工業水處理樹脂分為陽離子樹脂和陰離子樹脂,陽離子樹脂又細分為鈉型和氫型,鈉型樹脂將水中的鈣鎂離子交換成鈉離子,使水變軟.氫型樹脂是將水中的鈣鎂離子交換成氫離子使水軟化.
陰離子樹脂中含被可置換的氫氧根離子,能置換出水中的酸根離子.
同時使用陰離子樹脂和氫型陽離子樹脂可以將水變為純凈水. 陰、陽混合離子交換器
【設備概述】
陰、陽混合離子交換器(混合床)是用於初級純水的進一步精製。一般設置於陰、陽離子交換器之後 ,也可設置在電滲析或反滲透後串聯使用,出水水質可達含二氧化硅≤0.02毫克/升,導電度≤0.02us/cm。處理後的高純水可供高壓鍋爐、電子、醫葯、造紙、化工和石油等工業部門。
【工作原理】
混合床離子交換法,就是把陰 、陽離子交換樹脂放置在同一個交換器中,將它們混合,所以可看成是由無數陰、陽交換樹脂交錯排列的多級式復床。水中所含鹽類的陰、陽通過該交換器,則被樹脂交換,而得到高純度的水。
在混合床中,由於陰、陽樹脂是相互均勻的,所以其陰、陽離子的交換反應幾乎同時進行。或者說,水的陽離子交換和陰離子交換是多次交錯進行的。 經H型交換所產生的H和OH都不能積累起來,基本上消除了反離子的影響,交換進行的比較徹底。
本混合床採用體內再生法。再生時利用兩種樹脂的比重不同,用反洗使陰、陽離子交換樹脂完全分離,陽樹脂沉積在下,陰樹脂浮在上面,然後陽樹脂用鹽酸(或硫酸)再生,陰樹脂用燒鹼再生。
【出水水質】
SiO2 < 20μg/L
導電度(25℃) < 0.15μs/cm
【結構簡述】
1. 進水裝置:
在交換器上部設有布水裝置,使進水能均勻分布。
2. 再生裝置:
在陰離子交換樹脂上方設有進液母管,管上開小孔布液,管外包覆不銹鋼梯形繞絲。陰離子交換樹脂再生用鹼液即由該進液母管送入。再生陽離子交換樹脂用的酸液由底部排水裝置進入,再生酸、鹼廢液均由中排口排出。
3. 中排裝置:
中排裝置設置在陰、陽樹脂的分界面上,用於排泄再生時酸、鹼廢液和沖洗液,型式為支管母管式,孔管外包覆不銹鋼梯形繞絲。
4. 排水裝置:
均採用多孔板上裝設排水帽,多孔板材採用鋼襯膠。
另外,在陰、陽樹脂分界面外、樹脂表面處及最大反洗膨脹高度處各設視窺鏡一個,用以觀察樹脂表面及反洗樹脂的情況。
筒體上部設樹脂輸入口,要筒體下部近多孔板處設樹脂卸出口,考慮了樹脂輸入和卸出採用水輸送的可能。
【使用說明】
當樹脂失效後可用以下方法進行再生:
混床的再生過程為兩步法再生,具體為:反沖洗、靜置(分層)、進鹼、置換、反洗、分層、進酸、置換、正洗、混脂、正洗等步驟。也可採用一步法再生,即同時進酸鹼。
混床中裝填兩種不同性能均勻混合的離子交換樹脂,因此要將兩種樹脂盡可能完全分層,才能對陽陰樹脂分別再生。反洗的目的就是使陰陽樹脂分層。通過反洗使樹脂均勻地松馳膨脹開來,在靜置時樹脂在水中自由下落,因陽樹脂比重為1.23~1.28,而陰樹脂比重為1.06~1.11,兩種樹脂比重差別較大,就很容易分層。通過反洗也可排出一些雜質異物,保證下一周期的正常運行。打開下進水閥、反洗排水閥,反洗至出水清亮為止。反洗畢,靜置,開上排閥、放水至樹脂層表面10厘米以上。
混合離交換器的再生劑擬用30%的NaOH和30%HCl,因混合離子交換器需較長時間才再生一次,不設置專門的酸、鹼貯罐,由酸、鹼計量箱直接通過噴射器進行再生。再生的控制由再生劑濃度、再生時間、再生液流量綜合控制酸、鹼計量箱及吸收器的設置滿面足規程規定的儲存量。
[樹脂預處理]
將准備裝柱使用的新樹脂,先用熱水(清潔的自來水即可)反復清洗,陽離子交換樹脂可用70-80°C的熱水,陰離子交換樹脂的耐熱性能較差一些,可用50-60°C熱水。開始浸洗時,每隔約15分鍾換水一次,浸洗時要不時攪動,換水4-5次後,可隔約30分鍾換水一次,總共換水7-8次,浸洗至浸洗水不帶褐色,泡沫很少時為止。
水洗後,再經酸鹼處理,陽離子交換樹脂可按下述步驟處理:
1、用1N鹽酸緩慢流過樹脂,用量約為強酸陽樹脂體積的2-3倍,弱酸陽樹脂的3-5倍,每小時1.5倍床層體積流過。
2、用水沖洗,出水PH為5左右,用3倍樹脂體積5%的NaCl溶液流過樹脂,流速與1相同。
3、用1N NaOH流過樹脂,用量及流速與1相同。
4、用水沖洗至出水PH為9左右。
5、用1N鹽酸或硫酸,將樹脂轉成H-型,用量為樹脂體積的3-5倍,流速與1相同。
6、酸流完後,用去離子水沖洗至出水PH值為6以上時,即可投入使用。
對於陰離子交換樹脂水洗後的酸、鹼處理次序,可採用鹼→酸→鹼次序,酸、鹼用量及流速,強鹼樹脂與強酸樹脂相對應,弱鹼樹脂與弱酸樹脂相對應。
工業級的離子交換樹脂中,常含有少量低聚物和未參加聚合反應的單體等有機雜質和其他諸如鐵、鋁、銅等無機雜質。當樹脂與水、酸、鹼或其它溶液接觸時,上述可溶性雜質就會轉入溶液而影響水質,所以新樹脂在使用前要進行處理。
❷ 弱酸陽離子安換樹脂軟化為什麼要轉成Na型
第一個階段是20世紀60年代的開創時期。這個時期電滲析是我國最早得到推廣應用的膜分離過程,其應用領域涉及苦鹹水淡化;電廠鍋爐補給水預除鹽等。第二個階段是20世紀70年代。這一時期,電滲析、反滲透、超濾和微濾等各種膜和相應組件、裝置都在研究中,或已開發出來,除電滲析外,其它膜組件仍未得到應用。第三個階段是20世紀80年代以後。這一時期我國膜分離技術跨入應用階段,一些技術上較為成熟的膜過程開始得到應用。在自己研製成功的醋酸纖維素(CA)膜於復合膜生產裝置的基礎上,又相繼引進了外國有關公司的反滲透膜生產線。反滲透技術已在我國電廠鍋爐補給水預除鹽、超純水製造、海水和苦鹹水淡化等方面大規模推廣應用,並取得很好的技術效益和經濟效益。因此,提高膜預處理的綜合利用研究意義重大且大有前途。
自超濾膜預處理後,多年來國內外研究人員都一直在探索預處理的新途徑。到1995年12月,全世界RO淡化工廠產水量達7293079m3/d,占總淡化生產量的35%,占當年世界淡化市場88%。RO技術將成為21世紀淡化技術的主要方法。
技術實現要素:
本發明正是基於以上技術問題,提供一種以弱酸陽離子樹脂交換酸化軟化方法。該方法主要針對河水而言,由於河水中含有較多的生活污水,而本發明通過設計合理的工藝流程,提高純水的回收率,並簡化原水的處理過程,降低水耗,使以河水制純水具有優越的經濟效益。
本發明的技術方案為:
一種以弱酸陽離子樹脂交換酸化軟化方法,其包括如下步驟:
(1)將待處理的水放入已放置了絮凝劑的澄清池中,除去大部分膠質物質;再將水經過過濾器,進一步除去膠質物質;
(2)將經過步驟(1)處理後的水通過弱酸陽離子樹脂交換床,使水中的陽離子(如Ca2+、Mg2+、Na+等)被樹脂吸附,樹脂中的H+進入水中,與水中的陰離子組成相應的無機酸,反應式如下:
弱酸陽離子樹脂交換床失效後,向其添加無機酸使其再生,且將弱酸陽離子樹脂上部的晶型變為H+型,將弱酸陽離子樹脂的下部的晶型變為Na+型,無機酸的加入量與水的質量比為1.01-1.015。作為優選,所述的無機酸為硝酸、鹽酸或硫酸。弱酸陽離子樹脂交換床再生的時間不超過1h,再生的水溫為30- 45℃,壓力為常壓,無機酸的流量不超60m3/h。
待水在弱酸陽離子樹脂交換床交換完成後,用脫鹽水對弱酸陽離子樹脂進行置換,置換的溫度為30-45℃,壓力為常壓,交換時間不超過1h,脫鹽水流量不超60m3/h。
待脫鹽水置換後,用清水對弱酸陽離子樹脂進行清洗;清洗的溫度小於 45℃,壓力為常壓,清洗時間不超過1h,清水流量不超80m3/h,弱酸陽離子樹脂交換床中的清洗出水電導小於1200μs/cm。
(3)將經過弱酸陽離子樹脂,除去大部分陽離子後並攜帶H+的水進入保安過濾器和反滲透RO膜除去絕大部分離子;再將經過RO膜除去大部分離子後的水進入強酸陽離子交換床,進一步除去陽離子;經過RO膜除去大部分離子後,因進入RO膜的水帶酸性,CO32-大部分以游離CO2存在,產生的游離二氧化碳經脫碳風機除去。
(4)將經步驟(3)中除去陽離子的水進入陰離子交換床,除去大部分陰離子,特別是硅酸根離子,除去大部分陰離子,得到除鹽水;
(5)將步驟(4)中得到的除鹽水再經過混床進一步除鹽,混床相當於 1000-2000個復合床對除鹽水進一步除鹽,得到精製水。
❸ 為什麼弱型樹脂比較容易再生
一、 常規的再生處理
離子交換樹脂使用一段時間後,吸附的雜質接近飽和狀態,就要進行再生處理,用化學劑將樹脂所吸附的離子和其他雜質洗脫除去,使之恢復原來的組成和性能。在實際運用中,為降低再生費用,要適當控制再生劑用量,使樹脂的性能恢復到最經濟合理的再生水平,通常控制性能恢復程度為 70~80% 。如果要達到更高的再生水平,則再生劑量要大量增加,再生劑的利用率則下降。
樹脂的再生應當根據樹脂的種類、特性,以及運行的經濟性,選擇適當的再生劑和工作條件。
樹脂的再生特性與它的類型和結構有密切關系。強酸性和強鹼性樹脂的再生比較困難,需用再生劑量比理論值高相當多;而弱酸性或弱鹼性樹脂則較易再生,所用再生劑量只需稍多於理論值。此外,大孔型和交聯度低的樹脂較易再生,而凝膠型和交聯度高的樹脂則要較長的再生反應時間。
再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低的酸、鹼或鹽。例如:鈉型強酸性陽樹脂可用 10%NaCl 溶液再生,用量為其交換容量的 2 倍 (用NaCl 量為117g/ l 樹脂 );氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入 1~2% 的稀硫酸再生。
氯型強鹼性樹脂,主要以 NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~ 200g NaCl ,及 3~4g NaOH。 OH 型強鹼陰樹脂則用 4%NaOH 溶液再生。
樹脂再生時的化學反應是樹脂原先的交換吸附的逆反應。按化學反應平衡原理,提高化學反應某一方物質的濃度,可促進反應向另一方進行,故提高再生液濃度可加速再生反應,並達到較高的再生水平。
為加速再生化學反應,通常先將再生液加熱至 70~80℃。它通過樹脂的流速一般為 1~ 2 BV/h 。也可採用先快後慢的方法,以充分發揮再生劑的效能。再生時間約為一小時。隨後用軟水順流沖洗樹脂約一小時 ( 水量約4BV) ,待洗水排清之後,再用水反洗,至洗出液無色、無混濁為止。
一些樹脂在再生和反洗之後,要調校 pH 值。因為再生液常含有鹼,樹脂再生後即使經水洗,也常帶鹼性。而一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH 值下降至6左右,再用水正洗,反洗各一次。
樹脂在使用較長時間後,由於它所吸附的一部分雜質 ( 特別是大分子有機膠體物質 ) 不易被常規的再生處理所洗脫,逐漸積累而將樹脂污染,使樹脂效能降低。此時要用特殊的方法處理。例如:陽離子樹脂受含氮的兩性化合物污染,可用 4%NaOH 溶液處理,將它溶解而排掉;陰離子樹脂受有機物污染,可提高鹼鹽溶液中的 NaOH 濃度至0.5~1.0%,以溶解有機物。
二、特殊的再生處理
污染較嚴重的樹脂,可用酸或鹼性食鹽溶液反復處理,如先用 10%NaCl +1%NaOH 鹼鹽溶液溶解有機物,再用 4%HCl 或分別用 10%NaOH 及 1%HCl 溶解無機物,隨後再用 10%NaCl +1%NaOH 處理,在約 70℃下進行。
如果上述處理的效果未達要求,可用氧化法處理。即用水洗滌樹脂後,通入濃度為 0.5% 的次氯酸鈉溶液,控制流速 2~4BV/h ,通過量 10~20BV ,隨即用水洗滌,再用鹽水處理。應當注意,氧化處理可能將樹脂結構中的大分子的連接鍵氧化,造成樹脂的降解,膨脹度增大,容易碎裂,故不宜常用。通常使用 50 周期後才進行一次氧化處理。由於氯型樹脂有較強的耐氧化性,故樹脂在氧化處理前應用鹽水處理,變為氯型,這還可避免處理過程中的 pH 值變化,並使氧化作用比較穩定。
三、再生廢液的處置
糖廠用樹脂脫色,樹脂再生的廢液含有大量的色素和有機物,顏色很深。用原糖生產精糖時,每 100 噸糖的再生廢液量約為 6~9m3 。要經過處理才能排放 (或循環),這也是一個難題。
Bento 詳細研究了用化學方法處理再生液,使色素和其他有機物沉澱,除去雜質後再循環使用,減少排放,並充分利用其中的氯化鈉。由於再生液中色素的濃度比糖汁中高 10 倍以上,液體數量較小,沒有糖液的粘性,並能容許強烈的條件如強鹼性和高溫等而無需顧慮糖的分解,用化學處理比較方便。再生液加入 5~10% 容積的石灰乳 ( 濃度為含CaO100g/ l ) ,加熱到60℃並輕微攪拌,大量的有色物沉澱析出。再加入碳酸鈉或二氧化碳、磷酸鈉或磷酸並保持鹼性,都可使較多的有色物沉澱。處理後的液體添加少量食鹽可返回作樹脂的初級再生液,其後再用新的鹽水再生。
對廢液的處理還研究過多種方法:用顆粒活性炭吸附,用次氯酸鈉、次氯酸鈣、氯氣或臭氧將它氧化,用超過濾或反滲透法分離它的有機物,或用粉狀樹脂吸附等。最近 Guimaraes 等研究用微生物將它的有色物降解,取得較好效果
❹ 求助相關離子交換樹脂問題
離子交換樹脂常用於原水處理的有鈉型陽離子交換樹脂和陰離子交換樹脂,全名稱由分類名稱、骨架(或基因)名稱、基本名稱構成。根據樹脂的酸鹼性分,屬酸性的在名稱前加「陽」,強酸性陽離子樹脂與NaCl作用,轉變為鈉型樹脂使用,就叫做「鈉型陽離子交換樹脂」。屬鹼性的在名稱前加「陰」。
1、 強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團恢復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
2、 弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生。
3、 強鹼性陰離子樹脂
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
4、 弱鹼性陰離子樹脂
這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生
❺ 弱酸樹脂轉鈉型時樹脂會不會破碎
弱酸樹脂轉鈉型時樹脂不會破碎。
陽離子交換樹脂,除了磺酸型的強酸性離版子交換樹脂,還權有弱酸型的離子交換樹脂。一直不停的進行金屬離子和氫離子的交換,可以交換上千次,樹脂保持完好。因此氫型轉為鈉型,不會破碎,放心使用。
❻ 各類離子交換樹脂的再生方法
再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低的酸、鹼或鹽:
1、大孔吸附樹脂簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。
2、鈉型強酸性陽樹脂可用10%NaCl 溶液再生,用葯量為其交換容量的2倍 (用NaCl量為117g/ l 樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。
3、氯型強鹼性樹脂,主要以NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~200g NaCl ,及3~4g NaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。
4、一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH值下降至6左右,再用水正洗,反洗各一次。
5、陽樹脂再生:
通鹽酸:在環境溫度下,將4%的樹脂床體積4倍的HCL通過樹脂床,通過時間約2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=5-6.樹脂床備用。
6、陰樹脂再生:
通氫氧化鈉:在環境溫度下,將濃度為4%的樹脂體積4倍量的NaOH通過樹脂床,通過時間約為2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=8,樹脂床備用
具體操作可根據樹脂使用情況酌情增加酸鹼的濃度和再生時間。
(6)弱酸鈉床樹脂擴展閱讀:
應用領域:
1)水處理
水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。目前,離子交換樹脂的最大消耗量是用在火力發電廠的純水處理上,其次是原子能、半導體、電子工業等。
2)食品工業
離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如:高果糖漿的製造是由玉米中萃出澱粉後,再經水解反應,產生葡萄糖與果糖,而後經離子交換處理,可以生成高果糖漿。離子交換樹脂在食品工業中的消耗量僅次於水處理。
3)制葯行業
制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。近年還在中葯提成等方面有所研究。
4)合成化學和石油化學工業
在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。用離子交換樹脂代替無機酸、鹼,同樣可進行上述反應,且優點更多。如樹脂可反復使用,產品容易分離,反應器不會被腐蝕,不污染環境,反應容易控制等。
甲基叔丁基醚(MTBE)的制備,就是用大孔型離子交換樹脂作催化劑,由異丁烯與甲醇反應而成,代替了原有的可對環境造成嚴重污染的四乙基鉛。
5)環境保護
離子交換樹脂已應用在許多非常受關注的環境保護問題上。目前,許多水溶液或非水溶液中含有有毒離子或非離子物質,這些可用樹脂進行回收使用。如去除電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6)濕法冶金及其他
離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。
❼ 弱酸樹脂與強酸樹脂應用時有哪些交換特性
弱酸型陽樹脂肯定優於強酸型陽樹脂,從制水工藝上講,主要是制水量大,工況穩定等特點,同時也節約了再生劑量,更重要的是減少了排廢量
❽ 弱酸性陽離子交換樹脂在何種水質條件下可以去除鈉離子
在什麼條件下也不能去除鈉離子啊
這種樹脂一般是用來去除碳酸根 碳酸氫根及其他鹼性鹽類或用作胰凝蛋白酶、細胞色素C、慶大黴素、激素(垂體)、胰島素、溶菌霉、新鏈黴素等生化葯物的分離提純。。
❾ 鈉型陽離子交換樹脂為什麼在使用前要用酸處理,並洗至中性
新樹脂在使用前需清洗是任何類型的樹脂都不可少的一個步驟!
主要是因為,樹回脂在出售時答,並非絕對的「干凈」,多會含有少量低聚物和未參加反應的單體,以及鐵、鉛、銅等無機雜質。這些物質或多或少都對樹脂的交換性能有一定影響,所以應該在使用前予以清洗處理。
而對於陽離子交換樹脂來說,最易受Fe的污染;陰離子交換樹脂則更易受各種有機物的污染。你提到的酸處理也就是最常用的對應清洗劑——
鹽酸和
NaCl-NaOH混合液,當然還有其它的的,這里就不多說了。
ps,陽離子交換樹脂一般分為強酸性和弱酸性兩種,再生時都在酸性條件下。
❿ 鈉型陽離子交換樹脂和氫型陽離子交換樹脂一樣嗎
鈉型和氫型的陽離子交換樹脂是完全不一樣的。
樹脂的離子形式不同版在使用當中差別是完全不同的。比如說鈉權型陽樹脂,主要適用於硬水的軟化去除鈣鎂離子;而氫型的陽樹脂主要適用於純水制備和超純水的制備等。
離子交換樹脂帶有官能團(有交換離子的活性基團)、具有網狀結構、不溶性的高分子化合物。通常是球形顆粒物。離子交換樹脂的全名稱由分類名稱、骨架(或基因)名稱、基本名稱組成。
氫型陽離子交換樹脂可依活性基(一種官能基)種類不同,分成兩種:
1、強酸性陽離子交換樹脂:強酸性陽離子交換樹脂系因它的活性氫離子在水中很容易解離而得名,其骨架均為聚苯乙烯系統,主要產品是「磺酸型」強酸性陽離易解離而得名,骨架均為聚丙烯酸系統。
2、弱酸性陽離子交換樹脂:弱酸性陽離子交換樹脂則是因它的活性氫離子在水中比較不容顆粒,以淡黃色最常見。主要產品是「羧酸型」弱酸性陽離子交換樹脂,通常顏色較白色或淡黃色球狀子交換樹脂,通常顏色較深,棕黃色至綜色球狀顆粒,以綜色最常見。