① 焦化廢水COD去除劑應用范圍有哪些
焦化廢水cod去除劑廣泛應用於石油開采、加工煉制、機械製造加工、鋼鐵、焦化、造紙、化纖紡織、化工及城市等各類廢水、廢液處理凈化工程中。
② 常用的污水處理葯劑有哪些
常用的有三種:
1、絮凝劑:有時又稱為混凝劑,可作為強化固液分離的手段,用於初沉池、回二沉池、浮選答池及三級處理或深度處理等工藝環節。
2、助凝劑:輔助絮凝劑發揮作用,加強混凝效果。
3、調理劑:又稱為脫水劑,用於對脫水前剩餘污泥的調理,其品種包括上述的部分絮凝劑和助凝劑。
③ 哪種混凝劑對焦化廢水的處理效果好
萊特萊德水處理專家為您解答:
焦化廢水中含有大量有毒、有害物質,其污染物包括酚類、多環芳香族化合物及含氮、氧、硫的雜環化合物等,是一種典型的含有高污染、難降解有機物的高濃度工業廢水。因此焦化廢水的處理,一直是國內外廢水處理領域的一大難題,幾十年來尚未出現突破性的研究成果。目前熱電廠焦化廢水處理設備應用的主要技術有高級氧化法和物理化學法。
一、高級氧化法
高級氧化法是在廢水中產生大量的OH,OH能夠無選擇性地將廢水中的難降解有機污染物降解為二氧化碳和水。高級氧化法可以分為Fenton試劑法、濕式氧化法、光催化氧化法、超聲聲化學氧化法等。二、物理化學法
1、混凝法混凝法
是向廢水中加入混凝劑並使之水解產生水合配離子及氫氧化物膠體,使廢水中污染物質發生凝聚從而沉澱去除。
2、吸附法
吸附法處理廢水,就是利用多孔性吸附劑吸附廢水中的一種或幾種溶質,使廢水得到凈化。常用吸附劑有活性炭、磺化煤、礦渣、硅藻土、粉煤灰等。
電廠焦化廢水處理設備技術特點
1、高級氧化法可以無選擇地將有機物氧化降解為CO2、H2O及其他低分子無機化合物,去除效率高,氧化速度快,無二次污染,在焦化廢水處理領域具有廣闊的應用前景。
2、混凝法和吸附法是焦化廢水深度處理的可靠方法,為進一步改善處理效果,應著力進行新型混凝劑和吸附劑的開發。
3、利用多種方法的協同作用處理焦化廢水中的有機污染物,可發揮各自的優點,有助於更進一步的提高電廠焦化廢水處理設備處理效率。因此,多種方法聯用也是焦化廢水處理技術的發展方向。
④ 工業廢水中焦化廢水生化處理後尾水成分主要是什麼
焦化廢水的特點
焦化廢水主要成分有揮發酚、礦物油、氰化物、苯酚及苯系化合物、氨氮等,屬於污染物濃度高,污染物成分復雜,難於治理的工業廢水之一。其處理的關鍵之處在於:
酚含量高
廢水中酚含高,有的高達2~12g/L。由於酚的可生化性差,需用萃取法或其它物化法進行預處理加以回收利用。當它的含量高時,還是有很大的回收價值。
氨氮含量高
焦化廢水中氨含量高,有時高達2000mg/L。高濃度的氨不僅難以用生化法去除,而且其對生化處理單元有一定的毒害作用,嚴重時可殺死活性污泥,破壞整個生物處理系統。因此,該高含氨氮廢水在進入污水處理站之前,要設蒸氨預處理過程。
經過蒸氨預處理的廢水氨氮濃度在100~300mg/L左右,如果要處理到國家一級排放標准15mg/L以下,氨氮的去除塵器仍為該類污水處理工藝選擇時首先要考慮的問題。
難降解有機物含量高
焦化廢水中含有大量苯系、萘系及雜環類難降解有機物,通常的好氧活性污泥法難以直接處理達標。因此,在好氧法前,需改善其可生化性,提高BOD:COD值。
關鍵工藝的選擇
焦化廢水的處理方法主要分為物化法和生化法。
物化法
物化法由於要消耗大量的化學葯劑,運行成本非常高,所以很少採用。現在普遍採用生化法。
生化法
生化法可分為普通活性污泥法、A/O法、A2/O、SBR法,以及它們的各種變體。其中:
(1)普通活性污泥法在過去採用較普遍,但是由於焦化廢水的可生化性差,難以使COD及氨氮達標。即使延長廢水在好氧池中的停留時間,也不可能使氨氮達到一級標准。
(2)A/O法對氨氮有很好的去除效果,但由於焦化廢水的COD較高,可生化性差,難以使COD達標。
(3)SBR法操作復雜,針對性不強,同時去除COD和氨氮的效果不好。
(4)A2/O法既可以先改善廢水的可生化性,又可以高效地去除氨氮,因此,它非常適合處理焦化廢水,為焦化廢水的首選方案。
⑤ 急求一篇關於超聲波或Fenton試劑處理廢水的外文文獻,五千到八千字,最好是處理焦化廢水的,急呀,謝謝啦!
超聲、電解與Fenton試劑聯合處理焦化廢水的試驗研究
http://www.chinaep.net/feishui_shili/104/feishui_shili-896.htm
焦化廢水種類多,有機組分復雜,目前國內主要採用A/O、A2/O生化方法進行處理,但生化處理後的焦化廢水色度高,含有大量生物難降解有機物,還不能達到國家規定的排放標准。對生化處理後的焦化廢水,一般採用活性炭吸附來脫色、去除COD,但該工藝設備龐大,且初投資和運行成本均比較高,所以尋找經濟有效的處理焦化廢水的方法一直是廢水處理領域的難題之一。李義久等[1]採用復合氯氧化劑處理焦化廢水,色度從140倍降至60倍以下,其它污染指標亦明顯降低。近二十年來,Fenton試劑在廢水處理中的應用在國內外受到普遍重視[2,3]。研究表明Fenton試劑處理含酚廢水對酚、CODCr、TOC都有較好的去除率[4]。利用光、電、聲、磁催化氧化技術處理有機廢水,尤其是難於生化降解的"三致"(致癌、致畸、致突)有機污染物,是當前世界水處理技術研究中相當活躍的領域[5]。本文採用Fenton試劑,並輔以超聲和准穩態陽極(DSA電極)催化,對生化處理後的焦化廢水作進一步的氧化處理,處理後水質達到國家一級排放標准,且大大縮短了反應時間。
1 實驗部分
1.1 實驗裝置
氟離子選擇性電極(上海雷磁儀器廠);氰離子選擇性電極(上海雷磁儀器廠);磁力攪拌器(JB一I) (上海雷磁儀器廠);DSA類電極(SnO2、Sb2O3塗布Ti電極,自製,有效接觸面積為18cm2);超聲波發生器(中科院上海聲學實驗室),功率70W。
1.2 樣品來源
廢水取自某鋼鐵集團化工公司生化處理後的焦化廢水,主要污染物指標見表1。
色度
F-/(mg.L-1)
CN-1/(mg.L-1)
CODCr/(mg.L-1)
NH3-N/(mg.L-1)
1012
23.9
3.7
223.9
9.66
1.3 實驗方法
(1)取水樣500mL,用硫酸調節pH值,加入一定量的Fe2+和H2O2(Fenton試劑),置於30℃恆溫水浴鍋中恆溫一定時間,再用石灰水調節pH值,加入絮凝劑FeCl3,助凝劑PAM,沉降後,過濾,取樣測定CODCr、色度、氨氮、CN-、F-。
(2)上述實驗中在加入Fenton試劑的同時,導入超聲電極進行實驗,其餘步驟相同。
(3)上述實驗中在加入Fenton試劑的同時,導入DSA電極進行實驗,其餘步驟相同。
2 結果與討論
2.1 確定Fenton試劑最佳氧化--混凝沉澱條件
綜合考慮影響Fenton試劑氧化和混凝沉降效果的因素:pH值、H2O2濃度、Fe2+的濃度、反應溫度、FeCl3的濃度和PAM的濃度,根據實際的工況條件,對實驗過程做了以下幾方面的限制:(1)考慮實際成本問題,控制H2O2的濃度盡可能低;(2)pH控制在3~4;[6](3)由於實際生化處理出水溫度為30℃以上,因此試驗溫度定為30℃;(4)反應時間為2.5小時。為此,設計了以H202的濃度、Fe2+的濃度、FeCl3的濃度和PAM的濃度為變數的4因素3水平的L9(34)正交試驗,如表2所示,試驗結果列於表3。
表2 正交試驗因素水平
水樣(500ml)
H2O2/(mg.L-1)
Fe2+/(mg.L-1)
FeCl3/(mg.L-1)
PAM/(mg.L-1)
1
200
80
20
4
2
250
160
24
4.8
3
280
200
30
6
表3 正交試驗結果
水樣(500ml)
H2O2/(mg.L-1)
Fe2+/(mg.L-1)
FeCl3/(mg.L-1)
PAM/(mg.L-1)
COD/(mg.L-1)
COD去除率/%
1
200
80
20
4
168.5
24043
2
200
160
24
4.8
43.25
80.68
3
200
200
30
6
90.01
59.64
4
250
80
24
6
159.9
28.29
5
250
160
30
4
70.13
68.55
6
250
200
20
4.8
94.67
57.54
7
280
80
30
4.8
127.3
42.91
8
280
160
20
6
30.64
86.26
9
280
200
24
4
57.82
74.07
K1j%
54.89
31.88
56.08
55.68
K2j%
51.46
78.47
60.98
60.35
K3j%
67.75
63.75
57.03
58.06
Rj%
16.29
31.75
4.90
4.67
從表3可看出,Fe2+的投加量對CODCr去除率影響最大,其次是H2O2,再次FeCl3和PAM。最佳反應條件確定為:[H2O2]=200mg/L,[Fe2+]=160mg/L,[FeCl3] =24mg/L,[PAM]=4.8mg/L。在此條件下處理焦化廢水後水質指標見表4。
表4 Fenton試劑氧化混凝沉澱處理結果
名稱 色度 CODCr/(mg.L-1) NH3-N/(mg.L-1) F-/(mg.L-1) CN-/(mg.L-1)
指標 45 43.2 2.46 20.2 1.02
去除率/% 95.55 87.10 74.53 15.48 72.43
從表4可以看出,在所確定的反應條件下用Fenton 試劑處理焦化廢水,脫色效果明顯,CODCr去除率達87.10%,NH3-N去除率為74.53%,F-的去除率為15.48%,CN-的去除率為72.43%。
2.2 超聲與Fenton試劑聯合處理焦化廢水
由於單純使用Fenton試劑所需反應時間過長,所以在體系中引入超聲波發生器,利用超聲對Fenton反應進行催化,反應0.5小時後焦化廢水的主要污染指標見表5。
表5 超聲-Fenton試劑處理後焦化廢水的水質指標
水樣
H2O2/(mg.L-1)
Fe2+/(mg.L-1)
色度
CODCr/(mg.L-1)
CODCr去除率/(%)
1
0
0
160
216.8
2.76
2
200
0
200
218.3
2.08
3
200
160
16
37.7
83.16
4
150
120
18
68.6
69.22
5
100
80
60
90.5
59.41
從表5可以看出,在相同時間內,單獨使用超聲處理或超聲+H2O2處理,有一定的脫色效果,但CODCr去除率只有2%左右。採用超聲與Fenton試劑聯合處理效果明顯,色度可降到16度,CODCr降到37.8mg/L ,同時,在保持Fe2+與H2O2的比例不變時,適當降低Fe2+和H2O2用量,也取得較滿意的處理效果。本文確定的超聲與Fenton試劑聯合處理的反應條件為:超聲功率為70瓦,[H2O2] =200mg/L,[Fe2+]=160mg/L ,[FeCl3] =24 mg/L,[PAM]=4.8 mg/L。
2.3 DSA電極與Fenton試劑聯合處理焦化廢水
用特殊工藝製造的准穩態陽極(Dimensionally Stable Anode,簡稱DSA)對有機物有極強的催化降解效果[6]。實驗採用DSA電極與Fenton試劑聯合氧化處理焦化廢水,反應時間0.5小時結果見表6。表6表明,單獨使用電極或電極+H2O2氧化處理,CODCr的去除效果較好,但色度不能達到排放要求。採用DSA電極與Fenton試劑聯合處理,色度明顯降低,且在降低H2O2和Fe2+的用量時,亦可得到較好的處理效果。本文確定的DSA電極與Fenton試劑聯合處理的反應條件為:DSA電極的有效接觸面積為18cm2 ,[H2O2]=200mg/L,[Fe2+]=160 mg/L ,[FeCl3] =24 mg/L,[PAM]=4.8 mg/L
表6 DSA電極+Fenton試劑處理後焦化廢水的水質指標
水樣
H2O2/(mg.L-1)
Fe2+/(mg.L-1)
色度
CODCr/(mg.L-1)
CODCr去除率/(%)
1
0
0
240
85.9
61.48
2
200
0
160
39.06
82.48
3
200
160
35
38.56
82.78
4
150
120
35
51.40
76.95
5
100
80
90
46.27
79.25
2.4 三種方法處理焦化廢水的時間和效果比較
實驗還發現用超聲+Fenton和電極+Fenton兩種方法處理焦化廢水比單獨使用Fenton試劑來處理,反應時間大大縮短,表7列出了三種方法處理廢水的時間和效果比較。
處理方法 反應時間/(h) 色度 反應後CODCr/(mg.L-1) CODCr去除率/(%)
Fenton 0.5 480 170.5 23.85
1.5 220 100.2 55.25
3 45 43.25 80.68
超聲+ Fenton 0.5 16 37.7 83.16
電極+ Fenton 0.5 35 38.56 82.78
從表7可以看出,單獨使用Fenton試劑來處理焦化廢水,反應0.5小時後,CODCr的去除率僅為23.85%,而加入超聲和電極後,反應0.5小時,CODCr去除率明顯增大,分別達到83.16%和82.78%。實際工業水處理中,廢水在反應池中的停留時間比較短,通常只有0.5小時,因此縮短反應時間對於該工藝在實際工程中的推廣應用具有重要意義。
3 結 論
(1) 單獨採用Fenton試劑處理,:[H2O2]=200mg/L,[Fe2+]=160 mg/L ,[FeCl3]=24 mg/L,[PAM]=4.8 mg/L。處理後廢水色度從1012降至45,CODCr從223.9 mg/L降至43.3 mg/L,其它污染指標也有所下降。Fenton反應作為一種高級氧化方法,對一些生物難降解有機物質的處理取得了顯著的效果。
(2) 採用超聲+Fenton試劑聯合處理,色度降至16,CODCr降至37.8,脫色效果十分顯著,葯品投加量降低,反應時間明顯縮短。當具有一定功率的超聲波輻射水溶液,與Fenton試劑共同作用於生物難降解的有機物質,加速了Fenton的進行。超聲的空化效應以及其引起的溫度的升高和充分攪拌接觸,促使OH·大量迅速的產生,使得Fenton充分進行,從而使生物難降解有機物的處理效果更好。
(3) 採用DSA+Fenton試劑聯合處理,色度降至35,CODCr降至38.6,葯品投加量降低,時間縮短至0.5小時,脫色效果和CODCr去除有一定程度提高,反應時間明顯減少。電解催化氧化技術的實質是當直流電通過陽極和陰極時,在陰極和陽極表面將發生電子得失,這促進OH·的產生,有效利用了Fenton試劑,在焦化廢水的處理中也取得了一定的效果。
⑥ 焦化廢水處理成本現目前大概是多少啊,還請各位有經驗的朋友幫忙分析一下,感謝!
如果算上蒸氨,得七八十塊錢一噸,主要是浪費在蒸汽上面了(濟鋼焦化廠在負壓內蒸氨方面較有研究容,如果能夠實現負壓蒸氨將大幅度降低蒸氨廢水量和蒸汽浪費)。
生化處理一般七、八塊錢左右(不考慮土建和設備的折舊),管理得好也可能略微低一些。葯劑費和電費參半。主要能耗是在風機上,其他的主要是迴流泵和提升泵等泵類設備,通過合理布置高程可以合理避免多級提升,減低這部分費用。葯劑則主要是鹼,其次是聚合氯化鋁和聚丙烯醯胺。有時候生化池也需要補充一些磷酸氫二鈉、葡萄糖之類。通過合理的設計和運行過程的精細管理,我認為焦化廢水的生化處理噸水成本控制在8元以內不成問題。
深度處理我目前也拿不準,我們的項目目前連續運行還不足一個月,未統計出詳細數據。預計初期在6元左右就可處理到回用,3元左右即可做到國家一級排放標准(我們山東省執行的是半島流域污染物綜合排放標准,更嚴格一些)。但是後期費用不可預料,因為涉及膜的壽命,及樹脂填料的使用壽命問題。
⑦ 臭氧催化氧化與芬頓在焦化廢水處理方面哪種技術更好
臭氧應該要好些,當然只靠臭氧來處理是不行的,前面的預處理,或加葯劑把臭氧處理的物質沉澱過濾掉更重要,可以去啟達臭氧發生器公司的網站看看,上面有關污水處理的介紹
⑧ 焦化廢水處理公司如何深度處理廢水
焦化廢水處理含有大量的有機物和雜質,萬川環保需要對其進行處理。
1.一種有機廢水的處理方法,其特徵是,包括以下步驟:
1)將有機廢水排入進料倉,投加PH值調節劑,將PH值調制6-8;
2)將調整過的廢水排入梯級反應艙,先投加控粘劑,再投加阻聚劑,進行初步沉澱,凈水排入回用水池,濾液排入梯級裂解艙;
3)濾液排入梯級裂解艙後,排入蒸汽,通過蒸汽控制溫度在100~210℃,使得甲基磺酸鈉與丙烯酸鈉和凈水分離,回收甲基磺酸鈉和丙烯酸鈉,凈水回收回用水池,濾渣排入殘液槽;
4)殘液槽中通入CO2,CO2和殘渣中的NaOH經過置換反應後,完全置換成Na2CO3,Na2CO3加以回收,所剩殘渣壓濾排出。
2.根據權利要求1所述的一種有機廢水的處理方法,其特徵是,步驟1所述的有機廢水 COD為 50000~300000mg/L, pH 值為3~12,廢水主要成分為丙烯酸鈉、甲基磺酸鈉、NaOH、Na2CO3和老化樹脂。
3.根據權利要求1所述的一種有機廢水的處理方法,其特徵是,步驟1所述的調節劑,當原水PH值低於6時,調節劑使用工業廢鹼;當原水PH值高於8時,調節劑使用工業廢酸。
4.根據權利要求1所述的一種有機廢水的處理方法,其特徵是,步驟2所述的梯級反應艙內的濾水和投加的控粘劑的質量比是40000:1。
5.根據權利要求1所述的一種有機廢水的處理方法,其特徵是,步驟2所述的梯級反應艙內的濾水和投加的阻聚劑的質量比是40000:1。
6.根據權利要求1所述的一種有機廢水的處理方法,其特徵是,廢水過濾時流速為6m3/h。
7.根據權利要求1所述的一種有機廢水的處理方法,其特徵是,步驟2和步驟3所述的梯級反應艙和梯級裂解艙的溫度梯級變化為:100~120℃,120~140℃,140~160℃,160~210℃;壓強梯級變化為:0.5MPa,0.8MPa,1MPa,1.2MPa。
⑨ 聚丙烯醯胺與聚合氯化鋁作為焦化廢水混懸劑有何壞處
如果非要說壞處那就是
聚丙烯醯胺對微生物有一定毒性
聚合氯化鋁水溶液是酸性的~
⑩ 工業廢水中焦化廢水生化處理後尾水成分主要是什麼
焦化廢水的特點
焦化廢水主要成分有揮發酚、礦物油、氰化物、苯酚及苯系化合物、氨氮等,屬於污染物濃度高,污染物成分復雜,難於治理的工業廢水之一。其處理的關鍵之處在於:
酚含量高
廢水中酚含高,有的高達2~12g/L。由於酚的可生化性差,需用萃取法或其它物化法進行預處理加以回收利用。當它的含量高時,還是有很大的回收價值。
氨氮含量高
焦化廢水中氨含量高,有時高達2000mg/L。高濃度的氨不僅難以用生化法去除,而且其對生化處理單元有一定的毒害作用,嚴重時可殺死活性污泥,破壞整個生物處理系統。因此,該高含氨氮廢水在進入污水處理站之前,要設蒸氨預處理過程。
經過蒸氨預處理的廢水氨氮濃度在100~300mg/L左右,如果要處理到國家一級排放標准15mg/L以下,氨氮的去除塵器仍為該類污水處理工藝選擇時首先要考慮的問題。
難降解有機物含量高
焦化廢水中含有大量苯系、萘系及雜環類難降解有機物,通常的好氧活性污泥法難以直接處理達標。因此,在好氧法前,需改善其可生化性,提高BOD:COD值。
關鍵工藝的選擇
焦化廢水的處理方法主要分為物化法和生化法。
物化法
物化法由於要消耗大量的化學葯劑,運行成本非常高,所以很少採用。現在普遍採用生化法。
生化法
生化法可分為普通活性污泥法、A/O法、A2/O、SBR法,以及它們的各種變體。其中:
(1)普通活性污泥法在過去採用較普遍,但是由於焦化廢水的可生化性差,難以使COD及氨氮達標。即使延長廢水在好氧池中的停留時間,也不可能使氨氮達到一級標准。
(2)A/O法對氨氮有很好的去除效果,但由於焦化廢水的COD較高,可生化性差,難以使COD達標。
(3)SBR法操作復雜,針對性不強,同時去除COD和氨氮的效果不好。
(4)A2/O法既可以先改善廢水的可生化性,又可以高效地去除氨氮,因此,它非常適合處理焦化廢水,為焦化廢水的首選方案。