A. 樹脂太稠了,但是又不想降低太多樹脂粘度,請問用什麼單體或者其他溶劑稀釋,可以稍微降低粘度
如果是單純降低粘度的話,可以用溶解力好的溶劑,或者稀釋力比較好的單體就可以了,不知道你是什麼體系的,不好推薦
如果要讓樹脂的流動性好,不會太稠,但是半固化後的粘度又要好一點,這樣復雜些,可能還要考慮一下觸變性問題,有時間我們可以交流一下qq1501209898
B. 您好,從一個您回答的2010年提問的問題找到您的。 請問用什麼溶劑可以降低不飽和樹脂的表面張力
下午好,丙來烯酸樹脂用很自多溶劑都可以溶解的比如酯、醚、酮和芳香烴,一般不溶於水和低級醇比如甲醇和乙醇,按你所描述的應該是物理溶劑揮發後再次固化成膜,不需要額外的交聯成份,這樣的話以上類別的溶劑都符合你的要求——低分子量的丙烯酸樹脂溶於幾乎所有溶劑,高分子量的一般只溶於芳香烴和鹵代烴,我個人建議使用二氯甲烷,它對所有丙烯酸酯的溶解力非常優良,快乾,請酌情參考。
C. 丙酮對環氧樹脂的固化的影響怎麼消除
升溫和添加稀釋劑都能使環氧樹脂更好地分散填料,這是因為它們都能使環氧樹脂的粘度大幅度地降低,根據文獻可推算E-44雙酚A型環氧樹脂升溫和添加丙酮時對其粘度影響的大致情況:E-44雙酚A型環氧樹脂25℃時粘度約25 Pa·s,丙酮20℃時的粘度為0.316mPa·s;100℃時E-44雙酚型環氧樹脂的粘度約降至0.1Pa·s左右;25℃時E-44雙酚A型環氧樹脂的粘度要降至0.1Pa·s,約需添加40%質量分數的丙酮;25℃以下時必須添加更多的丙酮才能使粘度降至0.1Pa·s。可見環氧樹脂的粘度對溫度的敏感性很大,溫度較小的改變會引起粘度很大的變化。在分散填料上環氧樹脂升溫降低粘度代替添加稀釋劑是可行的。
眾所周知非活性稀釋劑的加入,會使環氧樹脂固化物強度和模量下降,但伸長率得到提高。在用量少時對固化物的結構性能影響較小,用量大時固化物的性能會變壞,同時引起收縮性增加及粘接性降低,一般非活性稀釋劑的添加量不得超過15%。據中國環氧樹脂行業協會專家介紹,隨著丙酮添加量和固化劑乙二胺過剩量的增加,樣品變柔軟、粘接性變差直至難以固化保持糊狀。這是因為稀釋劑的存在使環氧樹脂的交聯密度降低,以及稀釋劑自身機械強度很差,所以當稀釋劑用量較大時固化物性能變壞。超過一定量時甚至會使環氧樹脂的交聯密度低至無法建立一固化結構體系,以至無法固化只為一糊狀。從以上分析可看出相對於使用稀釋劑,環氧樹脂升溫以分散填料,對環氧樹脂復合材料的結構性能是有利的
D. 環氧樹脂用什麼可以稀釋
環氧樹脂復可以用的稀釋劑有很制多種,其中不參與固化反應的有丙酮、乙酸乙酯、甲苯、二甲苯等,參與固化反應的主要是是縮水甘油醚類如丁基縮水甘油醚(660稀釋劑)、苄基縮水甘油醚(692稀釋劑)、苯基縮水甘油醚(690稀釋劑)等等。
E. 增加環氧樹脂的韌性
增加環氧樹脂的韌性可以通過橡膠增韌、熱塑性樹脂增韌、有機硅樹脂增韌、核殼聚合物增韌、剛性粒子增韌、納米粒子增韌、液晶聚合物增韌等方法。
環氧樹脂的增韌方法
1.橡膠增韌
橡膠類彈性體增韌EP是較早開始的環氧樹脂增韌方法,其增韌機理主要是「銀紋-釘錨」機理和「銀紋-剪切帶」機理。增韌效果不僅取決於橡膠與環氧樹脂連接的牢固強度,也與二者的相容性和分散性以及EP的固化過程有關。
目前用於增韌EP的橡膠一般是帶有活性端基的液體橡膠,在增韌EP時,這類橡膠帶有的活性端基在固化劑的作用下,與EP分子鏈中的活性基團(如環氧基、羥基等)反應。這不但增強了橡膠與EP結合的強度及相容性,也將柔性鏈結構橡膠軟段引入到環氧樹脂交聯網路中,從而改善EP的沖擊韌性。蘇航等研究了不同品種的活性端基橡膠作為增韌劑增韌EP,結果表明,改性後的EP抗沖擊性能、抗彎曲性能及拉伸剪切性能都得到了明顯的改善。橡膠增韌EP的研究已比較成熟,但由於橡膠自身的強度和模量較低、耐熱性能較差,所以在有效增韌EP的同時往往會減弱材料的強度、模量和耐熱性能。
1.熱塑性樹脂增韌
熱塑性樹脂增韌EP一般採用剪切屈服理論或顆粒撕裂吸收能量及分散相顆粒引發裂紋釘鉚機理解釋。熱塑性樹脂以高分子量或低分子官能齊聚物形式被用來改性環氧體系,由於高性能熱塑性聚合物具有較好的韌性、較高的模量和較好的耐熱性等特點,因此用它們來改性EP,不僅能改進EP的韌性,而且不降低EP的剛度和耐熱性。胡兵等用聚醚醚酮增韌改性EP,在材料韌性有所提高的同時,壓縮強度、馬丁耐熱都沒有降低。從斷裂面的形態來看,是屬於韌性斷裂。當聚醚醚酮的加入量為6%時,韌性最好,達到19.1kJ/m2,比純的EP增加了107.6%。
熱塑性樹脂增韌EP的不足之處是用於改性EP的熱塑性樹脂不易溶於普通溶劑(乙醇、丙酮等),且加工和固化條件要求較高。
1.有機硅樹脂增韌
有機硅樹脂增韌EP的方法有共混和共聚兩種,簡單的共混固化存在著兩相界面張力過大,改性效果較差,相容性不好等問題,因此一般多採用共聚改性的方法。
T.H.Ho等人將芳烷基酚醛樹脂轉化為多縮水甘油醚基烯丙基芳烷基環氧樹脂,然後與端硅氫基聚二甲基硅氧烷進行硅氫加成反應,製成聚硅氧烷改性EP。
聚硅氧烷改性EP固化後,其玻璃化轉變溫度明顯降低;通過降低彎曲模量和熱膨脹系數,內部應力明顯降低;具有較好的抗熱沖擊性能,較低的表面張力和吸濕性。有機硅改性的增韌機理比較復雜,是多種機理共同作用的結果,它能夠同時提高EP的耐熱性和韌性,但工藝難度大,韌性提高有限。
1.核殼聚合物增韌
用於EP增韌改性的核殼聚合物一般是軟核/硬殼型,殼層起到保護核的作用,使核在共混前後保持原來的形態和大小;殼層一般還帶有可與EP基體反應的官能團,可以提高與基體樹脂的相容性,提高界面粘接力,並使彈性粒子充分地分布於基體中,達到增韌的目的。張凱等利用聚丙烯酸丁酯/聚甲基丙烯酸甲酯核殼型粒子增韌EP,研究表明:當用量為EP用量2%時,抗沖擊強度有明顯提高。與其它增韌方法相比,核殼增韌可控性強,通過控制粒子尺寸及改變核殼聚合物組成來改性EP,可以獲得顯著的增韌效果。
1.剛性粒子增韌
剛性粒子在塑性變形時,拉伸應力能有效地抑制基體樹脂裂紋的擴展,同時吸收部分能量,從而起到增韌作用。適當添加剛性二氧化硅、高嶺土、玻璃珠和碳酸鈣粒子可改善EP的韌性,提高程度取決於粒子的尺度和形狀及體積分數。
F. 影響環氧樹脂TG值的主要因素有哪些
復合材料由於質量輕且具有比一般金屬材料高的比強度、比模量,熱固性樹脂特別是環氧樹脂通常用作復合材料基體樹脂,對基體樹脂進行增韌改性是提高復合材料的性能的關鍵措施之一。上世紀80年代初首次報道用Ulteml000R聚醚醯亞胺(PEI)改性環氧樹脂的研究:李善君等合成了一系列與環氧樹脂具有良好相容性的結構新穎的可溶性聚醚醯亞胺PEI,在EPOn-828和TGD-DM環氧樹脂體系中取得了非常優異的增韌效果,材料斷裂能提高5倍、模量和玻璃化溫度維持不變。那麼聚醚醯亞胺到底如何影響環氧樹脂性能?專家從化學結構和使用數量2個方面進行了介紹。
關於聚醚醯亞胺化學結構的影響,專家以4種不同主鏈結構的聚醚醯亞胺改性了4,4』-二氨基二苯甲烷四縮水甘油醚環氧樹脂(TG-DDM,環氧值為0.66)和4,4』-二氨基二苯碸(DDS)固化體系,雙酚A二醚酐(BISA-DA)與4種不同結構的二胺合成聚醚醯亞胺。觀察以20%聚醚醯亞胺(PEI)與TGDDM/DDS(40%)共混物在150%固化5 h後導致共混物呈現不同的相結構,結果TGDDM/PID共混物的斷裂面如有褶皺的絲綢(A),經CH2Cl2刻蝕也未發現兩相結構,表明共混物在固化反應過程中並未發生相分離;TGDDM/PIM共混物顯示PIM粒子分散在環氧樹脂連續相中(B);而PIP改性的環氧樹脂為雙連續結構,深色的環氧富集相中有PIP的粒子分散其中,淺色的聚醚醯亞胺富集相是相反轉結構(C);TGDDM/PIB共混物為相反轉結構(D),環氧形成粒子被聚醚醯亞胺的連續相所包圍。上述結果表明,聚醚醯亞胺的主鏈結構對改性體系相結構有顯著影響,PIP改性TGDDM體系具有雙連續相結構。
聚醚醯亞胺用量不僅對改性體系相結構有影響,且對其力學性能有顯著影響。以PIM聚醚醯亞胺改性雙馬來醯亞胺BMI/DBA為例(BMI是4,4』-雙馬來醯亞胺基二苯甲烷,DBA是0,0』-二烯丙基雙酚A),專家了聚醚醯亞胺用量,對PIM/BMI改性體系相結構的影響和對改性材料力學性能的影響。加入5%PIM後改性體系的斷裂能較純雙馬樹脂有所升高,加入10%及15%PIM的改性體系斷裂能有顯著的增大。在PIM 15%改性體系斷裂能增大了2倍多,而改性材料彎曲模量略有下降。可見聚醚醯亞胺用量的增大有利於材料韌性的升高。改性雙馬樹脂體系的相結構隨聚醚醯亞胺用量而變化,5%時所得為PIM分散粒子相結構,10%時形成雙連續相結構,15%以上導致相反轉,聚醚醯亞胺作為連續相和力學強度支撐相,有利於力學性能的大幅度提高,使斷裂韌性得以提高。
G. 環氧樹脂增韌劑有哪些
根據樹脂的類型和膠黏劑的用途選擇恰當的增韌劑,才會獲得良好的綜合性能。
1. 環氧樹脂膠黏劑用選用羧基液體丁腈橡膠、端羧基液體丁腈橡膠、聚硫橡膠、液體硅橡膠、聚醚、聚碸、聚醯亞胺、納米碳酸鈣、納米二氧化鈦等;
2. 酚醛樹脂膠黏劑可選用羧基丁腈橡膠、液體丁腈橡膠、聚乙烯醇縮丁醛、聚醚碸、聚苯醚酮。水溶性酚醛樹脂以羧基丁腈膠乳、聚乙烯醇作增韌劑;
3. 快固丙烯酸酯結構膠黏劑常選用丙烯酸酯橡膠、羧基丁腈橡膠、氯丁橡膠、氯磺化聚乙烯、ABS樹脂等;
4. α-氰基丙烯酸酯膠黏劑宜選用丙烯酸酯橡膠、ABS、SBS、SEBS等;
5. 不飽和聚酯樹脂膠黏劑宜選用液體丁腈橡膠、聚乙烯醇縮丁醛、聚醋酸乙烯等;
6. 脲醛樹脂膠黏劑可選用聚醋酸乙烯乳液、聚乙烯醇等。
H. 粘度是什麼意思怎麼樣有效降低樹脂的粘度
一般的都是使用苯乙烯,苯乙烯的作用是降低樹脂粘度,使樹脂具有流動性,改善樹脂對增強材料、填料等的浸潤性;控制固化時的反應熱;延長樹脂固化體系的適用期;填料用量增加,降低成本。按不同的樹脂需要,所用的稀釋劑(苯乙烯)也不同。
I. 有什麼材料或助劑能使不飽和樹脂在不影響透明度和粘度的情況下快速定型不會往下流
我給你介紹一些樹脂稀釋劑,你看看哪種合適:樹脂稀釋劑是配合基礎樹脂混合使用內,可以降低固化體系容粘度,增加流動性,延長使用壽命,便於大面積施工;改善了操作性的同時,又不影響固化物的基本性能。方便用於澆鑄、灌注、粘接、密封、浸漬等方面之應用。樹脂稀釋劑包括活性稀釋劑和非活性稀釋劑,活性稀釋劑中間含有環氧基團,可以參與固化反應並形成三維交聯結構。非活性稀釋劑不含有環氧基團,不能參與固化反應。醇類(如酒精)、酯類(如乙酸乙酯、鄰苯二甲酸二丁酯)、酮類(如丙酮)、溶劑汽油、甲苯等都可以作為環氧樹脂的非活性稀釋劑,非活性稀釋劑加入不飽和樹脂中一般都會降低固化交聯密度,不飽和樹脂固化時間會減慢,耐溫性、固化後強度都會降低。活性稀釋劑也有很多種,有單官能團、二官能團、三官能團、多官能團(四官能團以上的) 活性稀釋劑,一般加入後都會減慢不飽和樹脂的固化時間,降低耐溫性和固化後強度。但也有些活性稀釋劑加入不飽和樹脂當中可以提高固化後強度和耐溫性。鑒於你的介紹可能酯類溶劑比較適合你!你參考一下吧!
J. 加入納米填料後損耗模量降低
加入納米填料後損耗模量降低是不正常的。
總是前期制備的樣品具有高的孔隙度和低的密度及制樣過程中所產生的缺陷,從而造成的彈性模量的不正常的降低。
納米粉體填料改性環氧樹脂是一種重要的提高防腐性能的方法。每種顆粒都有著自己獨特的性能,當其改性環氧樹脂無法適應多種腐蝕的環境時,可將多種納米離子復合,協同改性環氧樹脂,便可以得到適用於不同環境的環氧樹脂。而如何將不同的納米離子整合在一起,發揮它們的協同作用,更好地提高環氧樹脂的防腐性能,將是今後研究的一個重要方向。