在我國的純水制備系統當中,納濾還沒有普遍使用。
我國純水設備的發展的歷程僅僅40多年,而其技術在工業領域的應用也只有10多年,在我國的應用更是短暫都不到十年。因此目前對於純水設備專業生產加工還是比較缺少的,大多數純水設備生產企業都是小規模經營,沒有形成大規模配套生產,產品涵蓋范圍廣,品類雜亂。
目前專業從事純水設備製造、安裝、調試、售後的企業並不多見,有的小型加工商看中純水設備這塊蛋糕,極盡所能的採用一切手段爭取合同,卻難以按照葯典要求進行設備施工,更不能通過後續的GMP認證,這是所有顧客在選擇純水設備時值得注意的事項,選擇一家資質高、實力強、服務好的製造商,才能保證純水設備符合要求。
但是隨著國家對生物制葯、醫葯行業的扶持力度增大,純水設備必然成為水處理行業中一個新的增長點,勢必帶動水處理設備不斷改進工藝流程,朝著標准化、規模化的方向發展。

I. 凈水器的發展歷程

飲用水凈化嚴格上來講應該是陶瓷過濾材料以後才算是有一定的過濾作用,上個世界中葉逐步的發展到炭吸附,不過這些階段都是屬於粗濾。上個世界七八十年代真正用到膜過濾,才算是迎來凈水的黃金時期,期間也誕生了技術超雄的德國力斯品牌,開啟膜技術的新材料

閱讀全文

與過濾設備發展歷程相關的資料

熱點內容
吉林污水設備費用是多少 瀏覽:500
深基坑雨污水如何防護 瀏覽:97
523li燃油濾芯在什麼位置 瀏覽:814
污水井蓋為什麼有很多洞 瀏覽:413
污水治理有哪些名詞 瀏覽:811
耐高溫乙烯基樹脂供應商 瀏覽:701
污水處理中DMF系統 瀏覽:455
污水處理設備應做哪些檢查 瀏覽:688
污水處理工證書主要用於哪些行業 瀏覽:323
污水管扣除檢查井 瀏覽:997
浙江聯水水處理設備有限公司 瀏覽:981
君越多少錢內置汽油濾芯 瀏覽:100
卡特c提升器發卡 瀏覽:647
純水機喝了有什麼好處 瀏覽:916
72度蒸餾葡萄酒怎麼喝 瀏覽:509
鍋爐反滲透濃水怎麼產生的 瀏覽:538
小區污水管道維修分界點 瀏覽:718
燒水水垢怎麼處理 瀏覽:940
柴油過濾器清洗 瀏覽:639
製作一個過濾水垢 瀏覽:997